用户名: 密码: 验证码:
高速铁路无砟轨道红黏土路基动力稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目“客运专线无砟轨道红黏土地基变形特性及动力稳定性研究”(编号:50778180)、铁道部科技研究开发计划课题“武广客运专线灰岩残积层红黏土变形特性及路堑边坡稳定性试验研究”(编号:2005K002-B-2)等重大课题,依托武广高速铁路无砟轨道红黏土路堑基床分项工程,采用室内动力试验、现场动力响应测试、理论分析和数值计算等手段,对石灰岩类原状结构红黏土动力特性、无砟轨道路堑基床动力稳定性及其换填厚度等问题开展了系统的研究,主要工作如下:
     (1)基于室内常规动三轴试验,研究了不同试验条件下原状结构红黏土的动本构关系、动弹模量、动强度特性,探讨了围压、固结比、含水比等因素对它们的影响规律。试验研究表明,原状结构红黏土动本构关系可用R. L. Kondner双曲线模型描述;动弹模量随动应变的增大非线性减小,具有明显的应变软化特征;给出了动本构双曲线模型参数、动弹模量衰减模型及相应的拟合参数。
     (2)通过室内白振柱试验及结果分析,得到了不同围压下原状结构红黏土归一化动剪模量、阻尼比随动剪应变的变化曲线,给出了红黏土Davidenkov模型参数、阻尼比经验公式及其相应的拟合参数。围压对动剪模量、阻尼比的影响随动剪应变水平的增大而不同:低剪应变水平下,动剪模量随围压的增大而增大,阻尼比随围压的增大而减小;高剪应变水平下,动剪模量随围压的增大而减小,阻尼比随围压的增大而增大。
     (3)基于国外剪应变控制式共振柱试验仪测定土体动剪应变门槛试验技术的基本原理,利用改造后的应力控制式动三轴仪代替目前国内尚无的剪应变控制式共振柱仪测定土体动剪应变门槛,提出了一套完整的试验方案及数据处理方法,为动剪应变门槛的确定开辟了新的试验途径。对比分析表明,本文提出的试验技术是可行的。
     (4)基于本文提出的应力控制式短时及疲劳动三轴试验技术,获得了不同试验条件下原状结构红黏土短时及疲劳动剪应变门槛,为红黏土路基动力稳定性评价提供所需参数。探讨了含水比、围压、固结比等因素的影响,给出了方便实用的短时动剪应变门槛γtvS、疲劳动剪应变门槛γtvL的经验公式;数据分析发现,二者满足关系式γtvL≈(0.2-0.3)γtvS。以上三个经验公式的提出为原状结构红黏土短时及疲劳动剪应变门槛的确定提供了新的经验方法。
     (5)通过试验数据分析,揭示了原状结构红黏土累积塑性应变εp与振次N的非线性走势特征:随动应力幅值的增大,依次出现稳定型、临界型、破坏型三类εp-lgN曲线。确定了不同试验条件下原状结构红黏土临界动应力范围及其简单实用的经验公式,为红黏土地基动力稳定性评价提供了必要的稳定性参数,同时为原状结构红黏土强度疲劳特性的深入研究积累了宝贵的资料。
     (6)针对原状结构红黏土稳定型εp-lgN曲线累积塑性应变收敛的特点,提出了新的累积塑性应变数学模型。与经典的发散性对数函数模型比较,该模型具有收敛性,能更好地模拟稳定型曲线的变化规律。新模型的提出为原状结构红黏土变形疲劳特性的深入研究提供了重要的理论研究基础。
     (7)基于经典的破坏型εp-lgN曲线指数函数模型,对不同试验条件下原状结构红黏土破坏型试验曲线进行拟合分析,得到了相应的参数。同时考虑动应力比、含水比、围压、固结比四个因素的的影响,给出了该指数函数模型中各参数的拟合公式。
     (8)通过武广高速铁路无砟轨道红黏土路堑基床的动力响应测试与分析,获得了振动速度、振动加速度、动应变、动应力在竖向及横向测试断面上的变化规律。基于对比分析,得到了无砟轨道路堑基床不同于有砟轨道的动力响应特征:无砟轨道路基动力响应小于有砟轨道,且无砟轨道下动力响应衰减速率慢,影响深度大,测试数据离散性小。在工程应用上,应将无砟轨道基床厚度适当增大。
     (9)通过有限元数值计算,获得了武广高速铁路无砟轨道路堑基床竖向及横向断面上动力响应变化规律。计算结果与实测结果对比分析表明,二者基本吻合。这一结果使得实测结果和计算结果二者的正确合理性得到了相互验证。
     (10)基于室内动力试验及现场动力响应测试结果,同时采用临界动应力法、有效振速法、动剪应变法评价了武广高速铁路无砟轨道路堑基床的动力稳定性,且从动力稳定性角度给出了便于工程应用的基床换填厚度建议值。对比分析表明,动剪应变法是评价高速铁路无砟轨道路基动力稳定性的最优方法。这一思路为高速铁路路基动力稳定性评价及基床换填厚度的确定开辟了新的途径。
The dynamic characteristics of red clay in original structure, the dynamic stability of cutting bed under ballastless track of high-speed railway and its replacement thickness and so on were deeply researched by laboratory dynamic experiments, in-situ dynamic response tests, theoretical analysis and numerical simulations, combining with the construction of red clay cutting bed under ballastless track of Wuhan-Guangzhou high-speed railway and the following important research projects:Study on deformation behaviors and dynamic stability of red clay foundation under ballastless track of Dedicated Passenger Line(No:50778180) supported by the National Science Foundation of China and Experimental research on deformation behaviors of subgrade and cutting slope stability of the eluvial red clay along the Dedicated Passenger Line from Wuhan to Guangzhou(No:2005K002-B-2) supported by the key scientific research projects from Ministry of Railways. The main reseaches had been carried out as follows:
     (1) Based on a series of general cyclic triaxial tests indoors, the dynamic constructive relation, thhe characteristics of dynamic elastic modulus and dynamic strength on red clay in original structure under different test conditions were studied, and the influencing law for confining pressure, consolidation ratio and water content ratio to them. The experimental studies indicate that the dynamic constitutive relation can be described with the hyperbolic curves model presented by R. L Kondner. The dynamic modulus reduces nonlinearly with the accretion of dynamic strain and be of strain softening features obviously. Based on regression analysis, the hyperbolic model parameters, the empiric formula on dynamic modulus attenuation and fitting parameters were given.
     (2) Through free vibration column tests indoors, the relationship curves of Gd/Gdmax~γd andλ~γd of red clay in original structure were obtained, the parameters of Davidenkov model and empirical formula of damping ratio and fitting parameters of it were also given. Under low shear strain level, dynamic shear module increases and damping ratio reduces with the augment of confining pressure. Under high shear strain, dynamic shear module reduces and damping ratio increases with the increases of confining pressure.
     (3) Based on the principle and method of determining dynamic shear strain threshold using shear-strain-controlled resonant column device overseas, the reformed stress-controlled cyclic triaxial apparatus was firstly utilized to measure dynamic shear strain threshold of soil mass, replacing the shear-strain-controlled resonant column device not existing at home now. A complete set of test program and data processing methods were presented, it opens up a new test way of determining dynamic shear strain threshold. The proposed test technique is verified as feasible through the contrastive analysis.
     (4) Based on the techniques of stress-controlled short-time and fatigue cyclic triaxial tests presented in this paper, the values of short-time and fatigue dynamic shear strain threshold of red clay in original structure were firstly obtained under different test conditions. The empirical formulas of estimating short-time and fatigue dynamic shear strain thresholds were given by linear fitting, and the latter is 0.2-0.3 of the former. The Presentation of three empirical formulas above has provided a new empirical method.
     (5) Via analyzing test data, the nonliner trend features of accumulated plastic strainεp and vibration times N for red clay in original structure are revealed. There are three types ofεp-lgN curves followed by stable, critical and destructive ones. Values of critical dynamic stress of red clay in original structure under different test conditions and its simple practical empirical formula were given.
     (6) In view of convergence characteristics of accumulated plastic strain for stableεp-lgN curves of red clay in original struture, a new mathematical model about the accumulated plastic strain is presented. Compared with general model of logarithmic function, the new model with convergence can simulate better the variation of stable curves. The important theoretical research foundation was provided by of the proposed new model for the deep study of deformation fatigue characteristics of red clay in original struture.
     (7) Based on often-used model of exponential function for destructiveεp-lgN curves, the corresponding fitting parameters of it for red clay in original structure were obtained under different test conditions through regression analysis. The fitting formulas of parameters in model of exponential function are obtained, considering simultaneously factors of dynamic-stress ratio, water content ratio, confining pressure and consolidation ratio.
     (8) Through dynamic response test and analysis of red clay cutting bed under ballastless track of Wuhan-Guangzhou high-speed railway, the varying laws of dynamic velocity, dynamic acceleration, dynamic strain and dynamic stress in vertical and transverse test sections are obtained. Based on the contrastive analysis, the dynamic response features of roadbed under ballastless track unlike ballast track are known.
     (9) By way of numerical calculation of FEM, Variations of dynamic response in vertical and transverse test sections are gotten. The comparision results between calculated and measured values show that the two were basically in agreement.
     (10) Based on results of laboratory dynamic tests and field dynamic response testing, the dynamic stability of red clay cutting bed under ballastless track of Wuhan-Guangzhou high-speed railway was preliminary evaluated by methods of critical dynamic stress, effective vibration velocity and dynamic shear strain imultaneously, the suggestion values of roadbed replacement thickness applied conveniently in engineering were also given form a view of dynamic stability. The comparative analysis shows that method of dynamic shear strain is the best way of evaluating roadbed dynamic stability of high-speed railway. This provides new thought for evaluating dynamic stability and ensuring replacement thickness of roadbed under high-speed.
引文
[1]铁道部第一勘测设计院.TB1001-2005铁路路基设计规范[S].北京:中国铁道出版社,2005.
    [2]铁道部第三勘察设计院集团有限公司,中铁第四勘察设计院集团有限公司,中国铁道科学研究院.TB10625-2009高速铁路设计规范(试行)[S].北京:中国铁道出版社,2009.
    [3]DB Netz-Deutsche Bahn Gruppe-Entwurf von Richtlinie 836 (DS836). Vorschriftfur Erdbau werke[S]. Fassung vom Januar 1997.
    [4]胡一峰.高速铁路路基长期动力稳定性分析的理论和实践(SCR-SG021)[R].德国:欧博迈亚公司,2008.
    [5]郭建湖.武广客运专线武汉至韶关段路基设计技术总结[C].武广铁路客运专线建设技术汇编.成都:西南交通大学出版社,2007,8:37-39.
    [6]中华人民共和国建设部.GB50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.
    [7]廖义玲,朱立军著.贵州碳酸盐岩红土(M).贵阳:贵州人民出版社,2004,7.
    [8]张林锋,肖欣,李辉.桂林红黏土微结构特征分析[J].山西建筑,2008,34(31):111-113.
    [9]韦时宏,廖义玲,秦刚.黔中地区红黏土的超固结性及低密实度和变形特征[J].贵州工业大学学报(自然科学版),2006,35(4):9-12.
    [10]M. D. GIDIGASU. MODE OF FORMATION AND GEOTECHNICAL CHARACTERISTICS OF LATERITE MATERIALS OF GHANA IN RELATION TO SOIL FORMING FACTORS[J]. Engineering Geology, February 29,1972:1-8.
    [11]Peter Smart. Strueture of a red clay soil from Nyeri[J]. Engineering Geology and Hydrogeology,1973,6(2):129-139.
    [12]R.M. MADU. AN INVESTIGATION INTO THE GEOTECHNICAL AND ENGINEERING PROPERTIES OF SOME LATERITES OF EASTERN NIGERIA. Engineering Geology,1977, (11):101-125.
    [13]孔令伟,郭爱国,吕海波.典型红黏土的基本特性与微观结构特征[J].岩石力学与工程学报,2001,20(1):973-977.
    [14]毕庆涛.红黏土固结变形特征及其形成机制的研究[D].硕士学位论文,贵州:贵州大学,2006.
    [15]谈云志,孔令伟,郭爱国.压实过程对红黏土的孔隙分布影响研究[J].岩 土力学,2010,31(5):1427-1430.
    [16]崔德山,项伟,JOACH IM Rohn.离子土固化剂加固红黏土的X射线衍射试验[J].长江科学院院报,2009,26(9):39-43.
    [17]Griffiths F J, Joshi R C. Change in pore size distribution due to consolidation of clays[J].Geotechnique,1989,39(1):159-167.
    [18]Yang D Q, Shen Z J. Generalized nonlinear constitutive theory of unsaturated soils[A]. Droc of 7th int Corf on expansive soils, Dallas,3-5 Aunust,1992:158-162.
    [19]廖义玲,余陪厚,郭沛等.红黏土的工程地质特征及其物质结构基础[C].第二届全国红土工程地质研讨会论文集,贵州科技出版社,1992:38-53.
    [20]廖义玲,余培厚.红黏土的微观结构及其概化模型[J].工程地质学报,1994,2(1):27-37.
    [21]孔令伟,罗鸿禧.游离氧化铁形态转化对红黏土工程性质的影响[J].岩土工程,1993,14(4):25-39
    [22]孔令伟,罗鸿禧,谭罗.荣.红黏土孔隙分布的分形特征研究[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994:276-279.
    [23]孔令伟、罗鸿禧、袁建新.红黏土有效胶结特征的初步研究[J].岩土工程学报,1995,17(5):42-47.
    [24]王敏杰,郑乐平.中国北方红黏土中铁锰胶膜对化学元素的影响[J].海洋地质与第四纪地质,2009,29(6):111-117.
    [25]程昌炳,王桂珍.天然针铁矿胶结土样与盐酸反应的化学动力学及其力学特性预报[J].岩土工程学报,1995,17(3):44-50.
    [26]程昌炳,陈琼.胶结土凝聚力的微观研究[J].岩石力学与工程学报,1999,18(3):322-326.
    [27]赵颖文.中国西南地区红黏土的强度与水理性特征研究[D].博士学位论文,武汉:中国科学研究院,2002,67-70
    [28]马少坤,扈萍,秦会来.红黏土土水特征曲线试验及拟合实用技术研究[J].公路,2010,1:135-138.
    [29]杜赢中.华南地区典型红黏土物性变异及力学效应[D].博士学位论文,广州:中山大学,2004,6:23-24.
    [30]谈云志,孔令伟,郭爱国.压实红黏土水分传输的毛细效应与数值模拟[J].岩土力学,2010,31(7):2289-2294.
    [31]聂庆科,王英辉,梁书奇等.广西靖西红黏土及其击实后的水稳定性试验研究[J].岩土力学,2010,31(4):1134-1138.
    [32]杨果林,王亮亮.客运专线红黏土物理力学指标统计分析[J].铁道工程学 报,2009,126(3):16-6.
    [33]方薇,杨果林.武(汉)广(州)客专武汉—韶关段红黏土工程特性研究[J].工程地质学报,2009,17(3):408-414.
    [34]余敦猛.武广客运专线原状红黏土强度和变形特性试验研究[D].硕士学位论文,长沙:中南大学,2008,5-17.
    [35]林世文,蔡秋景,林珺等.大连地区红黏土特征研究[J].岩土工程技术,2005,19(3):124-126.
    [36]Liu sheng Xu.Red clay as a dam construction material and its water content designing[A].International symposium on high earth-rock fill dams. Beijing China[C],1993.
    [37]徐榴胜.红黏土在岩土工程应用中的若干问题[J].贵州地质,1993,10(3):257-264.
    [38]徐榴胜.红黏土在环境地质中的隐患[J].水文地质工程地质,1995,5:40-43.
    [39]韩贵琳.贵阳地区红黏土工程地质特征[J].贵州地质,1992,9:292-296.
    [40]刘恒.黔西红黏土的工程地质特征及地基处理[A].第二界全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社.1991:154-159.
    [41]彭望生.邵阳市区红黏土特性与环境工程地质问题[J].湖南地质,1995,14(2):106-111.
    [42]陈之禄.红黏土中软土的产生条件及室内研究[A].第二界全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社1991:37-41.
    [43]宋培建.贵州红黏土地基处理和施工[J].贵州工学院学报,1992,21,(2):64-71
    [44]袁志英,王伍军,冷学仕.对贵州红黏土物理力学指标统计分布规律的初步研究[J].贵州科学,1997,15(1).
    [45]龙万学,陈开圣,肖涛等.非饱和红黏土三轴试验研究[J].岩土力学,2009,30(s2):28-33.
    [46]柏巍,孔令伟,郭爱国等.红黏土地基承载力和变形参数的空间分布特征分析[J].岩土力学,2010,31(s2):164-169.
    [47]柏巍,万智.红黏土地区地基承载力的可拓综合评测方法[J].公路,2010,7:85-90.
    [48]聂庆科,王英辉,田鹏程等.红黏土的击实特性及其击实后的工程性质[J1.岩土工程学报,2009,31(11):1800-1804.
    [49]马少坤,黄茂松,刘怡林等.红黏土地基承载力的离心模型试验与数值模拟[J].岩土工程学报,2009,31(2):276-281.
    [50]卢雪松,项伟,范文彦等.离子土壤固化剂加固红黏土试验研究[J].人民黄河,2010,32(2):127-129.
    [51]李玉良.武广客运专线残积层红黏土对比性勘探研究[J].土工基础,2008,22(4):36-39.
    [52]李小和.武广客运专线红黏土地基压缩模量确定方法研究[J].铁道工程学报,2008,123(12):37-44.
    [53]文松霖,任佳丽,姜志全等.碎石桩红黏土复合地基的实例分析[J].岩土工程学报,2010,32(s2):302-305.
    [54]杨果林,李珍玉.客运专线非饱和红黏土的快剪与慢剪对比试验研究[J].湖南工业大学学报,2007,21(2):14-20.
    [55]杨果林,余敦猛.武广客运专线红黏土抗剪强度参数试验对比和分析[J].铁道建筑技术,2007(9):14-16.
    [56]王亮亮,杨果林.红黏土抗剪强度与影响因子作用机理分析[J].铁道科学与工程学报,2009,6(6):45-48.
    [57]颜波.红黏上的工程力学性质研究[D].硕士学位论文,广州:中山大学,2006,6:11-19.
    [58]王洋,汤连生.水土作用模式对残积红黏土力学性质的影响分析[J].中山大学学报,2007,46(1):128-132.
    [59]Nii O. Attoh-Okine. Application of genetic-based neural network to lateritic soil strength modeling[J]. Construction and Building Materials,2004 (18):619-623.
    [60]黄质宏,朱立军,蒲毅彬等.三轴应力条件下红黏土力学特性动态变化的CT分析[J].岩土力学,2004,25(8):1215-1219.
    [61]王永和,李珍玉,胡萍等.地基沉降修正系数的Bayes概率推断[J].岩土力学,2009,30(2):323-327.
    [62]李珍玉,李海洋,王永和等.贝叶斯理论在红黏土地基沉降中的应[J].长安大学学报(自然科学版),2009,29(4):30-33.
    [63]黄质宏.应力路径与红黏土的力学特性[J].人民珠江,1999,2:18-20.
    [64]黄质宏,朱立军,廖义玲等.不同应力路径下红黏土的力学特性[J].岩石力学与工程学报,2004,23(15):2599-2603.
    [65]黄质宏,朱立军,蒲毅彬等.三轴应力条件下红黏土力学特性动态变化的CT分析[J].岩土力学,2004,25(8):1215-1219.
    [66]刘春,吴绪春.非饱和红黏土强度特性的三轴试验研究[J].四川建筑科学研究,2003,29(2).
    [67]王亮亮,杨果林.武广客运专线红黏土地基固结变形特性研究[J].工程勘 察,2010(3):1-5.
    [68]方薇,杨果林,余敦猛.武广客运专线红黏土变形特性的研究[J].铁道工程学报,2008,120(9):13-20.
    [69]杨果林,黄向京,周春梅等.客运专线无砟轨道红黏土地基载荷试验研究[J].铁道科学与工程学报,2007,4(6):50-56.
    [70]杨果林,黄向京,赵伟.红黏土桩-网复合地基现场试验研究[J].水文地质工程地质,2010,37(1):85-89.
    [71]赵颖文,孔令伟.广西红黏土击实样强度特性与胀缩性能[J].岩土力学,2004,25(3).
    [72]张英,邓安福.重庆红黏土本构模型验证[J].重庆建筑大学学报,1997,19(2):48-53.
    [73]张英.重庆红黏土的非线性弹性K-G模型研究[J].四川工业学院学报,2000,3:51-53.
    [74]谭罗荣.某类红黏土的基本特性与微观结构模型[J].岩土工程学报,2001,23(4):458-462.
    [75]郭培玺,俞缙.损伤理论在水泥红黏土试验研究中的应用[A].武汉:第二届全国岩土与工程学术大会论文集[C],2006,10:192-197.
    [76]廖化荣,汤连生,刘增贤等.循环荷载下路基红黏土临界应力水平分析[J].岩土力学,2009,30(3):587-594.
    [77]廖化荣.红黏土路基循环动荷载下塑性力学行为及预测模型研究[D].硕士学位论文:中山大学地球科学系,2004.
    [78]汤康民.红黏土动力性质的研究[J].西南交通大学学报.1993,(04).
    [79]聂庆科,李佩佩,王英辉.三轴冲击荷载作用下红黏土的力学性状[J].岩石力学与工程学报,2009,28(6):1220-1225.
    [80]李佩佩.强夯动力荷载作用下红黏土的工程特性研究[D].硕士学位论文:北京交通大学,2008.
    [81]康景文,甘鹰,张仕忠等.昆明新机场红黏土冲压地基处理实验研究[J].岩土工程学报,2010,32(S2):496-500.
    [82]汤康民,蒋忠信.膨胀性红黏土铁路路基基床动力反应分析[J].西南交通大学学报,1994(1),22-24.
    [83]中华人民共和国行业标准编写组.SL237-1999《土工试验规程》[S].北京:中国水利水电出版社,1999.
    [84]中华人民共和国国家标准编写组.GB/T50269-97《地基动力特性测试规范》[S].北京:中国计划出版社,1998.
    [85]HU Y F, GARTUNG E, PRUHS H, et al. Bewertung der Dynamischen Stabilitat von Erdbauwerken unter Eisenba-hnverkehr[J]. Geotechnik,2003,26(1):42-56.
    [86]HU Y, HAUPT W, MULLNER B. ResCol-Versuche zur Prufung der Dynamischen Langzeitstabilitat von TA/TM-B6den unter Eisenbahnverkehr[J]. Bautechnik,2004,81(4):295-306.
    [87]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):125-131.
    [88]Finn W D L. Soil dynamic liquefaction of sands. Proc is tint Conf Microzonation, Seattle,1972,1:381-397.
    [89]Seed H B. Evaluation of soil liquefaction effects on level ground during earthquake [A], state of the art paper. Symposium on Soil Liquefaction. ASCE National Converntion, Philadelphia 1976,1-104.
    [90]Arulanandan K, Scott R F. VELACS-Verification of Numerical Procedures for the Analysis of soil liquefaction problems. Balkema,1993.
    [91]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):6-15.
    [92]陈国兴,朱定华,何启智.GZZ-1型自振柱试验机研制与性能试验[J].地震工程与工程振动,2003,23(1):111-114.
    [93]王汝恒,贾彬,邓安福,王皆伟.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006(10),V25(2):4059-4064.
    [94]彭社琴,赵其华,黄润秋.成都黏土动三轴试验研究[J].地质灾害与环境保护,2002(3),V13(1):57-60.
    [95]刘胜群,陈玉平.饱和软黏土动力特性试验研究[J].铁道建筑,2006(10):68-70.
    [96]Seed H. B., Chen C B and Monismith C L. Effects of Repeated Loading on the Strength and Deformation of Compacted Clay. HRB Proc.1955,34:541-558.
    [97]Seed H.B., Strength During Earthquakes. Proc.2WCEE.1, Japan,1960, 183-194.
    [98]Thiers G R, Seed H B. Cyclic stress-strain characteristics of clay[J]. Journal of soil Meehanic and Foundations Division, ASCE,1968,94(2):555-569.
    [99]廖红建,宋丽,杨政等.往返荷载下黏性土的强度及取值标准试验研究[J].岩土力学,2001(3),V22(1):17-21.
    [100]周建,龚晓南,李剑强.循环荷载作用下饱和软黏土特性试验研究[J].工业建筑,2000,V30(11):43-48.
    [101]Sangrey,D.A., Henkel, D.J. and Esrig, M.I. The effective stress response of a saturated clay soil to repeated loading. Can. Geotech. J.,6(3):241-252.
    [102]France, J. W., and Sangrey, D. A., Effects of drainage in repeated loading of clays. Journal of the Geotechnical Engineering Division, ASCE,1977, 103(7):769-785.
    [103]刘雪珠,陈国兴,胡庆兴.南京地区新近沉积土的动剪切模量和阻尼比的初步研究[J].地震工程与工程振动,2002,22(5):127-131.
    [104]陈国兴,刘雪珠,朱定华,胡庆兴.苏南地区新近沉积土的动力特性研究[J].地下空间与工程学报,2005,1(6):1140-1142.
    [105]王炳辉,陈国兴,王晶华.宁波近海沉积土动力特性的试验研究[J].自然灾害学报,2007,16(4):55-60.
    [106]Seed H B, Idriss I M. Soil Modulus and Damping Factors for Dynamic Response Analyses, Report No. EERC70-10[R]. Earthquake Engineering Research Center, University of California Berkeley,1970.
    [107]袁晓铭,孙锐,孙静.常规土类动剪模量比与阻尼比试验研究[J].地震工程与工程振动,2000,20(4):133-139.
    [108]鲍陈阳,余湘娟,高志兵.云南粉土的动力特性研究[J].防灾减灾工程学报,2006,26(3):321-325.
    [109]曹继东,陈正汉,王权民.软黏土的共振柱试验研究[J].四川建筑科学研究,2004,30(4):69-71.
    [110]尚守平,熊伟,杜运兴等.饱和场地土动力特性试验研究[J].岩土力学,2008,29(1):23-27.
    [111]蔡辉腾,李强,蔡宗文等.厦门常规土动力特性的试验分析[J].四川建筑科学研究,2010,36(6):125-128.
    [112]Atilla M. Ausai and Ayfer Erken, Undrained Behavior of Clay under Cyclic Shear Stresses. Journal of the Geotechnical Engineering Division, ASCE,1989, 115(7):968-983.
    [113]Matsui T., et al. Cyclic stress-strain history and shear characteristics of clay. Journal of the Geotechnical Engineering Division, ASCE,1980,106(10):1101-1120.
    [114]Proeter D.C., Khaffaf J.H.Cyclic Triaxial Tests on Remoulded Clays[J]. Journal of Geotechnical Engineering, ASCE,1984,110(10):1431-1445.
    [115]Ansal A.M., Erken A. Undrained Behavior of Clay under Cyelic Shear Stresses[J]. Journal of Geotechnical Engineering, ASCE,1989,115(7):968-983.
    [116]Boulanger Ross W., R.Arulnathan, Harder LF, Jr. Leslie F. Harder, Driller MW. Dynamic properties of Sherman island Peat[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998, 124(1):12-20.
    [117]Zhou J., Gong X.N. Strain Degradation of Saturated Clay under Cyelic Loading[J]. Canadian Geotechnical Joumal,2001,38(1):208-212.
    [118]Hardin B.O., Black W L. Vibration modulus of normally consolidated clay: design equation and curves [J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1968,94(2):353-369.
    [119]Yasuhara K., Yamanouchi T., Hirao K. Cyclic Strength and Deformation of normally Consolidated Clay[J].Soil and Foundations,1982,22(3):77-91.
    [120]Brown SF, Lashine AKF, Hyde AFL. RePeated load triaxial testing of a silty clay[J]. Geotechnique,1975,25(1):95-114.
    [121]Hyde A. F. L., Yasuhara K., Hirao K. Stability Criteria for Marine Clay under one-Way Cyclic Loading.Jouma of Geotechnical Engineering, AsCE,1993, 119(11):1771-1889.
    [122]Chen Y.M, Ji M.X, Huang B.Effect of Cyelic Loading Frequency on Undrained Behaviors of Undisturbed Marine Clay[J]. China ocean Engineering, 2004,18(4):643-651.
    [123]曾国红,白晓红,张卫平等.不同增强体粉土复合土动力特性试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):637-642.
    [124]曹成林,孙永福,董斌.不同黏粒含量粉质土的动力强度特性研究[J].海岸工程,2009,28(3):27-32.
    [125]焦贵德,赵淑萍,马巍.冻融循环后高温冻结粉土在循环荷载下的动力特性试验研究[J].土木工程学报,2010,43(12):107-113.
    [126]张向东,曹启坤,潘宇.二灰改良土动力特性试验研究[J].岩土力学,2010,31(8):2560-2564.
    [127]白颢,孔令伟.固结比对石灰土动力特性的影响试验研究[J].岩土力学,2009,30(6):1590-1594.
    [128]高博,张鸿儒.邯郸与太原两地粉土动力特性的试验研究[J].工程地质学报,2008,16(4):502-505.
    [129]张禾.黄泛冲积平原土料的动力参数试验研究[J].人民黄河,2008,30(6):83-84.
    [130]王海龙,张宁,张伟.山西粉土的动力特性试验研究[J].工程勘察,2010(1):19-22.
    [131]刘飞禹.交通荷载作用下软土地基动力特性及加筋道路动力响应研究[D]. 博士学位论文:浙江大学,2007.
    [132]陈震.高速铁路路基动力响应研究[D].博士学位论文:中国科·学院武汉岩土力学研究所,2006.
    [133]HEATH D L, WATERS J M, SHENTON M J, et al. Design of Conventional Rail Track Foundation [J]. Proc. of the Institution of Civil Engineers,1972, 51(3):251-267.
    [134]蔡英,曹新文.重复加载下路基填土的临界动应力和永久性应变初探[J].西南交通大学学报,1996,31(1):1-5.
    [135]廖化荣.交通荷载下路基软土动应力累积及塑性应变累积特性研究[D].博士学位论文:中山大学,2008.
    [136]J. Kohler. Plastic deformation of the track[J]. Railway Research and Engineering news.1987:18-22.
    [137]铁道科学研究院.京秦客运通道提速改造工程第一次试车运行试验研究报告[R].北京:铁道科学研究院,2000.
    [138]Hargis, Louis L. A study of strain characteristics in a limestone gravel subjected to repetitive load.Texas ASM University, College Station,1963.
    [139]Barksdale. Repeated loading test evaluation of base course materials[J]. Georgin Institute of Technology,1972,101-121.
    [140]Brown. Repeated load triaxial testing of silty clay[J].Geotechnique,1975, 2:95-114.
    [141]George B, Rober V W, Allen W M. Permanent displacement of sand with cyclic loading[J]. J. Geotech. Engr. ASCE,1984,1606-1623.
    [142]Monismith. Permanent deformation characteristics of subgrade soils due to repeated loading. Transportation Research Record,1975,537-551.
    [143]Li. Wheel-track dynamic interaction track substructure perspective[J]. Vehicle System Supplement,1995,24:183-196.
    [144]U. S. Department of Transportation. A theory for track maintenance life prediction.1979.
    [145]左滕吉彦.新轨道力学[M].北京:中国铁道出版社,2001,56-97.
    [146]平野雅之.按新轨道破坏理论估算轨道下沉量[J].铁路线路(日),1978(8).
    [147]Martin G R, et al. Effects of system compliance on liquefaction tests[J]. Journal of Geotechnical Engineering Division,1978,104(4):463-480.
    [148]沈珠江.一个计算砂土液化变形的等价黏弹性模型[A].第四届全国土力学及基础工程学术会议论文集,北京:建筑工业出版社,1986:199-207.
    [149]Prevost J H, Catherine M K. Shear stress-strain curve generation from simple material parameters[J]. Geotechnical Engineering,1967,34(3):11-19.
    [150]Pyke R. Nonlinear Soil Models for Irregular Cyclic Loading[J]. JGED,1979, 105(6):715-726.
    [151]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的黏弹性模型[J].岩土工程学报,1980,2(3):10-20.
    [152]Desai C S, Gallagher R H, et al. Mechanics of Engineering Materials[M]. London:John Wiley and Sons,1984,96-103.
    [153]Provest J H. A simple plastic theory for frictional cohesionless soils[J]. Soil Dynamics and Earthquak Engineering,1985,4(1):9-17.
    [154]Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic critical state model for soils subjected to cyclic loading[J]. Geo-technique,1981,31(4):451-470.
    [155]Zienkiewicz O C.广义塑性力学和地力学的一些模型[J].应用数学与力学,1982,3(2):267-280.
    [156]谢定义.极限平衡理论在饱和砂土动力失稳过程中的应用[J].土木工程学报,1981,14(4):17-28.
    [157]张建民.饱和砂土瞬态动力学理论及其应用研究[D].博士学位论文,西安:陕西机械学院,1991.
    [158]丰土根,刘汉龙,高玉峰等.砂土多机构边界面塑性模型初探[J].岩土工程学报,2002,24(3).382-385.
    [159]陈国兴,庄海洋.基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报,2005,27(8):860-864.
    [160]周芬,龙述尧,杜运兴等.基于阻尼比的双线型土动力模型研[J].湖南大学学报(自然科学版),2008,35(5):21-25.
    [161]迟世春,郭晓霞,杨峻.土的动力Hardin-Drnevich模型小应变特性及其阈值应变研究[J].岩土工程学报,2008,30(2):243-249.
    [162]郭晓霞,迟世春,林皋.土的动力Hardin-Drnevich模型再认识[J].哈尔滨工业大学学报,2009,41(8):132-136.
    [163]张永兴,丁玉琴,陈建功.基于双曲正切函数的土动力非线性本构模型[J].地震工程与工程振动,2010,30(4):166-171.
    [164]S. Krenk. Mechanics and analysis of beams, columns and cables[M]. Polyteknisk Press, Corpenhagen,2000.
    [165]Vostroukhov A V, Metrikine A V. periodically supported beam on avisco-elastic layer as a model for dynamic analysis of a high-speed railway track[J]. International Journal of solids and Structures,2003,40(21):5723-5752.
    [166]Dinkel, Jens Bitzenbauer, J. Dynamic interaction between a moving vehicle and an infinite structure excited by irregularities-Fourier transforms solution[J]. Archive of Applied Mechanics,2002,72(2):199-211.
    [167]Ekevid, Torbjorn Wiberg. Nils-Erik Wave propagation related to high-speed train a scaled boundary FE-approach for unbounded domains[J]. Computer Methods in Applied Mechics and Eng-ineering,2002,191(36):3947-3964.
    [168]Matsuura,. Impulsive response of an elastic layered medium in the anti-plane wave field based on a Thin-Layered element and Discrete wave number method[J]. Structural Engineering/Earthquake Engineering,1993,459(22):119-128.
    [169]Matsuura,. Akio Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks[J]. Structural Engineering/Earthquake Engineering, 1998,15(1):63-72.
    [170]Shanhu, J.T.Rao, N.S.V. Kameswara, Yudhbir, Parmaetric study of resilient response of tracks with a sub-ballast layer[J].Canadian Geoteehnical Journal,1999, 36(6):1137-1150.
    [171]翟婉明,王其昌.轮轨动力分析模型研究[J].铁道学报,1994,16(1):64-71.
    [172]翟婉明.车辆一轨道祸合动力学[M].北京:中国铁道出版社,2002.
    [173]翟婉明.根据车轮抬升量评判车辆脱轨的方法与准则[J].铁道学报,2001,23(2):17-26.
    [174]翟婉明,韩卫军,蔡成标等.高速铁路板式轨道动力特征研究[J].铁道学报,1999,21(6):65-69.
    [175]翟婉明.机车-轨道耦合动力学理论及其应用[J].中国铁道科学,1996,17(2):58-73.
    [176]翟婉明.车辆-轨道相互作用统一模型及软件的试验验证[J].铁道学报,1996,18(4):42-46.
    [177]翟婉明.机车与轨道垂向相互作用的计算机仿真研究[J].中国铁道科学,1993,14(1).
    [178]翟婉明.低动力作用轮轨系统垂向动力参数研究与设计[J].铁道学报,1993,15(3).
    [179]翟婉明.高速铁路轮轨系统的最优动力设计原则[J].中国铁道科学,1994,15(2):16-21.
    [180]娄平,曾庆元.移动荷载作用下连续黏弹性基础支承无限长梁的有限元分析[J].交通运输工程学报,2003,3(2):1-6.
    [181]BAO Peng, LI Li, ZHAO Jie. A Dynamic Interaction Analysis of Soil Underground Structure by Discrete Element Method[J]. Journal of Henan University (Natural Science),2008,38(4):429-433.
    [182]张佳春.土与结构动力相互作用的有限元模拟分析[J].路基工程,2008,136(1):97-98.
    [183]祝文畏,张硕英.土-结构竖向动力相互作用的频域分析法[J].建筑结构,2008,38(6):42-44.
    [184]胡萍,王永和,卿启湘.改良土填筑过渡段基床底层的动力特性分析[J].中南大学学报(自然科学版),2009,40(6):1705-1711.
    [185]何益斌,夏栋舟,闫岩.基于场地土非线性性质的SSDI体系动力特性研究[J].岩土工程学报,2009,31(4):521-527.
    [186]方志.土-结构相互作用体系人工边界的动力反应与分析[J].力学季刊,2009,30(3):475-480.
    [187]李乂,袁富强.列车动荷载作用下土的动力特性分析[J].天津城市建设学院学报,2010,16(1):25-28.
    [188]夏禾,张楠,高日等.铁路桥梁与高速列车的动力试验研究.工程力学,2007,24(9):166-172.
    [189]钟辉虹,汤康民,黄茂松.铁路黏土路基动力特性试验研究[J].西南交通大学学报,2002,37(5):488-490.
    [190]蔡英,黄时寿.重载铁路的线路动力学测试及分析[J].西南交通大学学报,1993,91(3):92-98.
    [191]陈雪华,律文田,王永和.高速铁路路桥过渡段路基动力响应特性研究[J].振动与冲击.2006,25(3):95-98.
    [192]李献民,王永和,杨果林等.高速铁路下过渡段路基动力响应特性研究[J].岩土工程学报,2004,26(1):100-104.
    [193]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2004,23(3):500-504.
    [194]聂志红,阮波,李亮.秦沈客运专线路堑段基床结构动态测试分析[J].振动与冲击,2005,24(2):26-32.
    [195]金亮星,乔世范.车辆-轨道-路基系统垂向动力分析模型的试验验证[J].振动与冲击,2008,27(3):38-41.
    [196]Ju S H, Lin H T. Analysis of train-induced vibrations and vibration reduction schemes above and below critical Rayleigh speeds by finite element method[J]. Soil Dynamics and Earthquake Engineering,2004,24(12):993-1002.
    [197]蒋军,陈龙珠.长期循环荷载作用下黏土的一维沉降[J].岩土工程学报, 2001,23(3)366-369.
    [198]Seed H. B., Wong R. T., Idriss I. M., Tokimatsu K. Moduli and damPingf actors for dynami analyses of cohesive soils[J]. Journal of Geotechoical Engineering Division, ASCE,1986,112(11):1016-1032.
    [199]Hung H H, Yang Y B. Elastic waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamics and Earthquake Engineering,2001, 21(1):1-17.
    [200]Hall, Lars. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthqukae Engineering,2003, 23(5):403-413.
    [201]Schwarz, P. und Laier (1989d):Schluβbericht zu den bodenmechanischen Messungen bei Fahrten mit ICE/V und Lokzug in den Jahren 1987 und 1988, Neubaustrecke Hannover-Wurzburg, Prufamt fur Grundbau, Bodenmechanik und Felsmechanik, TU Munchen.
    [202]Fujikake T. A predietion method for the propagation of ground vibration from railway trains[J]. Journal of Sound and Vibration,1986,111(2):357-360.
    [203]聂志红.博士学位论文:高速铁路轨道路基竖向动力响应研究[D].博士学位论文,长沙:中南大学,2005年8月.
    [204]周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1-5.
    [205]王炳龙,余绍锋,周顺华等.提速状态下路基动应力测试分析[J].铁道学报,2000,22增:79-81.
    [206]Schwarz, P. und Laier (1991a):Schluβbericht zum Versuchsprogramm, Feste Fahrbahn Kutzenhausen, Ausbaustrecke Gunzburg -Augsburg, Prufamt fur Grundbau, Bodenmechanik und Felsmechanik, TU Munchen.
    [207]Neidhart, TH., Fischer, R., Hotz, C., Johmann, S.(2002):Optimierung des Unterbaus der Festen Fahrbahn-Messtechnische iiberprufung unter Betrieb. Vortrag Bahnbau 2002, Berlin.
    [208]Arcadis Consult Gmbh(2004):Bericht zu Verformungs und Erschutterungs messungen unter Betrieb im Versuchsfeld 2, Versuchsfeld 4 und an der EU Petersberg, BA Mitte der NBS KRM vom Okt.2004, Ergebnisbericht im Auftrag der DB AG TBM 1(unveroffentlicht).
    [209]Kocan, D. (2005):Erfahrung mit der Fahrbahn der SFS Koln-Rhein/Main nach drei Jahren Betrieb. EI-Eisenbahningenieur (56) 11/2005.
    [210]Baugrund Dresden (2006):Abschlie(?)ender Messbericht zu der 3. Messkampagne im Los Nord, September 2006, Neubaustrecke Nurnberg-Ingolstadt, im Auftragvon DB Projekt Bau Gmbh (unveroffentlicht).
    [211]Rehfeld, E. (1996):Erfahrungen mit Festen Fahrbahnen aus geotechnischer Sicht. Vortrage zum 3. Darmstadter Geotechnik-Kolloquium am 21. Marz 1996, Feste Fahrbahn fur die Schnellbahnstrecken der deutschen Bahn AG, Mitteilungen des Institutes und der Versuchsanstalt fur Geotechnik der Technischen Hochschule Darmstadt, Heft 35.
    [212]Kempfert, H. G. (1995):Untergrundverformungen und dynamische Beanspruchungen bei ausgefuhrten Festen Fahrbahnen im Eisenbahnbau, Proc. Donaueuropaische Konferenz fur Grundbau und Bodenmechanik, Mamaia, Rumanien, Vol.4, S.847-854.
    [213]Okumura kuno, K. Statistical analysis of field data of railway noise and vibration collected in an urban area[J]. Applied Acoustics,1991,33(4):263-280.
    [214]Gutowski T G, Dym C L. Propagation of ground vibration-a review[J]. Journal of Sound and Vibration,1976,49(2):179-193.
    [215]Jorgen J. Ground vibration from rail traffic. Journal of Low Frequency Noise and Vibration,1987,6(3):96-103.
    [216]Jorgen J. Transmission of ground-borne vibration in building. Journal of Low Frequency Noise and Vibration,1989,7(3).
    [217]Takemiya, H. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage [J]. Journal of Engineering Mechanics,2005,131(7):699-711.
    [218]Heck, Maria A. Railway noise-can random sleeper spacing help[J]. Acoustics, 1995,81(6):559-564.
    [219]Madshus C, Kaynia A M. High-speed railway lines on soft ground:dynamic behavior at critical train speed[J]. Journal of Sound and Vibration,2000, 231(3):689-701.
    [220]Deutsche Bahn AG. Richtlinie 836:Erdbauwerke Planen, Bauen und Instand Halten[S]. Fassung vom Januar 2000.
    [221]RUMP R, EHLING B, REHFELD E. (1996):Wirkung von Verkehrser-schutterungen auf Erdbauwerke und ungebundene Tragschichten im Oberbau. In: ETR45, Nr.7/8.
    [222]REHFELD E. Wirkung der Zuguberfahrt auf Oberbau, Unterbau und Untergrund[J]. Eisenbahningenieur,2000,51(12).
    [223]GOTSCHOL A. Veranderlich Elastisches und Plastisches Verhalten Nichtbindiger Boden und Schotter unter Zyklisch Dynamischer Beanspruchung[R]. Schriftenreihe Geotechnik Universitat Kassel,2002, Heft 12.
    [224]张克绪,谢君斐.土动力学[M].北京:中国地震出版社,1989.
    [225]杨桂通.土动力学[M].北京:中国建筑工业出版社,2000.
    [226]VUCETIC M. Cyclic Threshold Shear Strain Soils [J]. Journal of Geotechnical Engineering, ASCE,1994,120(12):2208-2228.
    [227]Hu, Y. und Kempfert, H.-G.(1997):Unterbau- und Untergrundbeanspruchung infolge Eisenbahnverkehrslasten sowie Langzeitverhalten von gering tragfahigen Boden,1. Zwischenbricht zum DFG-Schwerpunktprogramm, Systemdynamik und Langzeitverhalten von Fahrwerk, Gleis und Untergrund.
    [228]Hu, Y. und Kempfert, H.-G.(1999):Unterbau-und Untergrundbeanspruchung infolge Eisenbahnverkehrslasten sowie Langzeitverhalten von gering tragfahigen Boden,2. Zwischenbricht zum DFG-Schwerpunktprogramm, Systemdynamik und Langzeitverhalten von Fahrwerk, Gleis und Untergrund.
    [229]Jaup, A. (1999):Anwendung von lg Modellversuchen auf das Setzung-sverhalten im Hinterfullungsbereich von Bruckenwiderlagern. Schriftenreihe Geotechnik, Uni-versitat Gh Kassel, Heft 7.
    [230]Neidhart, T. und Watzlaw, W.(1998):Uberprufung der dynamischen Unter-grundstabilitat und Optimierung von Bodenverbesserungsma(?)nahmen. Vortrage der Baugrund-tagung 1998 in Stuttgart.
    [231]Empfehlungen des Arbeitskreises 9 "Baugrunddynamik" der Deutschen Gesellschaft fur Erd-und Grundbau e.V. Bautechnik 69 (1992), Heft 9.
    [232]杨超,杨林德,季倩倩.软黏土在循环荷载作用下动力本构模型的研究[J].岩土力学,2006,27(4):609-614.
    [233]雷华阳,姜岩,陆培毅等.交通荷载作用下结构性软土动本构关系的试验研究[J].岩土力学,2009,30(12):3788-3792.
    [234]张誉,王文一,孙方等.砂卵石土动本构关系的试验研究[J].四川建筑科学研究,2008,3(5):155-157.
    [235]唐益群,沈锋,胡向东等.上海地区冻融后暗绿色粉质黏土动本构关系与微结构研究[J].岩土工程学报,2005,21(11):1249-1252.
    [236]刘飞禹,蔡袁强,徐长节等.循环荷载作用下软土动弹模量衰减规律研究[J].浙江大学学报,2008,42(9):1479-1483.
    [237]王权民,李刚,陈正汉等.厦门砂土的动力特性研究[J].岩土力学,2005, 26(10):1628-1632.
    [238]黄博,陈云敏,殷建华等.粉土和粉砂的动力特性试验研究[J].浙江大学学报,2002,36(2):143-147.
    [239]YASUHARA K, HIRAO K, HYDE A F L. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations,1992, 32(1):100-116.
    [240]卢成原,汤丽君,孟凡丽.海底粉土动力特性的试验研究[J].工程勘察,2006第12期:15-18.
    [241]孙静,袁晓铭.土的动模量和阻尼比研究述评[J].世界地震工程,2003,19(1):262-264.
    [242]CHEN Guo-xing, ZHU Ding-hua. A study on dynamic shear modulus ratio and damping ratio of recently deposited soils for southern region of Jiang-su Province along Yangtze river, China[C]//Proceeding fourth International Conference on Soft Soil Engineering, Vancouver, Canada, London:Taylor and Francis Group,2006.
    [243]Jianfeng Z, Ronald D A, Juang C H. Normalized shear modulus and material damping ratio relationships [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE.2005:453-464.
    [244]吕悦军,唐荣余,沙海军.渤海海底土类动剪切模量比和阻尼比试验研究[J].防灾减灾工程学报,2003,23(2):35-42.
    [245]Hardin B O, Drnevich V P. Shear modulus and damping in soils design equation and curves [J] Journal of Soil Mechanics and Foundation, ASCE,1972, 98(SM7):603-642.
    [246]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验公式[J].地震工程与工程振动,1995,15(1):73-84.
    [247]Silver M L, Seed H B. Volume changes in sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1971, 97(9):1171-1182.
    [248]Flores O C, Romo M P O. Dynamic behavior of Tailings[A]. In:Proc. of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic and Symposium in Honor of Professor Liam W.D. Finn[C]. San Diego, California:[s.n.],2001,1-6.
    [249]Martin P P, SEED H B. One dimensional dynamic ground response analysis[J]. Journal of Geotechnical Engineering, ASCE,1982,108(7):935-954.
    [250]中华人民共和国铁道部.铁建设函[2005]754号.客运专线无砟轨道设计 指南[S].北京:中国铁道出版社,2004.
    [251]辛学忠.德国铁路无砟轨道技术分析及建议[J].铁道标准设计,2005(2).
    [252]王其昌,蔡成标,张雷等.高速铁路土路基上无砟轨道的应用[J].铁道标准设计,2003(12).
    [253]铁道部科技司国家重点科研项目组.武广客运专线灰岩残积层红黏土路基变形特性及路堑边坡稳定性试验研究[R].中国武汉:中铁第四勘察设计院集团有限公司,2009.
    [254]Stewart Harry E. Permanent Strain From Cyclic Variable-Amplitude Loadings[J]. Geotechnical Engineering ASCE,1986,112(6):653.
    [255]Monismith C L, Ogawa N, Freme C R. Permanent Deformation Characteristics of Subgrade Soil due to Repeated Loading[C]//TRR5-37. Washington D C.1975.
    [256]黄茂松,李进军,李兴照.饱和软黏土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [257]CHAIJ C, MIURAN. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geo-environmental Engineering,2002, 128(11):907-916.
    [258]尚守平,刘方成,杜运兴.应变累积对黏土动剪模量和阻尼比影响的试验研究[J].岩土力学,2006,27(5):684-688.
    [259]刘方成,尚守平,王海东.循环荷载下黏土应变累积强化模型研究[J].岩土力学,2008,29(9):2457-2462.
    [260]杨广庆.水泥改良土的动力特性试验研究[J].岩石力学与工程学报,2003,22(7):1156-1160.
    [261]李玉锋,韩会增.有机高分子改性土动力特性试验研究[J].岩土力学,2000,21(2):156-162.
    [262]MUHANNA A S, RAHMAB M S, LAMBE P C. Model for resilient modulus and permanent strain of subgrade soils[J]. Transportation Research Record, 1998,1619:85-93.
    [263]王军,蔡袁强,徐长节等.循环荷载作用下饱和软黏土应变软化模型研究[J].岩石力学与工程学报,2007,26(8):1713-1719.
    [264]王军,蔡袁强.循环荷载作用下饱和软黏土应变累积模型研究[J].岩石力学与工程学报,2008,27(2):331-338.
    [265]WERKMEISTER S, DAWSON A R, WELLNER F. Permanent deformation behavior of granular materials and the shakedown concept[C]//Proceedings of 80th Annual Meeting, Transportation Research Board, Washington D. C:[s. n.],2001
    [266]沈正,黄晓明.固化粉煤灰动力特性试验研究[J].公路交通科技,2007(2):22-36.
    [267]唐益群,黄雨,叶为民等.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报,2003,22(9):1566-1570.
    [268]聂志红,李亮,刘宝琛等.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报,2005,24(6):1067-1071.
    [269]铁道科学研究院铁道建筑研究所.秦沈客运专线路基不同基床表层结构及路基、轨道动态试验研究报告[R].北京:铁道科学研究院,2003.
    [270]周镜,杨灿文.国外路基技术标准[J].路基工程,1985,2:6-8.
    [271]嘉木工作室.ANSYS 5.7有限元实例分析教程[M].北京:机械工业出版社,2002.
    [272]任辉启.ANSYS7.0工程分析实例详解[M].北京:人民邮电出版社,2003.
    [273]包承纲.三峡二期围堰下淤沙层的动力特性及有关工程问题的研究[J].岩土工程学报,2000,22(4):402-407.
    [274]T C KIM, et al. Dynamic properties of some cohesive soils of Ontario[J]. Canadian Geotech. J,1981,18:371-389.
    [275]Teachavorasinskun. S et al. Shear modulus and damping ratio of a clay during undrained cyclic loading[J]. Geotechnique,2001,51 (5):467-470.
    [276]VUCETIC M, et at. Effect of soil plasticity on cyclic response[J]. J. of Geotechnical Engineering, ASCE,1991,117(1):89-107.
    [277]95J01-L.高速试验列车动力车强度及动力学性能规范[S].北京铁道研究所,1995.
    [278]阿部和久,古田腾.时间域积分表现式たよる轨道振动解析解[J].日本土木工程报,1997,3:9-16.
    [279]铁道科学研究院.路基应力的观测与分析/重载铁道路基技术条件研究(二)[R].铁道科学研究院,1986.
    [280]铁道部科学研究院.环行线200km/h以上高速列车综合试验研究[R].铁道部科学研究院,1997.
    [281]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999,297-363.
    [282]刘晶波,王振宇,杜修力等.波动问题中的三维时域黏弹性人工边界[J].工程力学,2005,22(6):46-51.
    [283]刘晶波,王振宇,张克峰等.考虑土-结构相互作用大型动力机器基础三维有限元分析[J].工程力学,2002,19(3):34-38.
    [284]熊辉,邹银生,许振宇.层状场域内桩-土-上部结构的整体动力有限元模拟[J].土木工程学报,2004,37(9):55-61.
    [285]刘晶波,李彬.三维黏弹性静-动力统一人工边界[J].中国科学(E辑),2005,35(9):966-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700