用户名: 密码: 验证码:
基于设备衰退机制的预知性维护策略及生产排程集成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化工业技术的蓬勃发展,确保设备可靠性和维护水平,保证系统正常运行已成为制造企业生存的必要条件。设备维护管理作为制造系统理论的重要组成部分,是保证设备生产效率和降低制造成本的基础和关键。目前虽有不少学者针对设备维护策略进行了研究,但大多为基于时间的设备维护策略,很少研究设备衰退特性对维护策略的影响。因此,有必要探讨设备运行状况及衰退趋势,发展一类以设备状况驱动、不依赖以往统计数据的设备预知性维护策略。此外,考虑到设备维护对制造系统内生产排程会产生重要影响,有必要在传统生产排程模型中引入设备维护概念,基于设备衰退趋势,实现对考虑设备运行状况的生产排程的科学化描述,提出集成设备预知性维护的生产排程优化模型。
     本论文以单机生产设备及其生产过程为研究对象,立足于过去的二十年国内外针对设备维护策略和生产排程建模相关研究的基础上,综合运用运筹学、统计学和现代控制理论及优化等多学科理论和方法以及信息科学技术,通过分析设备运行状况,从而揭示设备的衰退规律,为维护管理层提供了有效计划和安排维护活动所需的实际信息,为设备预知性维护策略的实施提供决策依据。同时,探讨设备运行状况及衰退趋势,集成设备预知性维护信息到生产排程模型,拓展了传统生产排程研究领域,为制造系统科学的成功实施提供有力支持。本论文首先研究了设备性能评估方法,基于统计模式识别概念对设备运行过程中的健康状况进行估计和量化。然后基于量化的设备健康指标,探讨设备运行情况,提出了设备剩余维护寿命预测模型,定性和定量地描述设备衰退趋势。通过对设备剩余维护寿命的预测,发展了基于设备剩余维护寿命的预知性维护策略,拓展和完善制造系统维护管理理论。最后研究设备衰退趋势对生产排程的影响,实现对考虑设备运行状况的生产排程的科学化描述,建立了集成设备预知性维护的生产排程优化模型来帮助企业优化实际生产流程。
     基于前人的研究成果和大量实际的工程经验,本论文在基于设备衰退机制的设备预知性维护策略及生产排程集成研究中主要做了以下几方面的研究工作:
     (1)采用基于统计模式识别的方法对设备性能进行评估,根据量化的设备健康指标,建立设备剩余维护寿命预测模型
     建立了一套完整的基于统计模式识别的设备性能评估系统分析流程。针对数据采集仪器获取的设备状态监测数据,通过数据预处理、特征提取以及特征空间降维方法对原始数据进行有效处理。基于统计模式识别的概念,对设备状态进行识别,并在此基础上,利用卡方检验估计样本间关联度,引入设备健康指标来量化设备性能状态,描述设备实际运行状况,解决了设备健康状况的科学化描述问题。
     然后,进一步拓展设备性能评估结果,以设备健康指标作为设备衰退预测的分析依据和基础,定义设备剩余维护寿命,构建了设备剩余维护寿命预测模型,解决了设备衰退预测难以量化的问题,拓展了设备健康指标的应用环境,弥补了以往研究中多用函数分布描述设备衰退情况的不足,定性及定量地揭示了设备性能实际衰退趋势。
     (2)考虑设备自身衰退特性,发展基于设备剩余维护寿命的设备预知性维护策略
     针对传统狭义设备维护概念,考虑设备衰退特性,发展了基于设备剩余维护寿命的预知性维护策略,避免了以往失效维修或周期预防性维护策略引起系统可靠度不足及制造成本过高的情形。在以顾客需求为决策准则的情况下,给出了包含设备健康指标维护阈值和预知性维护周期两个决策变量的维护决策。通过发展这类以运转状况驱动、不依赖于以往统计数据的设备预知性维护策略,弥补了以往基于时间的设备维护策略的不确定性。
     在研究中,预测并优化各维护周期内的设备剩余维护寿命,综合考虑设备维护行为与设备性能的交叉影响,探讨设备维护成本和生产运行成本随设备健康状况和使用时间变化的情况,对设备维护成本和生产运行成本建模,改进和完善了设备预知性维护策略。从而为实际生产过程中的设备维护提供决策依据,满足了企业生产效率和成本的要求,有效地提高了系统整体利用率,为制造企业内设备维护提供了新的维护理论和方法。
     (3)基于设备衰退机制,提出集成设备预知性维护的生产排程优化模型
     针对传统生产排程研究大多忽略设备可靠性能,假定设备始终正常运行,本论文在传统生产排程中引入设备可用性概念。在提出的设备剩余维护寿命预测模型基础上,考虑设备衰退特性对生产排程的影响,分析了设备维护对生产排程的影响作用,提出了集成设备预知性维护的单机生产排程优化模型,解决了生产排程与设备维护的集成问题,极大地拓展了传统生产排程研究领域。
     通过对设备衰退趋势定性与定量地描述,预测设备剩余维护寿命,对生产作业的完工时间和延迟时间建模,在最小化最大生产作业延迟时间的目标下,推导出最佳生产作业与设备预知性维护序列,这既保证了设备可靠性水平与生产效率,还满足了实际生产过程的需要,为实际生产过程中制定生产排程提供了新的理论依据,增加和丰富了生产排程研究理论。
     本论文提出的模型和方法可定性和定量地描述设备性能状态及设备衰退趋势,为设备提供考虑设备自身衰退特性的预知性维护策略,并基于此实现集成设备预知性维护的生产排程。本论文的研究可帮助企业提高设备可靠性和维护水平、减少制造成本、提高生产效率以及提升综合竞争力,为发展制造系统内维护管理水平、实现制造系统的全部效能提供有力支持,为提高我国以高新技术为核心的数字化生产管理提供积极有利和科学有效的指导。
With the development of industrial technologies in manufacturing enterprise, it is vital to ensure the machine reliability for smooth production. Maintenance management, as an important part in manufacturing system, is the basic and key to ensure equipment productivity and reduce manufacturing cost. Although there are some studies on maintenance policies, most of them are time-based maintenance policies, which ignores the influence of machine degradation. It is thus essential to study machine operation and degradation to develop predictive maintenance policy. Moreover, by considering the influence of maintenance operation on production scheduling in manufacturing system, maintenance operation should be integrated into the traditional production scheduling models. Due to machine degradation, a production scheduling model integrated with predicitve maintenance is proposed. This paper studies a single repairable machine and its production process. Based on the available research on maintenance policies and production scheduling, this paper discusses machine’s operation process and describes machine degradation, which greatly supports predictive maintenance planning. In addition, this paper integrates predictive maintenance into production scheduling subject to machine degradation, which helps extend traditional production scheduling research. In this paper, a performance assessment method of the machine is studied first. Machine’s health index (HI) is estimated based on statistical pattern recognition (SPR). Then, with machine’s HI, machine’s remaining maintenance life (RML) prediction model is built, which can well describe machine’s deterioration process. Later, according to machine’s RML, one predictive maintenance policy is developed. At last, by considering the influence of machine degradation on production scheduling, a production scheduling model integrated with predictive maintenance is proposed, which can optimize real production process.
     Based on the previous research and literature, this paper researches on predictive maintenance policy and integrated production scheduling model based on machine degradation, which focuses on the following parts:
     (1) Machine’s HI is estimated based on SPR method. Then, machine’s RML prediction model is built with machine’s HI.
     A complete machine’s performance assessment procedure is established based on SPR. In this procedure, the collected data is analyzed by data pre-processing, feature extraction and feature dimension reduction methods. Based on SPR concept, machine condition is identified. Chi-square test is used to estimate machine’s HI to help describe machine’s real health condition. With the machine’s HI information, machine’s RML is defined and machine’s RML prediction model is constructed, which helps describe machine degradation.
     This RML prediction model extends the applications of machine’s HI and supports predictive maintenance policy.
     (2) By considering machine degradation, predictive maintenance policy based on machine’s RML is developed.
     Considering machine degradation, a predictive maintenance policy is developed based on machine’s RML. This predicitve maintenance policy studies the influence of machine degradation to avoid the situations of low machine reliability and high manufacturing cost caused by previous failure-based or time-based maintenance policies. The maintenance level of machine’s HI and predictive maintenance cycles are the two decision variables.
     In this research, machine’s RML of each maintenance cycle is predicted and optimized. By considering the interaction of maintenance operation and machine performance, the maintenance cost and the operational cost should be variable if machine’s condition is changed. With the development, this predictive maintenance policy is enhanced to satisfy real manufacturing process.
     (3) An integrated production scheduling model considering predictive maintenance is proposed based on machine degradation.
     As most previous production scheduling research ignores machine reliability and assumes machine is available all the time, they cannot satisfy real manufacturing process due to machine degradation. This paper studies the influence of machine degradation on production scheduling and the influence of maintenance operation on production scheduling. Based on machine’s RML prediction model, this paper proposes a production scheduling model integrated with predcitve maintenance, which helps extend the traditional production scheduling research.
     With machine’s RML prediction model, machine’s RML is predicted to describe job’s completion time and tardiness. Then, with the aim to minimize the maximum tardiness of jobs, the optimal job sequence with predivtive maintenance planning is obtained. This integrated production scheduling model can ensure both machine reliability and productivity, which could be taken as new theory and practical references for production scheduling research.
     This research work can give qualitative and quantitative description of machine degradation, and provides a predictive maintenance policy considering machine degradation, finally achieves an improved production scheduling model integrated with predictive maintenance. This research can help enterprise ensure machine reliability, reduce manufacturing cost, increase productivity and enhance its competitiveness. It can provide great support to develop maintenance management and achieve the full performance of manufacturing systems, and provide scientific guidance for digital production management.
引文
[1] Pan, E., Liao, W., Zhuo, M.. Periodic preventive maintenance policy with infinite time and limit of reliability based on health index[J]. Journal of Shanghai Jiaotong University (Science), 2010. 15(2): 231-235.
    [2]廖雯竹,潘尔顺,奚立峰.基于设备可靠性的动态预防维护策略[J].上海交通大学学报, 2009. 43(8): 1332-1336.
    [3] Ji, M., He, Y., Cheng, T.C.E.. Single-machine scheduling with periodic maintenance to minimize makespan[J]. Computers and Operations Research, 2007. 34(6): 1764-1770.
    [4]贾希胜.以可靠性为中心的维修决策模型[M].北京:国防工业出版社, 2007.
    [5]美国联邦统计局, www.fedstats.gov/.
    [6] Barlow, R., Hunter, L.. Optimum Preventive Maintenance Policies[J]. Operation Research, 1960. 8(1): 90-100.
    [7]阚树林.生产计划与控制[M].化学工业出版社, 2008.
    [8] Yang, D., Kuo, W.. A single-machine scheduling problem with learning effects in intermittent batch production[J]. Computers & Industrial Engineering, 2009. 57(3): 762-765.
    [9]王丽亚,陈友玲,马汉武等.生产计划与控制[M].清华大学出版社, 2007.
    [10] Li, C., Ou, J.. Machine scheduling with pickup and delivery[J]. Naval Research Logistics, 2005. 52(7): 617-630.
    [11] Li, C., Vairaktarakis, G., Lee, C.. Machine scheduling with deliveries to multiple customer locations[J]. European Journal of Operational Research, 2005. 164(1): 39-51.
    [12] Chou, F., Wang, H.. Scheduling for a single semiconductor batch-processing machine to minimize total weighted tardiness[J]. Journal of the Chinese Institute of Industrial Engineers, 2008. 25(2): 136-147.
    [13] Cavory, G., Dupas, R., Goncalves, G.. A genetic approach to the scheduling of preventive maintenance tasks on a single product manufacturing production line[J]. International Journal of Production Economics, 2001. 74(1-3): 135-146.
    [14] Lin, C.. Single machine stochastic scheduling: minimizing the number of tardy jobs[J]. American Journal of Mathematical and Management Sciences, 1994. 14(3-4): 289-300.
    [15] Zhao, C., Tang, H.. Single machine scheduling with general job-dependent aging effect and maintenance activities to minimize makespan[J]. Applied Mathematical Modelling, 2009. 34(3): 837-841.
    [16] Gupta, A.K., Sivakumar, A.I.. Single machine scheduling with multiple objectives in semiconductor manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2005. 26(9-10): 950-958.
    [17] Gupta, S.K., Kyparisis, J.. Single machine scheduling research[J]. Omega, 1987. 15(3): 207-227.
    [18] Giglio, D., Minciardi, R., Tassara, S.. Optimal scheduling strategies of jobs belonging to different classes on a single machine with variable processing times[J]. Decision and Control, 2003. Proceedings. 42nd IEEE Conference on.
    [19] Wang, J., Lin, L., Shan, F.. Single-machine group scheduling problems with deteriorating jobs[J]. International Journal of Advanced Manufacturing Technology, 2008. 39(7-8): 808-812.
    [20] Chen, W.J.. Minimizing total flow time and maximum tardiness with periodic maintenance[J]. Journal of Quality in Maintenance Engineering, 2007. 13(3): 293-303.
    [21] Mellouli, R., Sadfi, C., Chu, C., Kacem, I.. Identical parallel-machine scheduling under availability constraints to minimize the sum of completion times[J]. European Journal of Operational Research, 2009. 197(3): p. 1150-1165.
    [22] Krasik, V., Leung, J., Pinedo, M., Zhang, J.. Scheduling multiple products on parallel machines with setup costs[J]. Naval Research Logistics, 2008. 55(7): 654-669.
    [23] Jiang, J., Chen, K., Wee, H.. A dynamic scheduling model of parallel-machine group for weapon production[J]. International Journal of Advanced Manufacturing Technology, 2008. 36(11-12): 1202-1209.
    [24] Huang, W., Chang, P., Ting, C., Wu, L, Liao, H.. A two-phase genetic-immune algorithm with improved survival strategy of lifespan for flow-shop scheduling problems[J]. Computational Intelligence in Scheduling, 2009. CI-Sched '09. IEEE Symposium on.
    [25] Zobolas, G.I., Tarantilis, C.D., Ioannou, G.. Minimizing makespan in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm[J]. Computers & Operations Research, 2009. 36(4): 1249-1267.
    [26] Fakhrzad, M.B., Heydari, M.. A heuristic algorithm for hybrid flow-shop production scheduling to minimize the sum of the earliness and tardiness costs[J]. Journal of the Chinese Institute of Industrial Engineers, 2008. 25(2): 105-114.
    [27] Liu, B., Wang, L., Jin, Y.H.. An effective hybrid particle swarm optimization for no-wait flow shop scheduling[J]. International Journal of Advanced Manufacturing Technology, 2007. 31(9-10): 1001-1011.
    [28] Xu, Z., Gu, X.. A hybrid algorithm for scheduling problems of flow shop with uncertain processing time[J]. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on.
    [29] Liu, M., Hao, J., Wu, C.. A new genetic algorithm for parallel machine scheduling problems with procedure constraints and its applications[J]. Chinese Journal of Electronics, 2006. 15(3): 463-466.
    [30] Xu, Z., Gu, X.. Flow shop scheduling problems under uncertainty with finite intermediate storage based on fuzzy theory[J]. Intelligent Control and Automation, 2004. WCICA 2004. The Fifth World Congress on.
    [31]吕文元.先进制造设备维修理论、模型与方法[M].北京:科学出版社, 2008.
    [32]王凌.维修决策模型和方法的理论与应用研究[M].浙江大学, 2007.
    [33] Pham, H., Wang, H.. Imperfect maintenance[J]. European Journal of Operational Research, 1996. 94(3): 425-438.
    [34] El-Ferik, S., Ben-Daya, M.. Age-based hybrid model for imperfect preventive maintenance[J]. IIE Transactions, 2006. 38(4): 365-375.
    [35] Wang, H., Pham, H.. Optimal maintenance policies for several imperfect repair models[J]. International Journal of Systems Science, 1996. 27(6): 543-549.
    [36] Wang, H.. A survey of maintenance policies of deteriorating systems[J]. European Journal of Operational Research, 2002. 139(3): 469-489.
    [37] Nakagawa, T.. Sequential imperfect preventive maintenance policies[J]. IEEE Transaction on Reliability, 1988. 37(3): 295-298.
    [38] Morse, P.M.. Queues, Inventories and Maintenance[M]. New York: John Wiley & Sons Inc, 1958.
    [39] Barlow, R.E., Proschan, F.. Mathematical Theory of Reliability[M]. New York: Wiley, 1965.
    [40] McCall, J.J.. Maintenance Policies for Stochastically Failing Equipment: A Survey[J]. Management Science, 1965. 11(5): 493-524.
    [41] Tahara, A. Nishida, T.. Optimal replacement policy for minimal repair model[J]. Journal of the Operations Research Society of Japan, 1974. 18: 113-124.
    [42] Sheu, S.H., Kuo, C.M., Nakagawa, T.. Extended optimal age replacement policy with minimal repair[J]. PAIRO Recherche Operationnelle, 1993. 27(3): 337-351.
    [43] Sheua, S.H., Griffithb, W.S., Nakagawac, T.. Extended optimal replacement model with random minimal repair costs[J]. European Journal of Operational Research, 1995. 85(3): 636-649.
    [44] Chiena, Y.H., Sheub, S.H.. Extended optimal age-replacement policy with minimal repair of a system subject to shocks[J]. European Journal of Operational Research, 2006. 174(1): 169-181.
    [45] Block, H.W., Borges, W.S., Savits, T.H.. Age-dependent minimal repair[J]. Journal of Applied Probability, 1985. 22(2): 370-385.
    [46] Block, H.W., Borges, W.S., Savits, T.H.. A general age replacement model with minimal repair[J]. Naval Research Logistics, 1988. 35(5): 365-372.
    [47] Wang, H., Pham, H.. Some maintenance models and availability with imperfect maintenance in production systems[J]. Annals of Operations Research, 1999. 91: 305-318.
    [48] Huang, X., Liu, H.. Multiobjective scheduling on a single machine[J]. Proceedings of SPIE-The International Society of optical society, 1995. 2620: 87-91.
    [49] Lim, J., Park, D.. Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances[J]. Asia-Pacific Journal of Operational Research, 2007. 24(1): 111-124.
    [50] Chun, Y.H.. Optimal number of periodic preventive maintenance operations under warranty[J]. Reliability Engineering and System Safety, 1992. 37(3): 223-225.
    [51] Dagpunar, J.S., Jack, N.. Preventive maintenance strategy for equipment under warranty[J]. Microelectronics and Reliability, 1994. 34(6): 1089-1093.
    [52] Bergman, B.. Optimal replacement under a general failure model[J]. Advances in Applied Probability, 1978. 10(2): 431-451.
    [53] Malik, M.. Reliable preventive maintenance policy[J]. AIIE Transaction, 1979. 11(3): 221-228.
    [54] Lie, C.H., Chun, Y.H.. An algorithm for preventive maintenance policy[J]. IEEE Transactions on Reliability, 1986. 35(1): 71-85.
    [55] Canfield, R.V.. Cost optimization of periodic preventive maintenance[J]. IEEE Transaction on Reliability, 1986. 35: 78-81.
    [56] Love, C.E., Guo, R.. Utilizing Weibull failure rates in repair limit analysis for equipment replancement/preventive maintenance decisions[J]. Journal of Operational Research Society, 1996. 47(11): 1366-1376.
    [57] Monga, A., Ming, J.Z.. Optimal system design considering maintenance and warranty[J].Computers & Operations Research, 1998. 25(9): 691-705.
    [58] Jayabalan, V., Chaudhuri, D.. Optimal maintenance-replacement policy under imperfect maintenance[J]. Reliability Engineering & System Safety, 1992. 36(2): 165-169.
    [59] Jayabalan, V., Chaudhuri, D.. Optimal maintenance and replacement policy for a deteriorating system with increased mean downtime[J]. Naval Research Logistics, 1992. 39(1): 67-78.
    [60] Murthy, D.N.P., Nguyen, D.G.. Optimal age-policy with imperfect preventive maintenance[J]. IEEE Transactions on Reliability, 1981. 30(1): 80-81.
    [61] Nguyen, D.G., Murthy, D.N.P.. Optimal repair limit replacement policies with imperfect repair[J]. Journal of the Operational Research Society, 1981. 32(5): 409-416.
    [62] Kijima, M., Nakagawa, T.. A cumulative damage shock model with imperfect preventative maintenance[J]. Naval Research Logistics, 1991. 38(2): 145-156.
    [63] Dedopoulos, I.T., Smeers, Y.. An age reduction approach for finite horizon optimization of preventive maintenance for single units subject to random failures[J]. Computers & Industrial Engineering, 1998. 34(3): 643-654.
    [64]奚立峰,周晓军,李杰.有限区间内设备顺序预防性维护策略研究[J].计算机集成制造系统, 2005. 10: 117-120.
    [65] Zhou, X., Xi, L., Lee, J.. Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation[J]. Reliability Engineering & System Safety, 2007. 92(4): 530-534.
    [66] Gardent, P., Nonant, L.. Entretien et renouvellement d'un parc de machines. Revue Fran?aise de Recherche Operationelle, 1963. 7: 5-19.
    [67] Drinkwater, R.W., Hastings, N.V.J.. An economic replacement model[J]. Operational Research Quarterly, 1967. 18: 121-138.
    [68] Beichelt, F.. Replacement policies based on system age and maintenance cost limits[J]. Mathematische Operationsforschung und Statistik Series, 1981. 12(4): 621-627.
    [69] Beichelt, F.. A replacement policy based on limits for the repair cost rate[J]. IEEE Transactions on Reliability, 1982. 31(4): 401-402.
    [70] Yun, W.Y., Bai, D.S.. Cost limit replacement policy under imperfect repair[J]. Reliability Engineering, 1987. 19(1): 23-28.
    [71] Kapur, P.K., Garg, R.B., Butani, N.L.. Some replacement policies with minimal repairs and repair cost limit[J]. International Journal of Systems Science, 1989. 20(2): 267-279.
    [72] Koshimae, H., Dohi, T., Kaio, N.. Graphical statistical approach to repair limit replacement problem[J]. Journal of the Operations Research Society of Japan, 1996. 39(2): 230-246.
    [73] Dohi, T., Matsushima, N, Kaio, N., Osaki, S.. Nonparametric repair-limit replacement policies with imperfect repair[J]. European Journal of Operational Research, 1997. 96(2): 260-273.
    [74] Dohi, T., Kaio, N., Osaki, S.. On the optimal ordering policies in maintenance theory-survey and applications[J]. Applied Stochastic Models and Data Analysis, 1998. 14(4): 309-321.
    [75] Morimura, H., Makabe, H.. A new policy for preventive maintenance[J]. Journal of the Operations Research Society of Japan, 1963. 5: 110-124.
    [76] Morimura, H.. On some preventive maintenance policies for IFR[J]. Journal of the Operations Research Society of Japan, 1970. 12(3): 94-124.
    [77] Park, K.S.. Optimal number of minimal repairs before replacement[J]. IEEE Transactions on Reliability, 1979. 28(2): 137-140.
    [78] Lam, K., Xing, W.. New trends in parallel machine scheduling[J]. International Journal of Operations & Production Management, 1997. 17(3-4): 326-338.
    [79] Jackson, J.R.. Scheduling a production line to minimize maximum tardiness. Management Science Research Project, 1955. Research Project No. 43, UCLA.
    [80] Stadje, W., Zuckerman, D.. Generalized maintenance model for stochastically deteriorating equipment[J]. European Journal of Operational Research, 1996. 89(2): 285-301.
    [81] Muth, E.J.. An optimal decision rule for repair vs. replacement[J]. IEEE Transactions on Reliability, 1977. 26(3): 179-181.
    [82] Zhan, Y., Makis, V., Jardine, A.K.S.. Adaptive model for vibration monitoring of rotating machinery subject to random deterioration[J]. Journal of Quality in Maintenance Engineering, 2003. 9(4): 351-375.
    [83] Pierskalla, W.P., Voelker, J.A.. A survey of maintenance models: The control and surveillance of deteriorating systems[J]. Naval Research Logistics Quarterly, 2006. 23(3): 353-388.
    [84]吴波,丁毓峰,黎明发.机械系统可靠性维修及决策模型[M].北京:化学工业出版社, 2007.
    [85] Kim, Y.W., Rizzoni, G., Utkin, V.I.. Developing a fault tolerant power-train control system by integrating design of control and diagnostics[J]. International Journal of Robust and Nonlinear Control, 2001. 11: 1095-1114.
    [86] Suer, G.A., Dagli, C.. Knowledge-based single machine scheduling[J]. Computer and Industrial Engineering, 1992. 23(1-4): 149-152.
    [87] Sohn, H., Worden, K., Farrar, C.R.. Statistical damage classification under changing environmental and operational conditions[J]. Journal of Intelligent Material Systems and Structures, 2002. 13: 561–574.
    [88] Fugate, M.L., Sohn, H., Farrar, C.R.. Vibration-based damage detection using statistical process control[J]. Mechanical Systems and Signal Processing, 2001. 15: 707-721.
    [89] Skormin, V.A., Popyack, L.J., Gorodetski, V.I., Araiza, M.L., Michel, L.D.. Applications of cluster analysis in diagnostics-related problems[J]. Proceedings of the 1999 IEEE Aerospace Conference, 1999: 161-168.
    [90] Artes, M., Castillo, L.D., Perez, J.. Failure prevention and diagnosis in machine elements using cluster[J]. Proceedings of the Tenth International Congress on Sound and Vibration, 2003: 1197-1203.
    [91] Sun, Q., Chen, P., Zhang, D., Xi, F.. Pattern recognition for automatic machinery fault diagnosis[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2004. 126: 307-316.
    [92] Webb, A.R.. Statistical Pattern Recognition[M]. West Sussex, England: Wiley, 2002.
    [93] Poyhonen, S., Jover, P., Hyotyniemi, H.. Signal processing of vibrations for condition monitoring of an induction motor[J]. First International Symposium on Control, Communications and Signal Processing, 2004: 499-502.
    [94] Chang, C., Kang, Y., Chu, M., Chiang, C., Liu, Y.. An optimal estimation for neural network by using genetic algorithm for the prediction of thermal deformation in machine tools[J]. Control and Automation, 2005. ICCA’05. Internatioal Conference on. 2: 925-929.
    [95] Ge, B., Jiang, J.. Model algorithmic control for permanent magnet synchronous motor drive[J]. Proceedings of the CSEE, 1999. 19(10): 27-31.
    [96] Elliott, R.J., Aggoun, L., Moore, J.B.. Hidden Markov Models: Estimation and Control[M]. New York: Springer, 1995.
    [97] Bunks, C., McCarthy, D., Al-Ani, T.. Condition-based maintenance of machines using hidden Markov models[J]. Mechanical Systems and Signal Processing, 2000. 14: 597-612.
    [98] Dong, M., He, D.. Hidden semi-Markov models for machinery health diagnosis and prognosis[J]. Transactions of the Norh American Manufacturing Reserch Institution/SME, 2004. 32: 199-206.
    [99] Xu, Y., Ge, M.. Hidden Markov model-based process monitoring system[J]. Journal of Intelligent Manufacturing, 2004. 15: 337-350.
    [100] Ye, D., Ding, Q., Wu, Z.. New method for faults diagnosis of rotationg machinery based on 2-dimension hidden Markov model[J]. Proceedings of the International Symposium on Precision Mechanical Measurement, 2002. 4: 391-395.
    [101] Siddique, A., Yadava, G.S., Singh, B.. Applications of artificial intelligence techniques for induction machine stator fault diagnostics: Review[J]. Proceedings of the IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003: 29-34.
    [102] Samanta, B., Al-Balushi, K.R.. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]. Mechanical Systems and Signal Processing, 2003. 17: 317-328.
    [103] Spoerre, J.K.. Application of the cascade correlation algorithm (CCA) to bearing fault classification problems[J]. Computers in Industry, 1997. 32: 295-304.
    [104] Wang, W., Yao, M., Wu, Y., Wu, Q.. Hybrid flow-shop scheduling approach based on genetic algorithm[J]. Journal of System Simulation, 2002. 14(7): 863-865.
    [105] Tallam, R.M., Habetler, T.G., Harley, R.G.. Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics[J]. IEEE Transactions on Power Electronics, 2002. 17: 1089-1095.
    [106] Sohn, H., Worden, K., Farrar, C.R.. Statistical damage classification under changing environment and operiatonal conditions[J]. Journal of Intelligent Material Systems and Structures, 2002. 13: 561-574.
    [107] Hansen, C.H., Autar, R.K., Pickles, J.M.. Expert systems for machine fault diagnosis[J]. Acoustics Australia, 1994. 22: 85-90.
    [108] Yang, B.S., Han, T., Kim, Y.S.. Integration of ART-Kohonen neural network and case-based reasoning for intelligent fault diagnosis[J]. Expert Systems with Applications, 2004. 26: 387-395.
    [109] Araiza, M.L., Kent, R., Espinosa, R.. Real-time, embedded diagnostics and prognostics in advanced artillery systems[J]. IEEE Autotestcon Proceedings, Systems Readiness Technology Conference, 2002: 818-841.
    [110] Stanek, M., Morari, M., Frohlich, K.. Model-aided diagnosis: An inexpensive combination of model-based and case-based condition assessment[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2001. 31: 137-145.
    [111] Silva, R.G., Reuben, R.L., Baker, K.J., Wilcox, S.J.. Tool wear monitoring of turning operations by neural network and expert system classification of a feature set generated from multiple sensors[J]. Mechanical Systems and Signal Processing, 1998. 12: 319-332.
    [112] DePold, H.R., Gass, F.D.. The application of expert systems and neural networks to gas turbine prognostics and diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 1999. 121: 607-612.
    [113] Liu, M., Wu, C., Yang, Y.. New algorithm in parallel machine optimization scheduling problem[J]. Journal of Tsinghua University (Science and Technology), 1999. 39(5): 115-117.
    [114] Gantt, H.L.. Work, Wages, and Profits, second edition[M]. New York: Engineering Magazine Co., 1916.
    [115] Graves, S.C.. A Review of Production Scheduling[J]. Operations Research Letters, 1981. 29(4): 646-675
    [116] Smith, W.E.. Various optimizers for single-stage production[J]. Naval Research Logistics Quarterly, 1956. 3: 59-66.
    [117] Tunc, E.A., Haddock, J.. Production and work force planning in manufacturing systems for long-cycle products: A survey[J]. Journal of Manufacturing Systems, 1992. 11(4): 238-245.
    [118] Land, A.H., Doig, A.. An automatic method of solving discrete programming problems. Econometrica, 1960. 28: 497-520.
    [119] Eastman, W.L.. Linear programming with pattern constraints. Ph.D. Dissertation, 1958, Harvard University.
    [120] Kan, A.H.G.R., Lageweg, B.J., Lenstra, J.K.. Minimizing Total Costs in One-Machine Scheduling[J]. Operations Research Letters, 1975. 23(5): 908-927.
    [121] Potts, C.N., Strusevich, V.A.. Fifty years of scheduling: a survey of milestones. Journal of the Operational Research Society, 2009. 60: 41-68.
    [122] Elmaghraby, S.E.. The One Machine Sequencing Problem with Delay Costs. Journal of Industrial Engineering, 1968. 19: 105-108.
    [123] Matsuo, H., Suh, C., Sullivan, R.. A controlled search simulated annealing method for the single machine weighted tardiness problem[J]. Annals of Operations Research, 1988. 21(1): 85-108.
    [124] Potts, C.N., Wassenhove, L.N.V.. Single machine tardiness sequencing heuristics[J]. IIE Transactions, 1991. 23: 346-354.
    [125] Crauwels, H.A.J., Potts, C.N., Wassenhove, L.N.V.. Local search heuristics for the single machine total weighted tardiness scheduling problem. Journal on Computing archive, 1998. 10(3): 341-350.
    [126] Wilkersona, L.J., Irwinb, J.D.. An improved method for scheduling independent tasks[J]. IIE Transactions, 1971. 3(3): 239-245.
    [127] Reeves, C.R.. Landscapes, operators and heuristic search[J]. Annals of Operations Research, 1999. 86(0): 473-490.
    [128] Islam, A., Eksioglu, M.. A tabu search approach for the single- machine mean tardiness problem[J]. Journal of the Operational Research Society, 1997. 48(7): 751-755.
    [129] Ben-Daya, M., Al-Fawzan, M.. A simulated annealing approach for the one-machine mean tardiness scheduling problem[J]. European Journal of Operational Research, 1996. 93(1): 61-67.
    [130] Lyu, J., Guneskaren, A., Ding, J.H.. Simulated annealing algorithm for solving the single machine early/tardy problem[J]. International Journal of Systems Science, 1996. 27(7): 605-610.
    [131] Kanet, J.. Minimizing variation of flow time in single machine systems. Management Science, 1981. 27: 1453-1459.
    [132] Kanet, J.. Minimizing the average deviation of job completion times about a common due date[J]. Naval Research Logistics Quarterly, 1981. 28(4): 643-651.
    [133] Sundararaghavan, P.S., Mesbah, U.A.. Minimizing the sum of absolute lateness in single-machine and multimachine scheduling[J]. Naval Research Logistics Quarterly, 1984. 31(2): 325-333.
    [134] Szwarc, W.. Single-machine scheduling to minimize absolute deviation of completion times from a common due date[J]. Naval Research Logistics, 1989. 36: 663-673.
    [135] Leon, J.V., Wu, S.D.. On Scheduling with ready-times, due-dates and vacations[J]. Naval Research Logistics, 1992. 39: 53-65.
    [136] Pinedo, M.L.. Scheduling: Theory, Algorithms and Systems[M]. Springer Science, 2008.
    [137] Chen, J.S.. Optimization models for the machine scheduling problem with a single flexible maintenance activity[J]. Engineering Optimization, 2006. 38(1): 53-71.
    [138] Schmidt, G.. Scheduling with limited machine availability[J]. European Journal of Operational Research, 2000. 121: 1-15.
    [139] Cassady, C.R., Kutanoglu, E.. Integrating preventive maintenance planning and production scheduling for a single machine[J]. IEEE Transactions on Reliability, 2005. 54: 304-309.
    [140] Arts, R.H.P.M., Knapp, G.M., Lawrence, M.J.. Some aspects of measuring maintenance in the process industry[J]. Journal of Quality in Maintenance Engineering, 1998. 4: 6-11.
    [141] Lee, C.Y.. Machine scheduling with an availability constraint[J]. Journal of Global Optimization, 1996. 9: 395-416.
    [142] Sanlaville, E., Schmidt, G.. Machine scheduling with availability constraints[J]. Acta. Informatica, 1998. 35: 795-811.
    [143] Liao, C.J., Chen, W.J.. Single-machine scheduling with periodic maintenance and nonresumable jobs[J]. Computer and Operation Research, 2003. 30: 1335-1347.
    [144] Lee, C.Y., Chen, Z.L.. Machine scheduling with transoprtation considerations[J]. Journal of Scheduling, 2001. 4: 3-24.
    [145] Lee, C.Y., Leon, J.. Machine scheduling with a rate-modifying activity[J]. European Journal of Operational Research, 2001. 128(1): 119-128.
    [146] Kubzin, M.A., Strusevich, V.A.. Planning machine maintenance in two-machine shop scheduling[J]. Operations Research Letters, 2006. 54: 789-800.
    [147] Kubzin, M.A., Potts, C.N., Strusevich, V.A.. Approximation results for flow shop scheduling problems with machine availability constraints[J]. Computers & Operations Research, 2009. 36: 379-390.
    [148] Qi, X., Chen, T., Tu, F.. Scheduling the maintenance on a single machine[J]. Journal of the Operational Research Society, 1999. 50(10): 1071-1078.
    [149] Qi, X.. A note on worst-case performance of heuristics for maintenance scheduling problems[J]. Discrete Applied Mathematics, 2007. 155: 416-422.
    [150] Sbihi, M., Varnier, C.. Single-machine scheduling with periodic and flexible periodic maintenance to minimize maximum tardiness[J]. Computer and Industrial Engineering, 2008. 55(4): 830-840.
    [151] Adiri, I., Frostig, E., Rinnooy, K.A.H.G.. Scheduling on a single machine with a singlebreakdown to minimize stochastically the number of tardy jobs[J]. Naval Research Logistics, 2006. 38(2): 261-271.
    [152] Chen, W.J.. Scheduling of jobs and maintenance in a textile company[J]. The International Journal of Advanced Manufacturing Technology, 2007. 31(7-8): 737-742.
    [153] Low, C., Ji, M., Hsu, C., Su, C.. Minimizing the makespan in a single machine scheduling problems with flexible and periodic maintenance[J]. Applied Mathematical Modelling, 2010. 34(2): 334-342.
    [154] Sadfi, C., Penz, B., Rapine, C., Blazewica, J., Fprmanowicz, P.. An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints[J]. European Journal of Operational Research, 2005. 161(1): 3-10.
    [155] Ellwein, C., Danaher, S., Jager, U.. Identifying regions of interest in spectra for classification purposes[J]. Mechanical Systems and Signal Processing, 2002. 16(2-3): 211-22.
    [156] Jardine, A.K.S., Daming, L., Banjevic, D.. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006. 20(7): 1483-510.
    [157] Stack, J.R., Harley, R.G., Habetler, T.G.. An amplitude Modulation detector for fault diagnosis in rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2004. 51(5): 1097-102.
    [158] Yang, H., Mathew, J., Ma, L.. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processing, 2005. 19(2): 341-356.
    [159] Zhang, S., Mathew, J., Ma, L., Sun, Y.. Best basis-based intelligent machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2005. 19(2): 357-370.
    [160]杨志波,董明.动态贝叶斯网络在设备剩余寿命预测值的应用研究[J].计算机集成制造系统, 2007. 13(9): 1811-1815.
    [161] Goode, K.B., Moore, J., Roylance, B.J.. Plant machinery working life prediction method utilizing reliability and condition-monitoring data[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2000. 214(2): 109-122.
    [162] Vlok, P.J., Wnek, M., Zygmunt, M.. Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions[J]. Mechanical Systems and Signal Processing, 2004. 18(4): 833-847.
    [163] Baruah, P., Chinnam, R.B.. HMMs for diagnostics and prognostics in machining processes[J]. International Journal of Production Research, 2005. 43(6): 1275-1293.
    [164]王黎明,王连,杨楠.应用时间序列分析[M].上海:复旦大学出版社, 2009.
    [165]王沁.时间序列分析及其应用[M].西南交通大学出版社, 2008.
    [166]杨叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社, 1991.
    [167] Ross, S.. Applied Probability Models with Optimization Application[M]. San Diego, CA: Holden-Day, 1970.
    [168] Ben-Daya, M., Rahim, M.A.. Effect of maintenance on the economic design of x over-bar-control chart[J]. European Journal of Operational Research, 2000. 120(1): 131-143.
    [169] Love, C.E., Zhang, Z.G., Zitron, M.A., Guo, R.. Discrete semi-Markov decision model to determine the optimal repair/replacement policy under general repairs[J]. European Journal of Operations Research, 2000. 125(2): 398-409.
    [170] Wessels, W.R. Cost-optimized scheduled maintenance interval for reliability-centered maintenance[J]. Proceedings of the Annual Reliability and Maintainability Symposium. 2003: 412-416.
    [171] Svensson, B.. Information key to operational cost savings[J]. Diesel and Gas Turbine Worldwide, 2006. 38(1): 50-51.
    [172] Ruel, M.. Performance monitoring and supervision: An economic point of view. Technical Papers of ISA, 2005. 459: 139-151.
    [173] Iyoob, I.M., Cassady, C.R.. Estimating system cost under an opportunistic replacement policy. in IIE Annual Conference and Exhibition, 2004.
    [174] Merten, A.G., Muller, M.E.. Variance minimization in single machine sequencing problems[J]. Management Science, 1972. 18: 518-528.
    [175] Schrage, L.. Minimizing the time-in-system variance for a finite jobset[J]. Management Science, 1975. 21: 540-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700