用户名: 密码: 验证码:
南角河银——多金属矿垂直分带特征及找矿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南角河矿床是以Ag、Pb、Zn、Sb、Cu、Au等为主的多金属矿床,主要金属储量已达
    到大型规模,具有重要的工业价值。前人在这里开展的研究工作还十分薄弱,区域内具有
    很好的找矿前景。
     本文运用多学科的现代理论及先进方法,以野外地质观察与室内测试数据为依据,首
    次开展了南角河银多金属矿床形成的区域地质构造背景、矿床地质、同位素地球化学、微
    量元素、包裹体矿物学、垂直分带及找矿方法等方面的系统研究,取得的创新性成果及认
    识如下:
     (1)三江地区南段地质构造复杂,岩浆活动频繁,变质作用强烈,为各类矿床的形
    成创造了良好条件。南角河矿床东部为南北向延伸的临沧—勐海花岗岩基,该花岗岩基主
    体形成于海西—印支期,西部为元古代澜沧群变质岩。矿体产在花岗岩与变质岩的构造破
    碎接触带中,成矿与花岗岩浆活动及大气降水所形成的流体作用有关。
     (2)矿体呈脉状产出,矿化发生在围岩蚀变范围以内,蚀变主要为硅化、绢云母化、
    黄铁矿化、碳酸盐化等,围岩蚀变可作为很好的找矿标志。研究了矿物成分,矿区首次鉴
    定了低温脆硫锑铅矿。
     (3)矿床具显著的垂直分带性,下部主要为的Pb-Zn-Fe-Cu(Ag)组合,中部为
    Pb-Zn-Ag-Sb组合,上部Sb。沉淀分带性是南角河矿床分带的主要原因,间歇性分带对矿
    床分带影响不大。矿化垂直分带还表现在矿物组合、矿石结构构造、围岩蚀变、成矿温度、
    盐度、气液比、铅同位素比值等方面。
     (4)同位素及微量元素研究表明,成矿物质主要来自花岗岩及元古代地层,矿化剂S
    来自上地幔,成矿介质流体以大气降水为主,混合少量岩浆热液。花岗岩为壳型花岗岩,
    在成矿过程中主要提供成矿物质外还供给成矿能量,促使含矿热液的形成和运移。
     (5)包裹体研究表明,含矿流体为低盐度,低密度流体,成矿温度较低。温度、压
    力和pH值降低是成矿元素从流体中沉淀的主要原因。
     (6)结合矿床特征,以核技术为主的找矿方法中γ能谱及氡测量能很好地反映容矿
    破碎带及花岗岩与变质岩的接触位置,室内多元素X射线荧光测量技术可以有效寻找蚀变
    带、元素地球化学异常及土壤原生晕、次生晕等流体成矿地球化学界面的标志,快速追踪
    矿床(体)的位置。幅频激电探测技术是寻找深部隐伏金属矿体的有效手段。
     (7)根据研究结果,建立了矿床成因模式和找矿模式,并提出了找矿准则。
Nanjiaohe silver-polymetallic deposit includes Ag, Pb, Zn, Cu, Au etc. mineralization.
     Some metal's reserves already approaches middle scale, it has a important economic value. The
     deposit locates in the contact belt of granite and Lancang group. This deposit possesses a clear
     vertical zoning, it is a new type Lead-Zinc mine in Yunnan province. In this geology district
     there is a very good foreground of exploration.
     The writer began a first study on this ore deposit combined the field geological survey and
     analytical data in the laboratory. This paper has studied regional geology background,
     characteristic of Lead-Zinc deposits in Yunnan province, also studied ore deposit, geochemistry,
     vertical zoning, inclusion, prospecting foreground and accomplished geophysicl exploration
     experiment in Nanjiaohe. Acquired the following conclusions:
     Nanjiaohe ore deposit locates in south of Sanjiang region, here the geological structure is
     complex, tectonomagma moved continually, happened strong metamophism, all these provided a
     good precondition for ore formation. East of the deposit is the famous Lincang-Menghai
     batholithic granite formed during Varisn to Indo-Chinese epoch which has a north-south
     direction of strike, west is Lancang grouup metamorphic rock. The ore body is located in the
     fractured zone between granite and metamorphic rock. Mineralization processing was related to
     the atmospheric water and gmitic magmatism.
     Ore body was mainly contrled by the fractured zone, metallogenetic elments migrated and
     allocated in the zone too. Ore body occurred in veins. Metallization has a clear vertical zoning,
     underside is Pb, Zn, central section is Pb, Zn, Ag, Au and upside is Sb. Laydown zoning is the
     mainly facter, geyser zoning affected little. Metallization occurred in rock alteration, the
     alteration types are silication, seritization, pyritization and carbonation etc. Rock alteration is a
     good criteria for ore prospecting.
     Through the study of isotope we get the information that metallogenetic elements mostly
     came from strata of Lancang group, ore fluid mainly came from atmospherics water, mixed a
     small amount of magmatic solution. Granite is S-type, in the mineralizing process it offered
     energy helped the formation and migration of ore fluid.
     After the study of inclusion, we found that fluid was low salinity, low denseness and low
     temperature. The decline of temperature, pressure and pH was mainly factor that ore elements
     laied down from fluid.
     Mineralizing fluid migrated, concentrated and allocated in the fractured zone between
     granite and metamorphic rock, it was a good canal for Rn, U, Tb and K, added intense
     sericitization, in geophysical exploration we found that y -ray spectrometry, Radon
     spectrometry can reflect the allocation of fractured zone, X-ray fluorescence analysis in
     laboratory can effectively find alteration envelope, elements geochemical abnormality, soil
    
    
    
    
     primary and secondary halo, then find deposits allocation. Electric prospecting can be used to
     find concealed sulfide body in target area.
     According to the study result, a metallogenic model is presented corresponding with the
     prospecting model and norms.
引文
[1] 陈炳蔚等.怒江—澜沧江—金沙江地区大地构造.北京:地质出版社,1987
    [2] 莫学宣等.三江特提斯火山作用与成矿.地矿部地质专报(第20号),北京:地质出版社,1991,214~220
    [3] 袁见齐等.矿床学.北京:地质出版社,1985
    [4] 刘英俊等.元素地球化学导论.北京:地质出版社,1987
    [5] 陈德潜、陈刚.实用稀土元素地球化学.北京:冶金工业出版社,1990
    [6] 曾庆丰.论热液成矿条件.北京:科学出版社,1988
    [7] 裴荣富.中国矿床模式.北京:地质出版社,1995
    [8] 沈渭洲.稳定同位素地质.北京:原子能出版社,1987
    [9] 魏菊英、王关玉.稳定同位素地球化学.北京:地质出版社,1988
    [10] 朱炳泉等.地球科学中同位素体系理论与应用.北京:科学出版社,1998
    [11] 陈好寿.同位素地球化学研究.浙江大学出版社,1994
    [12] 格里年科BA,格里年科H.硫同位素地球化学.赵瑞译.北京:科学出版社,1980,1~235
    [13] 季克俭、吴学汉等.热液矿床的矿源、水源和热源及矿床分布规律.北京科学技术出版社,1989
    [14] 盂良义.花岗岩与成矿。北京:科学出版社1993
    [15] 张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985
    [16] 张理刚.成岩成矿理论与找矿.北京:北京工业大学出版社,1989
    [17] 卢武长.稳定同位素地球化学.成都地质学院,1986
    [18] 卢焕章等.包裹体地球化学.北京:地质出版社,1990
    [19] 骆耀南、曹志敏等.大水沟独立碲矿床.成都:西南交通大学出版社,1996
    [20] 刘本立.地球化学基础.北京:北京大学出版社,1994
    [21] 郑永飞.化学地球动力学.北京:科学出版社,1999
    [22] 曾贻善.热水溶液中元素的迁移形式.北京:地质出版社,1993
    [23] (美)J.D.瑞奇.成矿概念的变化和发展.北京:地质出版社,1985
    [24] 章晔。核地球物理勘查技术的发展概况.物探与化探。1979,21(5):321~330
    [25] 倪师军.三○二铀矿垂直分带模式.1990(博士论文)
    [26] 何明友.论云南老王寨金矿田形成的地球化学机理.1996,(博士后科学研究论文)
    [27] 张寿庭,丁益民.X射线荧光方法在成矿规律研究中的应用.成都地质学院学报,1992,19(2):104~110
    [28] 张寿庭,丁益民,朱创业等.X射线荧光分析技术在四川龙塘铅锌矿成矿规律研究与资源评价中的应用.物探与化探,1998,22(20):117~127
    [29] 贾文懿等.地面伽玛能谱测量及其初步应用.理工科技进展,成都:四川科学技术出版社,244~251,1996
    [30] 郑永飞等.矿物稳定同位素地球化学研究.地学前缘,2000,7(2)
    [31] 韩发、孙海田.Sedex型矿床成矿系统.地学前缘,1999,6(3)
    [32] 云南省地矿局区调队.1:20万景洪幅、勐海幅区域地质调查报告.1979
    
    
    [33] 李连举等.滇东北铅锌银矿床矿源层问题探讨.有色金属矿产与勘查,1999,8(6)
    [34] 李国武.云南建水—虾洞火山岩型银多金属矿带的硫、铅同位素特征及其地质意义.地质地球化学,1998,26(4):21~25
    [35] 黄继钧.广西凤凰山银矿构造控矿作用分析.矿床地质,1998,17(3):229~239
    [36] 刘填波.凡口铅锌矿狮岭深部矿段的控矿规律及其应用.有色金属矿产与勘查.1999,8(6)
    [37] 秦德厚、王陶.近十五年来云南基础地质调查及其主要成果.云南地质,2000,19(2):200~205
    [38] 薛顺荣.剑川金山桃铅锌矿床特征及成因探讨.云南地质,2000,19(1),29~36
    [39] 黄朋等.地幔柱构造与成矿.云南地质,1999,18(4):425~430
    [40] 刘家军,刘建明.西秦岭寒武系中金矿床成矿元素分带研究.地质与勘探,35(4):8~11
    [41] 张启厚,顾尚义,毛健全.贵州水城青山铅锌矿床地球化学研究.地质地球化学,27(1):15~20
    [42] 潘龙驹.关于三江(云南段)铜金多金属找矿问题的思考.有色金属矿产与勘查,1999,8(2):92~95
    [43] 潘龙驹.三江(云南段)铜金多金属找矿问题思考之二.有色金属矿产与勘查,1999,8(4):208~212
    [44] 钱详贵、吕伯西.滇西三江地区新生代碱性火山岩岩石学特征及成因.云南地质,2000,19(2):152~170
    [45] 钱祥贵、吕伯西.澜沧江南段景洪猛龙深海红色放射虫硅质岩的发现及其意义.云南地质,2000,19(1)
    [46] 段建中、谭筱虹.滇西三江地区新生代主要走滑断裂性质及特征.云南地质,2000,19(1):8~23
    [47] 吕伯西、钱祥贵.滇西三江地区新生代碱性系列岩浆岩构造类型.云南地质,2000,19(3)
    [48] 刘昌实等.滇西临沧复式岩基特征研究.云南地质,1989,8(3,4)
    [49] 赵成蜂.云南腾冲北部华力西期印支期花岗岩.中国区域地质,1999,18(3):260~263
    [50] 王过芝,刘登忠等.滇西时代不明变质岩系的解体和时代厘定.中国区域地质,2000,19(1):32~37
    [51] 刘登忠,王国芝等.澜沧江构造混杂带的初步研究.中国区域地质,2000,19(3):312~317
    [52] 赵准.怒江—澜沧江—金沙江区域矿床成矿系列.1993,12(3)
    [53] 薛步高.对澜沧老厂铅锌矿成因的讨论.云南地质,1989,8(2)
    [54] 杨荆舟、罗君烈、赵准.云南矿床区域成矿模式.云南地质,1998年增刊
    [55] 李兴林.临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质,1996,15(1)
    [56] 王义昭、熊家镛等.云南地质构造的若干特点.云南地质,1988,7(2)
    [57] 范承钧、张翼飞.云南西部地质构造格局.云南地质,1993,12(2)
    [58] 陈吉琛.滇西花岗岩类时代划分及同位素年龄值选用的讨论.云南地质,1987,6(2)
    [59] 韩发、赵汝松等.大厂锡多金属矿床地质及成因.北京:地质出版社,1997
    [60] 陈炳蔚,李永森,曲景川等.三江地区主要大地构造问题及其与成矿的关系.北京:地质出版社,1991
    [61] 张峰根等.怒江—澜沧江—金沙江地区构造体系及其演化程式.北京:地质出版社,1987
    [62] 四川省地质矿产局区域地质调查大队主编.怒江—澜沧江—金沙江区域地层.北京:地质出版社,1992
    
    
    [63] 李永森等.怒江—澜沧江—金沙江地区重要金属矿产成矿特征及分布规律.北京:地质出版社,1986
    [64] 云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990
    [65] 云南省地质矿产局等.云南思茅盐矿地质.地质专报,北京:地质出版社,1986
    [66] 吕伯西,王增等.三江地区花岗岩类及其成矿专属性.地质专报,北京:地质出版社,1993
    [67] 罗建宁,张正贵等.三江特提斯沉积地质与成矿.地质专报,北京:地质出版社,1992
    [68] 梁约翰等.云开隆起区成矿规律与成矿预测.地质专报,北京:地质出版社,1998
    [69] 云南省地质矿产局等.云南思茅盐矿地质.地质专报,北京:地质出版社,1986
    [70] 罗军烈,杨友华等.滇西特提斯的演化及主要金属矿床的成矿作用.地质专报,北京:地质出版社,1994
    [71] 叶庆同,胡云开(中),杨岳清等.三江地区区域地球化学背景和金银铅锌成矿作用.地质专报,北京:地质出版社,1992
    [72] 吕伯西,王增等.三江地区花岗岩类及其成矿专属性.地质专报,北京:地质出版社,1993
    [73] 罗建宁,张正贵,陈明等.三江特提斯沉积地质与成矿.地质专报,北京:地质出版社,1992
    [74] 朱章森,吴香尧,胡远来等.怒江—澜沧江—金沙江地区锡铅锌矿找矿靶区预测.北京:地质出版社,1992
    [75] 阙梅英、程敦模等.兰坪—思茅盆地铜矿床.北京:地质出版社,1998
    [76] 徐旃章,张寿庭等.四川龙塘铅锌矿资源调查与评价.成都:成都科技大学出版社,1993
    [771 王育民、朱家鳌、余琼华.湖南铅锌矿地质.北京:地质出版社,1988
    [78] 王集磊、何伯樨等.中国秦岭型铅锌矿床.北京:地质出版社,1996
    [79] 中国有色金属矿山地质.北京:地质出版社,1991
    [80] 陈浩琉、周树强译.H.L.Barnes.热液矿床地球化学(上、下).北京:地质出版社,1985
    [81] Zartman, R.E.,1974, Lead isotopic provinces in the Cordillera of the western United States and their geological significance. Econ. Geol.69:792
    [82] Roedder, E., 1972, The composition of fluid inclusions, U.S. Geological Survey prof. paper 440 JJ.164pp
    [83] M F Hochella, Jr. 1992,The changing face of mineral-fluid interfce geochemistry. In: Kharaka & Maest (eds), Water-rock interaction. Balkema,7~12
    [84] Helgeson, H.C.,1969, thermodynamics of hydrothermal systems at elevated temperatures and pressures.Am.J.Sci., 267 (7): 729~840
    [85] Takenouchi S., 1978, Fluid inclusion studies, Geological studies of the mineral deposits in Japan and east Asia, Edited by Imai Hideki, University of Tokyo Press, 312~334
    [86] Clayton R N,O Neil J R, Mayeda T K. 1972, Oxygen isotope exchange between quartz and water [J].Joumal of Geophysical Research, 64(17): 3057~3067.
    [87] O Neil J R, Clayton R N, Mayeda T K. 1969, Oxygen isotope fractionation in divalent metal carbonates [J]. J Chem Phys, 51:5547~5558.
    [88] Ohmoto H. 1972, Systematics of sulfur and carbon isotope in hydrothermal ore deposits [J]. Econ Geol,67:551~578.
    
    
    [89] Hoefs J.1980, Stable isotope Geochemistry [M]. 2nd ed. New York: Springer-Verlag, 1-241.
    [90] Amcoff, O. 1984,Distfibution of silver in massive sulfide ores. Minerralium Deposita, 19:63-69
    [91] Guillemeette, N. and Williams-Jones, A. E., 1993, Genesis of the Sb-W-Au deposits at Ixtahuacan, Guatemala: evidence from fluid inclusions and stable isotopes. Mineral Deposita 28: 167-180
    [92] Wood, S. A. et al., 1987, Solubility of the assemblage pyrite-pyrrhotite-magnetite-galena-gold-stibnite-bismulthinite-argenite-molybdenite in H2O-NaCl-CO2 solutions from 200C to 350C, Econ.Geol., 82: 1864-1887
    [93] James D. E. 1981, The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination Ann. Rev. Earth Planet Sci. 9: 311-344
    [94] Giletti B. J. 1991, Rb and Sr diffusion in alkali feldspars, with implications for cooling histories of rocks Geochem Cosmochem Acta, 55:1331-1343
    [95] Pearce J. A. Harris N. B. W. Tindle A. G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks J Petrol 25:part 4,956-983
    [96] Zartman R. E. and Doe B. R., 1981, Plumbotectonics-the model. Teotonophysics, 75:135-162
    [97] Weis D., 1983, Pb isotope in Ascension Island rocks: oceanic origin for the gabbroic togranitic xenoliths. Earth Planet. Sci. Lett. 62: 273-282
    [98] Faure G. 1986, Principles of isotope geology (2nd Edition). John Wiley & Sons. Inc.
    [99] Bechtel, A., et al., 1990,Oxygen isotope fractionation between oxygen of different sites in illite minerals: A potential single-mineral thermometer. Contrib. Mineral. Petrol. 104:463-470
    [100] Taylor H. P. Jr, 1977,Water/rock interaction and the origin of H2O in granitic batholiths.J. Geol.Soc.London. 133: 509-558
    [101] Floyd, P. A. and Winchester, J. A.1977, Geochemical discriminaton of different magma series and their differentiation products using immobile elements, Chem. Geol., 20: 325-345
    [102] Cuming, G. L. and Richards, J. R. 1975, Ore Lead Isotope Ratios in a Continuous Changing, Earth Planet Sci., Letts.28: 155-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700