用户名: 密码: 验证码:
粤东北嵩溪银锑矿床地质地球化学及成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粤东北嵩溪银锑矿床位于华南加里东造山带南缘永(定)—梅(县)古生代坳陷带内,
    寨岗上断陷火山盆地北缘。三叠纪至早侏罗世为裂谷环境,中侏罗世处于挤压构造背
    景,晚侏罗世开始再次受到拉张,形成陆相火山盆地,并伴有大规模的中-酸性火山-侵
    入活动。嵩溪银锑矿床形成于晚侏罗世晚期至早白垩世,与这一时期的岩浆活动有
    关。
     矿床主要容矿围岩为下侏罗统金鸡组黑色含炭沉积碎屑岩系,下伏一层玄武质熔
    岩。在区域上,该层位地层中的成矿元素含量与沉积岩中的平均含量相近偏低,而矿
    区地层中的成矿元素含量很高,表明矿化作用大大升高了成矿元素在矿区围岩中的含
    量,嵩溪银锑矿床不大可能是海底火山喷流-沉积或喷流沉积-改造矿床,而具有浅成
    低温热液矿床的成矿元素分布特征。嵩溪银锑矿床矿化作用主要受断裂构造控制,矿
    体主要是沿着断裂构造充填交代而成,主要容矿构造为北东向断裂,其次为东西向断
    裂。由于北东向断裂在矿区背斜的北东翼与地层产状相近,因而以往被认为是层状和
    似层状矿体,实际上矿体与地层呈低角度斜交。在背斜南西翼,北东向矿体则明显与
    地层高角度斜交,并可进入中侏罗统漳平群地层,更进一步证明了断裂构造对矿体的
    控制作用。此外,矿区Ag和Sb异常波集中心沿着背斜轴部分布,亦证明了矿化作用
    明显受构造控制。矿体中发育大量的脉状、细脉状、网脉状和梳状等充填交代构造,
    由矿体向围岩常可见脉状→网脉状→细脉浸染状→蚀变围岩的渐变过渡现象,这些构
    造特征以及热液破碎角砾岩的出现,为嵩溪银锑矿床的浅成热液成因提供了有力证
    据。
     在嵩溪矿区,纹层状、草莓状和结核状构造为沉积成因黄铁矿所特有。与主成矿
    期热液成因黄铁矿相比,这类黄铁矿中的强不相容元素Co和Ni含量高(与同沉积期
    海底基性火山活动有关),但成矿元素却低两个数量级。成矿期后细脉状黄铁矿则继
    承了沉积成因黄铁矿的微量元素特征。这表明主成矿期的成矿物质不是来自容矿地
    层,而成矿期后细脉状黄铁矿则可能是围岩中沉积成因黄铁矿被活化、经过近距离迁
    移后再沉淀的产物。此外,纹层状和结核状黄铁矿的Ni/Co小于1(分别为0.36和
    0.57),具有沉积成因黄铁矿的微量元素地球化学特征;而主成矿期黄铁矿的Ni/Co
    则大于1,是嵩溪银锑矿床浅成热液成因的重要证据。
     矿石矿物中除了硫化物外,还有一组特征的含硫盐矿物:银黝铜矿、含银辉锑
    矿、黝锑银矿等。矿石组分以富银、锑、砷为特征。成矿元素在剖面上和平面上具有
    分带现象,剖面上,上部富Sb、As;中部富Ag、Au、Pb、Zn;下部富Mo和Cu。围
    岩蚀变包括硅化、黄铁矿化、碳酸盐化、绢云母化及青磐岩化。蚀变作用具分带现
    象,从矿体中心向外依次为硅化黄铁矿化、绢云母化、碳酸盐化和青磐岩化。在上部
    还出现由于酸性淋滤作用产生的硅质帽。
     嵩溪银锑矿床中的流体包裹体数量多、个体大,以气液包裹体和纯液相包裹体为
    主,还见含CO_2、NaCl子晶的多相包裹体。流体包裹体研究和矿物共生分析证明,成
    矿流体在迁移过程中发生过沸腾,成矿溶液为Na~+—Ca~(2+)—∑S~(2-)—HCO_3~-型,主阶段成矿
    
    温度在 130C~280oC;成矿溶液的盐度为 2.23~19.4’t%NaCI 当量,平均 9.4。t%
    NaCI当量;成矿溶液nH值分布在4.66~5.65之间,随成矿温度降低略有升高;成矿
    体系硫逸度和氧逸度随成矿温度降低而降低,但在Fe-S-0相图中均处在黄铁矿稳定
    域。
     矿床中的热液成因黄铁矿、闪锌矿和毒砂的6“S=4.0 9’hx9’hx4.2%,呈塔式分布,
    5吨集中在 0附近,表明其成矿体系具有均一化硫的同位素组成,而辉锑矿的 6一S变
    化范围较大(0.2%--11.3%),除一个样品外均为负值,这是硫同位素分馏作用
    的结果。矿床中的碳具有岩浆源碳与有机碳混合的碳同位素组成,其中的有机碳可能
    来源于容矿围岩中有机质热演化过程中的去碳作用(轻烃气体的形成)。根据氢、氧
    同位素研究结果,嵩溪银锑矿床的上升成矿流体是由岩浆热液与循环地下水热液混合
    而成,这种混合成因含矿热液上升到地热系统上部与低矿化度、低8‘勺的低温地下水
    发生了不均匀混合,这种混合作用导致金属矿物沉淀,但成矿物质是由上升成矿流体
    带来的。铅同位素研究也表明,嵩溪银锑矿床成矿物质既不是来自容矿含碳沉积地
    层,也不是来自早株罗世玄武岩岩浆体系,而是由来自深部物质与地壳物质的混合,
    与成矿流体来源的推论一致。
     本论文还重点对有机质与成矿的关系进行了研究,结果表明,容矿围岩中的有机
    碳含量变化范围大(0刀3%y.0%),但与成矿元素 Ag和 Sb的含量之间没有明显的
    相关关系。因此,有机碳没有直接参与金属元素的沉淀作用,但金鸡组有机质热成熟
    过程中释放出来的气体组分可能影叼成矿流体系统的物理化学条件,从而导致金属元
    素沉淀。沥青、次石墨和干酪根是构成矿区黑色岩系的主要有机质,有机质镜质体反
    射率在 1.75 W3二0%之间,经历了高成熟至过成熟演化,表明矿区围岩受到了后期热
    事件影?
The Songxi Ag-Sb deposit, which is located in the northwest of Guangdong province of
     China, is formed in the northen margin of Zaigangshang volcanic fault basin developed in the
     Yongding-Meixian Paleozoic geotectogene. The extension affecting this region in late
     Tertiary and early Jurassic period was followed by a regional compression of middle Jurassic.
     During late Jurassic, this region was again in an extensional environment which resulted in
     the formation of Mesozoic volcanic basins and large scale volcano-intrusive complexes of
     acidic composition. Songxi Ag-Sb deposit formed in the end of Jurassic and the beginning of
     Cretaceous, and was genetically related to the late Jurassic magmatism.
     The ore of Songxi Ag-Sb deposit is developed in the Jinji formation of early Jurassic
     period and is hosted by a suite of basaltic volcano-sedimentary rocks under which there is a
     sheet of basalt. The concentrations of metal elements in Jinji formation outside the mining
     area is similar to or lower than the averages in sedimentary rocks all over the world. This fact
     challenges the argument that the metals in Songxi Ag-Sb deposit is mainly from Jinji
     formation and is similar to the elemental distribution around an epithernial deposit where ore
     forming metals are leached by convecting solution. The ore is emplaced via metasomatism
     and filling mainly along the faults that trend dominately in northeast direction with a few of
     EW-trending. Because the occurrence of the NE-trending faults is close to that of the strata on
     the NE limb of the anticline developed in the mining area, the ore veins have previously been
     regarded to be stratabound. On the SW limb of the anticline, however, the veins filling along
     the NE-trending faults clearly cut the strata and can intrude the middle Jurassic Zhangping
     group, providing strong evidences that the mineralization in Songxi Ag-Sb deposit is
     developed as ore forming fluid flow in fractures. In addition, the enrichment center of Ag and
     Sb mineralization halo distributes along the axial of the anticline, also confirming the
     importance of structure in controlling the mineralization. The ore is characterized by veinlet
     structure, net-veined structure and comb structure, and the gradual outward transformation of
     ore structure from veined via net-veined and veinlet-disseminated to disseminated is common.
     These characteristics in ore fabrics and the occurrence of cryptoexplosive breccia are strong
     evidences that Songxi Ag-Sb deposit is a hydrothermal deposit.
     In addition to sulfide minerals, Songxi Ag-Sb deposit is characterized by a group of
     sulfosalts that are rich in Ag, Sb and As. Ore zoning has been recognized both vertically and
     horizontally. The upper part is Ag-Sb mineralized zone; the middle part is Ag mineralized
     zone with a little degree of Au, Pb and Zn enrichment, and minor enrichment of Cu and Mo
     occur in the lower part. The wall rock alteration includes silicification, pyritization,
     sericitization, carbonation, with siliciflcation and pyritization at the mineralization center and
     carbonation to the outmost. On top of the ore deposit, there is a silicated cover that formed
     during the acidic leaching.
    
    
    
     Framboidal pyrite with lamellar structure is unique of sedimentary pyrite in Songxi. This
     kind of pyrite is genetically related to the basaltic volcanism in early Jurassic period and, as
     compared with the pyrite in the ore-veins, is rich in highly incompatible elements such as Co
     and Ni, and poor in Ag and Sb. This fact demonstrates that the Jinji formation can not be the
     major source of the ore-forming metals of Songxi Ag-Sb deposit. In addition, N
引文
1.鲍征宇.热液成矿作用的一般动力学议程.地球科学,1994,Vol.19,No3,:313-338.
    2.蔡锦辉.广东梅县嵩溪宝山银锑矿床成因探讨.广东有色金属地质,1996,(1-2):6-10.
    3.陈守武等.大地构造环境对世界主要类型银矿的控制作用.贵金属地质,1994,3(2):81-89.
    4.陈先沛.热水沉积作用的概念和几个岩石学标志.沉积学报,1992,10:124-132.
    5.邓军等.粤北凡口铅锌矿床矿化流体喷溢中心的确定.岩石学报,2000,16(4):528-530.
    6.范宏瑞等.河南祁雨沟热液角砾岩体型金矿床成矿流体研究.岩石学报,2000,16(4):559-563.
    7.冯守忠等.吉林山门银金矿床地质特征.贵金属地质,2000,9(1):15-18.
    8.傅家漠,彭平安,林清等.层控矿床有机地球化学研究的几个问题.中国科学院地球化学研究所有机地球化学开放实验室研究年报(1988),北京:科学出版社,1990,174-184.
    9.付绍洪等.川西北马脑壳金矿床流包裹体研究及成矿条件的制约.岩石学报,2000,16(4):580-586.
    10.古菊云.中国银矿床的分布概况、成矿体制和找矿标志.广东有色金属地质,1993,(1):1-12.
    11.广东省地质矿产局.广东省区域地质志.北京:地质出版社.1988.
    12.胡凯,刘英俊,王鹤年等.华南碳质岩系层控金矿的有机地球化学特征和成因.中国科学(B辑),1995,(25):1099-1108
    13.胡凯等.华南碳质岩系层控金矿的有机地球化学特征和成因.中国科学(B辑),1995,(10):1099-1108.
    14.胡永和.浙江中生代火山岩区浅成热液型金、银矿床的成因特征与成矿模式。浙江地质研究,1991.
    15.季克俭.热液矿床的矿源、水源和热源及矿床分布规律.北京:科技出版社.1988.
    16.贾伟光等.特大型银矿床地质特征及找矿方向.贵金属地质,2000,9(4):229~233.
    17.贾跃明.当代流体地质研究的若干重大进展.中国地质,1993,5:24-26.
    18.贾跃明.流体成矿系统与成矿作用研究.地学前缘,Vol.3.No 4,253-258.
    19.李秉伦等,矿物中包裹体气体成分的物理化学参数图解.地球化学.1988,(4).
    20.李继亮主编.中国东南海陆岩石圈结构与演化研究.1992.北京:科学技术出版社,1992.
    21.李兆麟.粒间溶液与成矿作用.地质学报,1986,No2,189-201.
    
    
    22.李兆麟等.河台韧性剪切带金矿床成矿物理化学条件研究及熔融包裹体的发现.岩石学报,2000,16(4):513-520.
    23.卢焕章.高盐度、高温和高成矿金属的成矿流体—以格拉斯伯格铜金矿为例.岩石学报,2000,16(4):465-472.
    24.梁硬干.梅县嵩溪银锑矿床地球化学异常.广东有色金属地质,1993,(1):40-43.
    25.林丽.拉尔玛金矿矿源层—太阳顶群硅质岩的有机地球化学研究.矿物岩石地球化学通报,1996,15:101-105
    26.林文通.浅成热液金银矿床的沸腾—酸化成矿模式研究,矿物岩石地球化学通讯,No4,227-230.
    27.刘慧芳,岳书仓.浙东脉状铅锌矿地球化学热力学研究.矿床地质,1988,26(4),52-64.
    28.刘家齐等.粤东北铜多金属矿床.北京:地质出版社,1988.
    29.刘伟.地壳流体—岩石氧同位素交换及应动力学研究现状.地质科技情报,1994,Vol,13,No4,26-34.
    30.刘英俊等.地球化学.北京:科学出版社,1984,96-100.
    31.刘英俊等.元素地球化学.北京:科学出版社,1984,320-335.
    32.卢焕章 成矿流体.北京:北京科学技术出版社,1997
    33.卿敏等.与火山一次火山岩有关的浅成低温热液金矿床及找矿思路.黄金科学技术,1993,1(1):38-41.
    34.邱家骧主编.应用岩浆岩岩石学.武汉:中国地质出版社.1991.
    35.任纪舜等.中国大地构造及演化.北京:科学出版社.1991.
    36.沈渭洲,黄耀生编.稳定同位素地质.北京:原子能出版社,1987.
    37.施继锡,兰文波.有机包裹体研究的某些进展.矿物岩石地球化学通报,1994,(1):33-35
    38.施继锡.黔东汞矿有机成矿作用与有机包裹体研究.矿物学报,1991,(8):341-345
    39.孙晓明等.梅县嵩溪银锑矿床流体包裹体轻烃组成及其矿床成因意义.地质论评,1999,45(sup).817-821.
    40.汤葵联.地质流体研究及其重要意义.国外地质科技,1994,Vol 6:1-15.
    41.陶于群.地质流体与构造运动.地球科学进展,1994,Vol 9,No3,24-29.
    42.涂光炽等.中国层控矿床地球化学,第一卷.北京:科学出版社,1984,189-214.
    43.涂光炽等.中国层控矿床地球化学,第二卷.北京:科学出版社,1987,1-41.
    44.涂光炽等.中国层控矿床地球化学,第三卷.北京:科学出版社,1988,255-297.
    
    
    45.王江海等.广西金牙金矿床的有机地球化学特征.岩石学报,2000,16(4):602-608.
    46.王文校,关世魁.粤东沿海地区中酸性火山岩及其与矿产关系.广东省地质科学研究所汇刊,1988,第五号.
    47.王学明等.西秦岭金矿床包裹体、氢氧同位素特征及其地质意义.贵金属地质,2000,9(1):44-47.
    48.魏春生.成矿流体来源δD—δ~(18)O—~(87)Sr/~(86)Sr 理论模型研究.中国科学,1996,Vol.26.No4.p373-377.
    49.武汉地质学院岩石教研室.岩浆岩岩石学.北京:地质出版社.1980.
    50.吴利仁等.中国东部中生代两大类斑岩型矿床.北京:科学出版社.1991.
    51.肖恩玲.广东梅县嵩溪银锑矿床的矿石特征.广东有色金属地质,1995,(1-2):30-39.
    52.肖荣阁.热水成矿作用.地学前缘.Vol 1,No4,pp 140-147.
    53.肖贤明等.沥青反射率作为烃源岩成熟度指示的意义.沉积学报,1991,9:138-146.
    54.肖振宇等.粤东北嵩溪银锑矿床地质地球化学初步研究.矿物岩石地球化学通报,1997,16(1):35-38.
    55.肖振宇等.粤东北嵩溪银锑矿床中有机质与成矿关系.矿床地质,1998,(sup).
    56.杨芳林等.古利库金(银)矿床地质特征和成因.贵金属地质,2000,9(1):7
    57.姚德贤等.粤东宝山银(锑)矿床地质特征和成因.矿床地质,1996,15(2):123-131.
    58.尹家衡等.中国东南大陆中生代火山旋回构造特征及控矿意义.北京:地质出版社,1991.
    59.於崇文等.热液成矿作用动力学.中国地质大学出版社,1993.
    60.岳书仓,徐晓春.火山-侵入杂岩带的成岩-成矿专属性.地学前缘,1999,6(2):305-313.
    61.翟裕生等,矿田构造与成矿.北京:地质出版社.1981.
    62.张理刚.稳定同位素在地质科学中的应用.西安:陕西科学出版社,1985,54-58.
    63.张理刚.成岩成矿理论及找矿.北京:北京工业大学出版社,1989,
    64.张理刚.两阶段水—岩同位素交换理论及其勘查应用.北京:地质出版社,1995,13-40.
    65.张文维等.广东长坑金银矿床成矿流体成分及来源探讨.岩石学报,2000,16(4):521-527.
    66.张哲儒等.金矿研究.长沙:中南工业出版社,1989,124-126,164-184.
    67.郑庆年.广东梅县嵩溪宝山银锑矿区含矿层位沉积环境浅析.广东有色金属地质,1996,(1-2):1.5.
    68.郑庆年.广东梅县嵩溪早侏罗世火山活动及其地质构造与成矿意义.矿产与地质,1996,10(2):87-93
    
    
    69.郑庆年.一个海底基性火山喷流成因的银锑矿床地质特征.矿床地质,1996,35(3):238-248
    70.周涛发等.月山地区铜成矿作用的同位素地球化学研究.矿床地质,1996,15(4):341-350.
    71.周涛发等.安徽月山矿田成矿流体中铜金的迁移形式和沉淀的物理化学条件.岩石学报,2000,16(4):551-558.
    72.周中毅等.沉积盆地古地温测定方法及其应用.广州:广东科学出版社,1992:11-22.
    73.周银河,浙江大岭口银铅锌矿床地质特征及成矿模式,矿产与勘查,1989,No.6
    74.K.L.Brown.新西兰地热井捧出物中金的沉淀作用.地质地球化学,1987,(12):66-70.
    75.Daniel O Hayha等.李赋屏等译.火山岩为主岩浅成低温热液贵金属矿床的地质、矿物和地球化学特征。金属矿床地质与勘查译丛.1990,第十五辑.
    76.弗雷德里克.T.格雷比尔,贾忠蓬译.美国西部浸染状银矿床的特征.地质科技选编,国外银矿专辑.1984.
    77.Hollister.贵金属浅成热液矿床的成矿模式.地质地球化学,1986,No5:4-8.
    78.Milesi J P,Marcoux E,Sitorus T,et al.印尼西爪哇Pongkor矿床:上新世浅成低热液型Au-Ag-(Mn)矿床.贵金属地质,2000,9(1):60-63.
    79.P.希尔德等.以火山岩为容矿岩石的浅成热液矿床—酸性碳酸盐型和冰长石—绢云母型矿床的比较剖析.吴美德主编,国外火山岩区金矿.地质矿产部情报研究所,1991,14-41.
    80. Blaske A R et al., The shumake volcanic dom-hosted epithermal, precious metal depoosit, western Mojave desert,California. Econ. Geol., 1991, 86(7): 1646-1656.
    81. Brown, K.L., Gold deposition from geothermal discharges in New zealand. Econ. Geol., Vol 81: pp979-983.
    82. Cathles, Fluid flow and genesis of hydroth-evuql ore-deposits Econ. Geol. 75th Aunivercavy Velume, 1981, 428-457.
    83. Charles G C et al., Model of volcanic dom-hosted precious metal deposits in Bolivia. Econ. Geol., 1991, 86(1).
    84. Connon, J., Tiem-temperature relation in oil genesis. Bulletin American Association Petroleum Geology, 1974, 58: 2516-2521.
    85. Crerar D.A. and Barnes R.E., Ore solution chemistry V: Solubility of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to 350℃. Econ. Geol., 1976, 71:
    
    772-779.
    86. Crear D A et al., A method for computing multicomponent chemical equilibria based on equilibria constrants. Ceochim. Cosmochim. Acta, 1973,1375-1384.
    87. Crear D.A., and Barnes R.E., Solution of the buffer assemlage pyrite+pyrrhotite+ magnetite in NaCl solution from 200 to 300℃ Geochim. Cosmochim.Acta, 1978, 42: 1427-1437.
    88. Disnar J.R., Surean N., Orgnaic matter in ore genesis: progress and perspectives, Advances in Organic Geochemistry in 1989. Org. Geochem, 1991, 16(1-3) :577-599.
    89. Dviedio L. et al., General Geology of La coipa precious metal deposit, Atacama, chile: Econ. Geol., 1991, 86(6) : 1287-1300.
    90. Fernandez H.E., et al. Gold ore shoot development in the antamok mines, philipines. Eoon. Geol. 1979,74(3) : 606-627.
    91. Francisco Camus, The Faride epithermal silver-gold deposit, Antofagasta region, Chile. Econ. Geol. ,1991,86(2) .
    92. Gigganbach W F., Geothermal gas equilibia. Geochim Cosmochim. Acta, 1980, 44: 2021-2032.
    93. Gigganbach W F., Geothermal gas equilibia. Geochim Cosmochim. Acta, 1980, 45: 393-410.
    94. Gigganbach W F., Mass transfer in hydrothermal alteration system---a conceptual appoach: Geochim Cosmochim. Acta, 1984, 48: 2693-2711.
    95. Graybeal F.T. et al., The Geology of silver deposits: Handbook of strata-bound and strata form ore deposits. 1986, 148: 1-167.
    96. Gross W.H., New ore discoery and sourees of silver-Gold veins, Guanajuato, Mexico. Econ. Geol., 1975, 70(7) .
    97. Head, P. Etql., Comparative anatomy of volcanic-hosted epithermql deposits: acid-suefod and adularia-sarite tspeo. Econ. Geol., Velgz, 1987, pp1-26.
    98. Hedenquist. J.W., White Island, New Zealand, Volcanic-hydrotherual system represeuts the geochemical environmemt of high-sulfidation Cu and Au ore deposition Geology, 1993, 21: 731-734.
    99. Helgson H C., Thermodynamics of hydrothermal systems at elevated temperature and pressures. Am. J. Sci., 1969, 269: 729-804.
    100. Helgson H C et al, Hydrothermal transport and deposition of gold systems, Econ. Geol.,1968, 63: 622-635.
    
    
    101. Helgson H C et al., Theoretical prediction of thermodynamatics behavior of aqeous electrolytes at high pressures and temperatures Ⅳ: Calculation of activity coefficients, osmotic coefficients, and apparent metal and standard and relative partial molal properties to 600℃ and 5kb. Am .J. Sci., 1981, 281: 1249-1516.
    102. Henley R.W. and Hughes G.O., Underground fumaroles: "Excess heat" effacts in vein formation. Econ. Geol., 2000, 95: 453-466.
    103. Henley R.W. and Trusedell A.H. et al., Fluid-mineral equilibria in hydrothermal systems: Rev. Econ. Geol., 1984 (1) : 83-98.
    104. Henley R.W. et al., Geothermal systems of ancient and modern: a geochemical review, Earth Slionce Review, 1983, Vol. 19. Pp1-50.
    105. Hood, D. And Gutjahr C.C.M., organic Metamorphisnc and generation of petroleum. Bull. AAPG, 1975, 59: 986-996.
    106. Hu Kai, Xiao Zhenyu, Zhai Jianping et al., Minerogenetic mechanism of the Songxi Silver-Antimony deposit of Northeastern Guangdong---Ore-controlling role of organic matter. Chinese Journal of Geochemistry. 1999, 18(3) . 305-313.
    107. Krupp R. E., Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 35℃. Geochim. Cosmochim. Acta, 1988. 52: 3005-3015.
    108. Lu G. Q., Guha J., H Z Lu et al., 1992. Highly evolved petroleum fluid inclusions in sedimentary rock hosted disseminate gold deposit: the Danzhai gold-mercury mine, Guizhou, P.R. China. In: PACROFI Ⅳ Abstracts, Lake Arrowhead CA, USA.
    109. Macqueen R.W, and powell T.G., Organic gechemistry of the pine point lead-zinc ore field and region. Northwest territories, canada, Economic Geology, 1983, 78(1) : 1-25.
    110. Megaw P.K.M., High-temperature, Carbonate-hosted Ag-Pb-Zn(Cu) deposits of Northern Mexico. Econ. Geol. 1988, 83(3) : 1856-1885.
    111. Milledge H.T., Mendelssohn M.T. et al., Carbon isotope variation in special type Ⅱ diamonds, Nature, 1983 (30) : 791-792.
    112. Nabelek, P.T., General aquations for modeling fluid/rock inferacfion using trace elements and isotopes. Geochim Cosmochim. Acta. 1987, Vol 51: 1765-1769.
    113. Oelkers E. H., et al., An EXAFS spectroscopic study of aqueous antimony(Ⅲ)-chlorite complexeation at temperatures from 25 to 250℃. Chemical Geology, 1998, 151: 21-27.
    114. Ohmoto, H., Hydrogen and oxygen istopic compositions of fluid inclusions in the kuroko deposits, Japan. Econ. Geol., 1974,Vol 69: 947-953.
    
    
    115. Ohmoto H., Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Econ.Geol.,1972, 67: 51-578.
    116. Ohmoto H and Lasaga A C., Kinetics of reactions between aqeous sulfates and sufides in hydrothermal systems, Geochim Cosmochim.Acta, 1982, 46: 1727-1748.
    117. Rafal'skiy R.P., The solubility of zinc, lead and silver sulfides in hydrothermal solutions.Geochem.Intern., 1982, 19(6) : 151-168.
    118. Reed M H., Calculation of pH and an aqueous phase.Geochim Cosmochim.Acta, 1982, 46: 513-528
    119. Roua P.A.Scott, S.D, et al., A Special issue on sea-floor Hydrothermal mineralization: New perspeative, Econ.Geol., 1993, Vol.88. No 8: 1935-2294.
    120. Sawkins F.J.et al., Fluid inclusion and Geochemical studies of vein Gold deposits, Baguid district, philipines.Econ.Geol.1979, 74(6) : 1421-1434.
    121. Scott S D and Barnes H L., Sphalerite geothermometry and geobarometry.Econ.Geol., 1971,66: 653-669.
    122. Seward D.A., The solubility of chloride complexes of silver in hydrothermal solution up to 350℃.Geochim.Cosmochim.Acta, 1976, 40: 1329-1341.
    123. Seward D.A., The formation of lead (Ⅱ) chloride complexes to 300℃: A spectrophotomatric study.Geochim.Cosmochim.Acta, 1984, 48: 121-134.
    124. Sillioe R.H., Gold Metallogeny of Chile--an Introduction.Econ.Geol.1991, 86(6) : 1187-1205.
    125. Sillitoe R.H., Ore-related breccias in Volcanoplufonic Arcs.Econ, Geol., 1985, 80: 1467-1514.
    126. Simon M F et al., Hydrogen and oxygen isotope evidence for the origins of water in the Boulder Batholith and the Butte ore deposits, Montana.Econ.Geol., 1974, 69.
    127. Spycher N.F.Evolution of a Broadlands-tgpe epothermal ore floid aloug alternative P-T paths: implocatins for the transpovt and deposition of base precions and Volatile metals.Econ.Geol.1989, Vol 84: 238-359.
    128. Swart P K, Pillinger CT, et al cabon isotope variation within individnal diamonds.Nature, 1983(30) : 793-794.
    129. Sun Xiaoming et al.N2-Ar-He Systematics and source of ore-forming fluid in changkeng Au-Ag deposit.Central Guangdong, China.Science in China (series D), 42(5) : 474-481.
    130. Tayloy, H.P.The application of oxygen and hydrogen isotope studies to problems of hydrotherual alteration and ore deposition, Econ.Geol., 1974, Vol, 69. 843-883.
    
    
    131. White D E., Active geothermal systems and hydrothermal ore deposits.Econ.Geol., 1981,75.
    132. White D E et al., Vapour dominated hydrothermal systems compared with hot water systems.Econ.Geol., 1971, 66: 75-97.
    133. Wood S.A., and Crerar D.A., Solubility of assemblage pyrite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-molybdenite in H2O-NaCl-CO2 solutions from 200 to 350℃.Econ.Geol., 1987, 82: 1864-1887.
    134. Yue Shuchang, Lei Xinyong and Xu Xiaochun, Tin and tungsten deposits in eastern Guangdong province, China.Scientia Geologica Sinica, 1995,4(2) :221-237.
    135. Yue Shuchang, and Zhou Taofa, REE and stable isotope geochemical systematics of copper deposits in Yueshan, Anhui province, China.In: Proceedings Ninth IAGOD Symposium.Eds.Richard D.and Hagni E., Schweizerbart'sche, Verlagschhandlung, Stuttgard,1998: 277-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700