用户名: 密码: 验证码:
煎茶岭与金川镍矿床成矿作用比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西北地区有着丰富的镍、钴、铜等金属的矿产资源,尤其是甘肃省金川超大型铜镍硫化物岩浆矿床,以其超大规模及其典型的成矿特征而闻名于世,是我国重要的镍、铜金属矿产基地,而相比之下,陕西省煎茶岭大型镍(钴)矿床规模较小且未开采,但因其独特的地质背景和成矿特征而具有重要的研究意义。本次工作依据比较矿床学的研究思路,在重点剖析煎茶岭镍矿床成矿地质、地球化学特征的基础上,采用新的分析测试技术手段,对这两个岩浆硫化镍矿床从成矿地质背景、岩体及矿床地质特征、地球化学及成矿作用年代学等角度进行系统分析、比较和研究,找出二者的共同性和差异性,进一步更深刻地认识其成因并探讨该类矿床形成与分布的规律性以指导找矿。
     通过对煎茶岭和金川镍矿床地质、地球化学的系统分析与比较研究,取得以下新的认识和进展:
     (1)Re—Os同位素地质年代学研究表明,煎茶岭硫化镍矿床形成于~878Ma前的新元古代,成矿作用和成岩作用基本上是同时进行的,属岩浆矿床。并佐证了煎茶岭岩体确为新元古代形成的超基性岩体。
     (2)通过铂族元素地球化学研究,比较论证了金川超大型镍铜硫化物矿床的多次成岩成矿作用。而与赋存超大型镍铜硫化物矿床的金川岩体相比,煎茶岭超基性岩体为岩浆一次侵位形成,分异程度小,镍、硫含量较低。
     (3)证实煎茶岭超基性岩体为含铁的镁质超基性单式岩体,空间上与扬子地块关系密切,形成于新元古代由元古宙活动带向显生宙造山带过渡时期。与之有关的煎茶岭镍矿床成因上属岩浆矿床,其成矿作用有岩浆分结作用、硫化作用、岩浆熔离作用及热液作用等,但岩浆熔离成矿作用不发育,热液作用仅占次要地位,富硫围岩的同化混染对矿床的形成有特殊的意义。
     (4)比较研究表明,不同地质环境产出的不同类型超基性—基性岩及其不同的侵入机制可以导致形成不同类型的镍矿床。与煎茶岭镍矿床相比,金川超大型镍铜硫化物矿床主要与多次侵入的镁铁—超镁铁质杂岩有关,空间上与时代相对较老的华北地块关系密切,形成于中—新元古代的边缘裂谷。其成矿作用有岩浆分结作用、硫化作用、岩浆熔离作用及热液作用等,以岩浆熔离成矿作用为主,热液作用亦仅占次要地位。金川和煎茶岭镍矿床的成岩成矿物质均主要源于地幔,但后者更为亏损;二者中均有地壳物质的混入,但前者混染较弱且主要为深部混染。
     (5)通过对煎茶岭和金川镍矿床的比较研究,结合对国内外有关岩浆镍矿床的比较分析,根据我国的地质特点,提出沿较老地块边缘分布的特别是沿华北地块北缘分布的基性—超基性小杂岩体,是找寻大而富的硫化镍矿床之有利找矿方向;而对较老地块内部的镁铁质侵入体,亦应给予高度注意。
There are plentiful mineral resources of nickel, cobalt, and copper in the northwest region of China, specially Jinchuan superlarge copper-nickel sulflde magmatic deposit in Gansu province, known for its large scale and typical metallogenetic feature in the world, is an important source of Ni-Cu metal mineral resource in our country. In contrast, Jianchaling large cobalt-bearing nickel sulflde deposit in Shannxi province is not famous and unmined, but many problems about the deposit are researched because of its special geologic settings and mineralization characteristic. According to the theory and study methods of comparative economic geology, the ore-forming geological background, geological feature, the elements geochemistry, the metallogenic geochronology about the two ore deposits and rock-bodys are systematic analysed, compared, and researched by means of new measure and assay technique. Jianchaling nickel sulflde deposit is stress investigated in order to study similarities and differences between the two deposits in mineralization background, geochimistry, and metallogenesis, also to find the reasons for these, discuss the regularity of formation and distribution for the type deposit, and guide its exploration.
    On the basis of systematic analysis and comparative research on Jianchaling and Jinchuan nickel sulflde deposit in geology and geochemistry, some conclusions can be drawn as follow:
    (1) Re-Os isotopic geochronology data define an precise 878 ?6 Ma isochon, suggest Jianchaling nickel sulflde deposit would form in new Proterozoic. The rock-forming process and metal logenesis happened on the whole, this deposit subordinates to magmatic deposit. At the same time, it is proved again that Jianchaling rock-body intruded in new Proterozoic.
    (2 ) The comparative study on PGE geochemistry indicated that it exists multiple diagenesis and mineralization in Jinchuan superlarge copper-nickel sulflde deposit. However, compared with Jinchuan ore-bearing intrusion, Jianchaling ultrabasic intrusion formed by magma simple emplacement, and magma fractionated weakly with lower content of nickel and sulphur.
    (3) Jianchaling ultrabasic intrusion belongs to magnesian ultrabasic simple rock-body, close related with Yangzi block in space, which formed in the interim of Proterozoic active tectonic zone to Phanerozoic orgenic belt. Jianchaling nickel deposit that respected with it is originally devided into magma type deposit, its metallogenesis include magma differrentiation-crystalization, sulfurization process, magma melt-segregated, and hydrothermal process. But melt-separated ore-forming poorly developed, and hydrothermal process is subordinate, the assimilation and contamination of country rocks have special significance to the formation of this ore deposit.
    (4) The comparative research suggests that various types of ultrabasic-basic rocks occurred different geological environment and different intruded mechanism can bring on different types of nickel sulflde deposit. Compared with Jianchaling nickel sulflde deposit, Jinchuan superlarge copper-nickel sulflde deposit mostly related with mafic-ultramafic complex that multiple intruded, spatially respected with old Huabei block, which formed in marginal rift in middle-new Proterozoic. Its metallogenesis also include magma differrentiation-crystalization, sulfurization process, magma melt-segregated, and hydrothermal process, whereas magma melt-segregated ore-forming process played an important role, and hydrothermal process is secondary, too. Substance of rock-forming and ore-forming in both Jianchaling and Jinchuan nickel deposit mainly derived from the upper mantle, but the former source is relatively depleted mantle. On the other hand, there exsisted the crustal contamination during the formation of the two mineral deposits, the later contaminated poorly and gave priority to deep contamination.
    (5) By the comparative study of Jianchaling with Jinchuan nickel sulflde deposit, it is pointed that small basic-ultralbasic complexes whi
引文
[1]白文吉.中国基性-超基性杂岩体类型及特征.中国地质科学院地质研究所所刊,1989,第20号:52-68
    [2]B.M.马卡罗夫.铜镍矿床的成因类型.锁林译.国外地质科技,1990,(7):53-58
    [3]程裕淇主编.中国区域地质概论.北京:地质出版社,1994,448-476
    [4]陈毓川,朱裕生,孙文珂,等.中国矿床成矿模式.北京:地质出版社,1993,98-102
    [5]陈毓川,赵逊,张之一,等.世纪之交的地球科学—重大地学领域进展.北京:地质出版社,2000,1-69
    [6]陈毓川主编.中国主要成矿区带矿产资源远景评价.北京:地质出版社,1999,8-118
    [7]陈浩琉,吴水波,傅德彬,等.镍矿床.北京:地质出版社,1993,22-57
    [8]陈民扬,庞春勇.煎茶岭镍矿床成矿作用同位素地球化学.见:陈好寿主编.同位素地球化学研究.杭州:浙江大学出版社,1994,56-81
    [9]陈殿芬.我国一些铜镍硫化物矿床主要金属矿物的特征.岩石矿物学杂志,1995,14(4):345-354
    [10]陈家义,杨永成,李荣社,等.汉中-碧口地区的造山结构和构造.陕西地质,1997,15(1):12-19
    [11]陈江峰,江博明.钐、钕、铅同位素示踪和中国东南大陆地壳演化.见:郑永飞主编.化学地球动力学.北京:科学出版社,1999,262-287
    [12]陈衍景,陈华勇,刘玉林,等.碰撞造山过程内生矿床成矿作用的研究历史和进展.科学通报,1999,44(16):1681-1689
    [13]陈源.硫化铜镍矿床中伴生金矿床的成因类型.西北地质,1991,12(2):57-59
    [14]陈子诚.略论岩浆铜镍硫化物矿床的找矿与勘探.地质与勘探,1989,(4):8-12
    [15]储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学.岩石学报,2001,17(1):112-122
    [16]董显扬,李行,叶良和,等.中国超镁铁质岩.北京:地质出版社,1995,1-74,98-129
    [17]邓晋福,莫宣学,罗赵华,等.火成岩构造组合与壳-幔成矿系统.地学前缘,1999,6(2):259-270
    [18]邓万明,钟大赉.壳幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,42(23):2474-2482
    [19]丁振举,姚书振,周宗桂,等.陕西略阳铜厂铜矿床成矿时代及地质意义.西安工程学院学报,1998,20(3):24-27
    [20]杜安道,赵敦敏,王淑贤,等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    [21]范育新,张铭杰.超大型Cu-Ni硫化物矿床研究进展.甘肃地质学报,1999,8(2):47-52
    [22]樊步恭.金川铜镍矿田的构造特征.西北地质,1988,21(1):1-10
    [23]傅德彬.基性-超基性硫化铜镍矿床深成矿浆贯入成因论.地质与勘探,1986,22(4):12-21
    [24]高永军,穆治国,马配学.铼-锇同位素体系在地球科学中的应用.地质地球化学.1999,27(3):102-110
    [25]耿树方,严克明,周伟勤,等.秦巴金属矿产成矿概论.北京:地质出版社,1994,86-127
    [26]葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999,6(4):.223-230
    [27]桂林冶金地质研究所岩矿室同位素地质组.勉-略-阳地区岩石钾氩法同位素年龄测定.地质与勘探,1972,8(1):23-25
    [28]甘肃省地质矿产局第六地质队.白家嘴子硫化铜镍矿床地质.北京:地质出版社,1984,1-225
    [29]赫英,韩天儒.非均匀板块构造成矿作用与秦岭地质.见张国伟等.秦岭造山带的形成及其演化.西安:西北大学出版社,1988,164-173
    [30]赫英.非线性成矿作用.黄金地质,1995,1(4):9-12
    [31]赫英.构造岩浆活化与秦岭金矿床.大地构造与成矿学,1996,20(1):61-66
    [32]赫英.比较矿床学导论.西安:西北工业大学出版社,1996,1-30
    [33]黄婉康,甘先平,单祖翔,等.陕西煎茶岭矿区的岩石及成矿时代研究.地球化学,1996,25(2):150-156
    
    
    [34]黄松.中国西部岩浆型铜镍矿床的元素组合特征及伴生金的赋存状态研究.矿产与地质,1993,7(5):343-349
    [35]黄萱,吴利仁.陕西地区岩浆岩Nd、Sr同位素特征及其与大地构造发展的联系.岩石学报,1990,6(2):1-11
    [36]胡旺亮.岩浆型铜镍硫化物矿床地质概念模型.地球科学,1991,16(3):249-256
    [37]胡受奚,郭继春,叶瑛.前寒武纪成矿作用与地球动力学的关系.国外前寒武纪地质,1994,18(3):1-16
    [38]贾恩环.金川硫化铜镍矿床地质特征.矿床地质,1986,5(1):27-38
    [39]贾恩环.甘肃金川铜-镍硫化物矿床成矿模式和成矿系列.地质论评,1986,32(3):276-286
    [40]贾炳文.论超基性岩体的蛇纹石化问题.地质学报,1976,(1):17-23
    [41]姜福芝.蛇绿岩建造与铜、铜镍、铜铁等矿产的成矿关系.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,1996,75-78
    [42]蒋少涌.金属矿床Re-Os同位素示踪与定年研究.南京大学学报(自然科学版),2000,36(6):669-677
    [43]赖绍聪,张国伟,杨永成,等.南秦岭勉县-略阳结合带变质火山岩岩石地球化学特征.岩石学报,1997,13(4):563-573
    [44]赖绍聪,张国伟,杨永成,等.南秦岭勉县-略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义.地球化学,1998,27(3):283-293
    [45]赖绍聪,秦岭造山带勉略缝合带超镁铁质岩的地球化学特征.西北地质,1997,18(3):36-45
    [46]赖绍聪,张国伟,杨瑞瑛.南秦岭勉略带两河弧内裂陷火山岩组合地球化学及其大地构造义.岩石学报,2000,16(3):317-326
    [47]梁有彬,刘同有,宋国仁,等.中国铂族元素矿床.北京:冶金工业出版社,1998,1-18
    [48]梁有彬,朱文凤,宋国仁,等.金川铜镍型铂族元素矿床地质地球化学特征.矿产与地质,1997,11(1):1-13
    [49]廖俊红.煎茶岭金矿床地质特征及找矿前景分析.见:王相,王东生主编.陕西勉略阳火山岩带主要金属矿化类型及超大型矿床成矿远景探讨.兰州:兰州大学出版社,1990,85-103
    [50]李上森.元古宙的成矿作用.国外前寒武纪地质,1994,18(3):17-32
    [51]李亚林.秦岭造山带勉县-略阳地区的构造特征及构造演化(博士学位论文).西安:西北大学,1999,1-36
    [52]李文渊.中国铜镍硫化物矿床成矿系列与地球化学.西安:西安地图出版社,1996,1-49
    [53]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学.北京:地质出版社,1998,202-221
    [54]李人澍.成矿系统分析的理论与实践.北京:地质出版社,1996,1-262
    [55]李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学—古生代洋盆及其闭合时代的证据.中国科学(D辑),1996,26(3):223-230
    [56]李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社,1992,1-188
    [57]林新多.岩浆-热液过渡型矿床.武汉:中国地质大学出版社,1999,1-18
    [58]凌文黎,程建萍,王歆华,等.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示.岩石学报,2002,18(1):25-36
    [59]刘铁庚,叶霖.碧口群形成的地质构造环境探讨.矿物学报,1999,19(4):446-452
    [60]刘月星.铜镍硫化物矿床成矿作用及成矿模式研究.矿产与地质,1997,11(4):225-231
    [61]刘凤山.铜镍硫化物矿床成矿理论的新进展.地质科技情报,1993,12(2):77-81
    [62]刘凤山,王登红.中国铂族金属矿床找矿方向初探.中国区域地质,2000,19(4):434-439
    [63]陆松年,李怀坤,李惠民.成矿地质事件的同位素年代学研究.地学前缘,1999,6(2):335-342
    [64]卢一伦,黄建坤,杜定政,等.碧口群的层序及时代.中国区域地质,1997,16(3):305-314
    [65]卢焕章.成矿流体.北京:北京科学技术出版社,1997,152-192
    [66]卢记仁.中国岩浆铜镍矿床的成矿模式.地学研究,1993,第27号:78-84
    [67]骆华宝,乔德武.中国主要含镍岩体特征及其成因.岩石矿物学杂志,1993,12(4):312-324
    [68]罗照华,A.A.马拉库舍夫,H.A.潘妮娅,等.铜镍硫化物矿床的成因—以诺里尔斯克(俄罗斯)和金川(中国)为例.矿床地质,2000,19(4):330-339
    [69]罗文森,邢斌.陕西变质超基性岩体中首次发现微细粒金球.地质与勘探,1990,26(6):28
    [70]马建秦.秦岭勉略宁地区金矿床形成模式与找矿方向(博士学位论文).贵阳:中国科学院地球化学研究所,1998,1-88
    
    
    [71]马开义,刘光海.喀拉通克岩浆型铜镍硫化物矿床的成矿与找矿模式.中国地质科学院矿床地质研究所所刊,1993,(1):142-152
    [72]毛景文,宋叔和,陈毓川.桂北地区火成岩系列和锡多金属矿床成矿系列.北京:北京科学技术出版社,1988,1-22
    [73]毛景文,张光弟,杜安道等.遵义黄家湾镍钼铂族元素矿床地质地球化学和Re-Os同位素年龄测定.地质学报,2001a,75(2):234-243
    [74]毛景文,杜安道.广西宝坛地区铜镍硫化物矿石982Ma Re-Os同位素年龄及其地质意义.中国科学(D辑),2001b,31(12):992-998
    [75]MH戈德列夫斯基著.古方译.含矿超基性岩浆的形成条件及演化.地质科技情报,1982,1(1):62-67
    [76]潘扬扬.阿拉善断块的太古代绿岩带.地质科学,1986,21(2):200-208
    [77]庞奖励,孙根年.陕西煎茶岭矿床的稀土元素地球化学行为.中国稀土学报,1999,17(4):359-364
    [78]庞奖励,裘愉卓,刘雁.论超基性岩在煎茶岭金矿床成矿过程中的作用.地质找矿论丛,1994,9(3):59-65
    [79]庞春勇,陈民扬.煎茶岭地区同位素地质年龄数据及地质意义.矿产与地质,1993a,7(5):354-360
    [80]庞春勇,陈民扬.煎茶岭蛇纹岩氢氧同位素组成特征及形成机制.矿产与地质,1993b,7(1):65-71
    [81]裴荣富,吴良士,熊群尧,等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场.北京:地质出版社,1998,262-286
    [82]裴荣富主编.中国矿床模式.北京:科学出版社,1995,1-6,63-66
    [83]漆亮,胡静.等离子体质谱法快速测定地质样品中的痕量铂族元素和金.岩矿测试,1999,18(4):267-270
    [84]秦克令,宋述光,何世平.陕西勉略宁地区鱼洞子花岗岩-绿岩地体地质特征及其含矿性.西北地质科学,1992,13(1):65-74
    [85]秦克令,何世平,宋述光.碧口地体同位素地质年代学及其意义.西北地质科学,1992,13(2):97-110
    [86]秦克令,邹湘华,何世平,等.西秦岭鱼洞子群的建立和时代归属.见:刘国惠,张寿广主编.秦岭-大巴山地质论文集.北京:北京科学技术出版社,1990,167-175
    [87]秦克令,邹湘华,何世平.陕甘川交界处摩天岭区碧口群层序及时代划分.中国地质科学院西安地质矿产研究所所刊,1990,第30号:1-60
    [88]冉红彦,黄婉康,甘先平,等.蚀变超基性岩金(镍)矿床中的贵金属元素—以云南墨江金矿和陕西煎茶岭金矿为例.地球化学,1996,25(5):520-528
    [89]R G Coleman著.鲍佩声译.蛇绿岩.地质出版社,1982,1-123
    [90]任小华.煎茶岭镍矿床成矿地质特征.见:王相,王东生主编.陕西勉略阳火山岩带主要金属矿化类型及超大型矿床成矿远景探讨.兰州:兰州大学出版社,1990,115-123
    [91]任小华.陕西煎茶岭金矿床地质特征及其成因意义.矿产与地质,2000,14(2):70-75
    [92]任文清.陕西勉略宁三角地区地质构造特征、演化与成矿作用关系探讨(硕士学位论文).西安:西北大学,2001,1-26
    [93]任文清,周鼎武,刘方杰.勉略宁三角地区构造演化与金属矿产成矿特征.西北地质科学,1999,20(2):60-67
    [94]任纪舜,姜春发,张正坤,等.中国大地构造及其演化.北京:科学出版社,1980,1-124
    [95]宋恕夏.金川硫化铜镍矿床二矿区矿床地质特征.地质与勘探,1983,19(1):8-14
    [96]宋恕夏.金川硫化铜镍矿床一矿区铂富集体的发现及其赋存状态研究.地质与勘探,1986,22(3):36-39
    [97]孙桂玉.脆-韧性剪切带控矿的初步探讨—对金川铜镍矿控岩控矿构造的新见解.矿床地质,1990,9(4):352-362
    [98]孙勇,卢欣祥,韩松,等.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学.中国科学,1996,26(增刊):49-55
    [99]孙勇,于在平,张国伟.东秦岭蛇绿岩的地球化学.见张国伟等.秦岭造山带的形成及其演化.西安:西北大学出版社,1988,65-74
    [100]陕西省地质矿产局.陕西省区域地质志.北京:地质出版社,1989,1-58
    [101]佘传菁.试论中国岩浆铜镍硫化物矿床成矿模式.地质与勘探,1985,21(1):1-14
    [102]佘传菁.岩浆铜-镍-铂硫化物矿床研究的新进展.地质与勘探,1989,25(7):6-9
    [103]沈远超,邹为雷,曾庆栋,等.矿床地质学研究的发展趋势:深部构造与成矿作用.大地构造与成矿学,1999,23(2):180-185
    
    
    [104]石应骏,张朝文,寸树仓.龙首山推覆构造的发现及其意义.科学通报,1995,40(9):812-813
    [105]师占义.金川铜镍矿床超基性岩体的矿物岩石学.中国地质科学院院报西安地质矿产研究所分刊,1980,1(1):78-90
    [106]师占义,洛长义,杨合群.中国主要含镍岩体(带)岩是类型与组构特征.西北地质科学,1992,13(1):1-16
    [107]谭扬赓.煎茶岭与火山碳酸岩伴生的硫化镍矿床—中国镍矿的新类型.见:第五届全国矿床会议论文集.北京:地质出版社,1993,491-493
    [108]汤中立.中国主要镍矿与古板块构造的关系.矿床地质,1982,2(2):29-38
    [109]汤中立,任端进.中国硫化镍矿床类型.地质学报,1987,61(4):350-360
    [110]汤中立,任端进,薛增瑞,等.中国镍矿床.见:程裕淇主编.中国矿床(上册).北京:地质出版社,1989,104-123
    [111]汤中立.金川硫化铜镍矿床成矿模式.现代地质,1990,4(4):55-64
    [112]汤中立,李文渊.中国硫化镍矿床成矿规律的研究与展望.矿床地质,1991,10(3):193-203
    [113]汤中立,杨杰东,徐士进,等.金川含矿超铁镁岩的Sm-Nd定年.科学通报,1992,37(10):918-920
    [114]汤中立.超大型岩浆硫化物矿床的类型及地质对比意义.甘肃地质学报,1992,1(1):24-47
    [115]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比.北京:地质出版社,1995,14-209
    [116]汤中立.中国岩浆硫化物矿床的主要类型.甘肃地质学报,1996,5(1):45-49
    [117]汤中立,李文渊.中国与基性、超基性岩有关的Cu-Ni(Pt)矿床成矿系列类型.甘肃地质学报,1996,5(1):50-64
    [118]汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性.甘肃地质学报,1996,5(2):73-85
    [119]汤中立.中国岩浆硫化物矿床的主要成矿机制.地质学报,1996,70(3):237-243
    [120]汤中立,S J Barnes.岩浆硫化物矿床成矿机制.北京:地质出版社,1998,1-19
    [121]汤中立,徐章华.本世纪岩浆硫化镍矿床勘察和研究的主要成就.矿床地质,1998,17(增刊):709-714
    [122]汤中立,白云来.华北古大陆西南边缘构造格架与成矿系统.地学前缘,1999,6(2):271-284
    [123]汤中立,白云来.华北板块西南边缘大型、超大型矿床地质构造背景.甘肃地质学报,2000,9(1):1-15
    [124]汤中清.岩浆岩成矿性的判别方法.地球化学,1993,22(1):68-79
    [125]陶洪祥,何恢亚,王全庆,等.扬子板块北缘构造演化史.西安:西北大学出版社.1993,1-133
    [126]Henderson P编.稀土元素地球化学.田丰等译.北京地质出版社,1989,1-119
    [127]涂光炽.试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性—初谈非常规超大型矿床.中国科学(D辑),1998,28(增刊):1-6
    [128]涂光炽,等.中国超大型矿床(Ⅰ).北京:科学出版社,2000,3-9
    [129]涂光炽.过去20年矿床事业发展的概略回顾.矿床地质,2001,20(1):1-9
    [130]王静纯,施晶.金川富铜矿体金银赋存特征.矿物岩石地球化学通报,1999,18(4):358-361
    [131]王平安,陈毓川,裴荣富,等.秦岭造山带区域矿床成矿系列、构造-成矿旋回与演化.北京:地质出版社,1998,14-90
    [132]王相,唐荣扬,李实,等.秦岭造山与金属成矿.北京:冶金工业出版社,1996,272-300
    [133]王根宝,崔继岗.陕西勉略宁三角区基本地质组成及演化.西北地质科学,1996,17(2):11-17
    [134]王根宝,岳康茂,张升全.陕西南秦岭地质组成及其演化.陕西地质,1996,14(1):20-26
    [135]王登红,陈毓川,徐志刚,等.新疆北部Cu-Ni-(PGE)硫化物矿床成矿系列探讨.矿床地质,2000,19(2):147-155
    [136]王登红.地幔柱的概念、分类、演化与大规模成矿—对中国西南部的探讨.地学前缘,2001,8(3):67-72
    [137]王瑞廷,赫英,王新.煎茶岭大型金矿床成矿机理探讨.西北地质科学,2000,21(1):19-26
    [138]王瑞廷,赫英.超大型金矿床比较研究初探.西北地质,2000,33(4):1-10
    [139]王瑞廷.浅议地球系统的复杂性及非线性.世界地质,2001,20(4):313-320
    [140]王瑞廷.试论数字秦岭.西安工程学院学报,2001,23(1):66-70
    [141]王瑞廷,赫英,王东生.煎茶岭含钴硫化镍矿床成矿作用研究.西北大学学报(自然科学版),2002,待刊
    
    
    [142]王希斌,鲍佩声,戎合.中国蛇绿岩中变质橄榄岩的稀土元素地球化学.岩石学报,1996,11(增刊):24-41
    [143]王新,王瑞廷,赫英.煎茶岭与金川超大型镍矿中的伴生金及其比较分析.西北地质科学,2000,21(1):37-45
    [144]王润民.新疆哈密黄山-镜儿泉韧性剪切构造带基性-超基性岩与铜镍矿床.地学研究,1993,第27号:95-101
    [145]王志洪,侯泉林,李继亮,等.西昆仑库地蛇绿岩铂族元素初步研究.科学通报,1999,44(15):1676-1680
    [146]王秀璋,程景平,莫测辉,等.中国侵入岩中改造成因金矿床基本特征及成矿机制.地球化学,1997,26(4):1-12
    [147]汪军谊.秦岭勉略宁三角地块成矿地质背景、矿化类型、成矿规律及找矿方向(硕士学位论文).西安:西北大学,2001,1-57
    [148]汪军谊,张复新.勉略宁地区域地质背景、矿床类型及其成矿特点.西北地质科学,1999,20(2):68-75
    [149]Wilson HDB主编.岩浆矿床.武汉地质学院矿床教研室译.北京:地质出版社,1977,1-324
    [150]吴承烈,徐外生,刘崇民.中国主要类型铜矿勘查地球化学模型.北京:地质出版社,1998,131-138
    [151]吴利仁.论中国基性岩、超基性岩的成矿专属性.地质科学,1963,(1):29-41
    [152]肖序常,陈国铭,朱志直.祁连山古蛇绿岩带的地质构造意义.地质学报,1978,52(4):281-294
    [153]夏林圻,夏祖春,徐学义.南秦岭中-晚元古代火山岩性质与前寒武纪大陆裂解.中国科学(D辑),1996,26(3):237-243
    [154]夏林圻.勉-略地区细碧-角斑岩系成因及其母岩浆深部分异机制的初步探讨.地质学报,1976,(1):24-37
    [155]解广轰,汪云亮,范彩云.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制.中国科学(D辑),1998,28(增刊):31-36
    [156]熊永良,翟裕生.铼-锇同位素体系在基性-超基性岩中应用现状的综述.地质科技情报,1994a,13(3):99-104
    [157]熊永良,翟裕生.铼-锇同位素体系、铂-锇同位素体系及二者的联合体系.地球科学,1994b,19(4):519-528
    [158]许继峰,于学元,李献华,等.高度亏损的N-MORB型火山岩的发现—勉略古洋盆存在的新证据.科学通报,1997,42(22):2414-2418
    [159]徐义刚.微量元素在尖晶石相和石榴石相橄榄岩中的分布.中国科学(D辑),2000,30(3):307-314
    [160]徐章华,汤中立,蔡克勤.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计.现代地质,1998,12(4):506-514
    [161]许志琴,崔军文.大陆山链变形构造动力学.北京:冶金工业出版社,1996,180-198
    [162]许志琴,张建新,许惠芳,等.中国主要大陆山链韧性剪切及动力学.北京:地质出版社,1997,1-294
    [163]杨刚,谢智,陈江峰.Re-Os同位素体系在陨石研究中的应用.地学前缘,2001,8(2):339-343
    [164]杨竞红,蒋少涌,Gerhard Brugmann.岩石样品中低含量铂族元素和锇同位素比值的高精度测量方法.岩石学报.2001,17(2):325-331
    [165]杨星,李行,杨钟堂,等.中国含铂基性超基性岩体与铂(族)矿床.西安:西安交通大学出版社,1993,1-28
    [166]杨轩柱,彭礼贵,董显扬,等.金川含铜镍超基性岩体的岩浆包裹体特征及其地质意义.地质论评,1991,37(1):70-79
    [167]杨轩柱,安三元.金川岩体稀土元素特征其成因意义.西安地质学院学报,1991,13(1):15-22
    [168]杨轩柱.金川硫化铜镍矿床铂族元素和金的地球化学.中国地质科学院西安地质矿产研究所所刊,1989,第26号:59-68
    [169]杨合群.金川超基性岩体铬尖晶石的自然分类及其成因意义.西北地质,1987,(6):25-29
    [170]杨合群.论金川硫化铜镍矿床成因.中国地质科学院院报,1991,第22号:117-135
    [171]杨合群.论金川硫化铜镍矿床中贵金属元素的分带机制.西北地质科学,1992,13(1):75-80
    [172]杨合群.金川铜镍矿床硫同位素地球化学.西北地质,1989,10(2):20-23
    [173]杨合群,汤中立,苏犁,等.金川硫化铜镍矿床成矿岩浆性质和源区性质讨论.甘肃地质学报,1997,6(1):44-52
    
    
    [174] 杨永成,陈家义,李荣社,等.陕西勉略蛇绿构造混杂结合带组成及演化.陕西地质,1996,17 (2):1-11
    [175] Rollinson H R著.岩石地球化学.杨学明,杨晓勇,陈双喜译.合肥:中国科学技术大学出版社,2000,1-242
    [176] 杨志华,姜常义,赵太平,等.秦岭造山带成矿作用概述.大地构造与成矿学,2000,24(1):44-50
    [177] 杨振德,潘行适,杨易福.阿拉善断块及邻区地质构造特征与矿产.北京:科学出版社,1988,40-45
    [178] 杨振德,谢鸣谦.东亚晚前寒武纪大地构造演化.地质科学,1984,19(4):373-383
    [179] 严阵.陕西省花岗岩.西安:西安交通大学出版社,1985,43-49
    [180] 袁学诚主编.中国地球物理图集.北京:地质出版社,1996,1-200
    [181] 叶霖,刘铁庚.陕南勉略宁地区铜厂矿区的钠长岩.矿物岩石,1997,17(4):9-14
    [182] 於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,1998,1-29,190-207
    [183] 喻亨祥,夏斌,梅厚钧等.西藏大竹卡蛇绿岩中地幔橄榄岩铂族元素分布特征.科学通报,1999,45(22):2446-2452
    [184] 余祖成.加拿大萨德伯里铜镍硫化物矿床的成因探讨.地质与勘探,1990,26(3):1-9
    [185] 于津生主编.中国同位素地球化学.北京:科学出版社,1997,376-409,457-463
    [186] 翟裕生.论成矿系统.地学前缘,1999,6(1):13-27
    [187] 张贻侠,刘连登主编.中国前寒武纪矿床和构造.北京:地震出版社,1994,125-147
    [188] 张正兵.秦岭勉略宁地区煎茶岭金矿床地质特征及成因研究(硕士学位论文).西安:西北大学,1998,1-69
    [189] 张宗清,张国伟,付国民,等.秦岭变质地层年龄及其构造意义.中国科学(D辑),1996,26(3):216-222
    [190] 张宗清,唐索寒,宋彪,等.秦岭造山带晋宁期强烈地质事件及其构造背景.地球学报,1997,18(增):43-45
    [191] 张复新,汪军谊.陕西煎茶岭超基性岩与金矿床成因关系.黄金地质,1999,5(2):14-20
    [192] 张旗,李达周,张魁武,等.义墩型镁铁-超镁铁岩的主要特征及其与蛇绿岩的对比.岩石学报,1990,6(3):30-41
    [193] 张二朋,牛道韫,霍有光,等.秦巴及邻区地质构造特征概论.北京:地质出版社,1993,1-291
    [194] 张成江,汪云亮,李晓林,等.新街镁铁-超镁铁侵入体的铂族元素.地球化学,1998,27(5):458-466
    [195] 张广弟,毛景文,熊群尧.中国铂族金属资源现状与前景.地球学报,2001,22(2):107-110
    [196] 张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B辑),1995,25(9):994-1003
    [197] 张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001,117-154,421-449
    [198] 张国伟,张宗清,董云鹏.秦岭造山带主要岩石地层单元的构造性质及其大地构造意义.岩石学报,1995,11(2):101-114
    [199] 张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析.中国科学(D辑),1996a,26(增刊):1-6
    [200] 张国伟,孟庆任,于在乎,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996b,26(3):193-200
    [201] 张本仁,骆庭川,高山,等.秦巴岩石圈构造及成矿规律地球化学研究.武汉:中国地质大学出版社,1994,257-311
    [202] 张本仁.秦岭地幔柱源岩浆活动及其动力学意义.地学前缘,2001,8(3):57-66
    [203] 汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报,2001,17(3):413~421
    [204] 赵祥生,马少龙,邹湘华,等.秦巴地区碧口群时代层序、火山作用及含矿性研究.中国地质科学院西安地质矿产研究所所刊,1990,第29号:55-81
    [205] 赵鹏大,陈建平,陈建国.成矿多样性与矿床谱系.地球科学,2001,26(2):111-117
    [206] 赵振华.微量元素地球化学原理.北京:科学出版社,1997,56-129
    [207] 郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,143-247
    [208] 中国科学院矿床地球化学开放研究实验室.矿床地球化学.北京:地质出版社,1997,30-474
    [209] 中国人民武装警察部队黄金指挥部.云南省墨江金厂超基性岩金矿地质.北京:地质出版社,1999,1-177
    [210] 周鼎武,张国伟.“秦岭群”的再解体和秦岭造山带中的晋宁运动.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,15-25
    
    
    [211]周鼎武,董云鹏,刘良,等.松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征.地质科学,1998,33(1):31-38
    [212]周国藩,罗孝宽,管志宁,等.秦巴地区地球物理场特征与地壳构造格架关系的研究.武汉:中国地质大学出版社,1992,1-86
    [213]朱文凤,梁有彬.金川铜镍硫化物矿床铂族元素的赋存状态及分布规律.地质与勘探,2000,36(1):26-28
    [214]朱炳泉,李献华,戴幢谟等.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.北京:科学出版社,1998,1-230
    [215]朱俊亭.秦巴地区基性超基性岩区域成岩成矿特征和构造条件.西北地质,1987,20(6):10-15
    [216]Allegre C J, Luck J M. Osmium isotopes as petrogenetic and geolgical tracers. Earth and Planetary Science Letters, 1980, 48(1): 148-154
    [217]Amelin Y V, Li C, Valeyev O, et al. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voiscy's Bay and Mushuau intrusions, Labrador, Canada. Econ. Geol., 2000, 95(4): 815-830
    [218]Arndt N T, Czamanske G K, Wooden J L, et al. Mantle and crustal contributions to continental flood volcanism.Tectonophysics, 1993, 223:39-52
    [219]Arndt N T, Naldrett A J, Hunter D R. Ore deposits associated with mafic magmas in the Kaapvaal crton.Minerialium Deposita, 1997, 32:323-334
    [220]Barley M E, Groves D Z. Supercontinent cycles and the distribution of metal deposits through time.Geology, 1992, 20(4): 291-294
    [221]Barnes S J, Boyd R, Korneliusson A, et al. The use of mantle ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group-elements, gold, nickel and copper:examples from Norway. In: Prchard H M, et al., ed. Geo-Platinum 87. London: Elsevier,1988,113-143
    [222]Barnes S J,Brand N W. The distribution of Cr, NJ, and chromite in komatiites, and application to exploration for komatiite-hosted nickel sulfide deposits. Econ. Geol., 1999, 94:129-132
    [223]Barnes S J,Naldrett A J, Gorton M P.The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol., 1985, 53:303-323
    [224]Barnes S J,Naldrett A J. Fractionation of the platinum-group elements and gold in some komatiites of the Abitibi greenstone blet,Northern Ontraio. Econ. Geol., 1987, 82(1): 165-183
    [225]Barnes S J, Zhong-li Tang. Chrome spinals from the Jinchuan Ni-Cu Sulfide deposit, Gansu Province, People's Republic of China. Econ. Geol., 1999, 94(3): 343-356
    [226]Barnes S J, Zientek M, Severson M J. Ni, Cu, Au and platinum-group element contents of sulfides associated with intraplate magmatism: A synthesis.Canadian Journal of Earth Sciences,1997, 34: 337-351
    [227]Boer E H, Meyer F M. Contamination and desalination of the cupriferous kopersburg Suite, Namaqualand,south Africa,Geochim.Cosmochim:Acta,1999, 58:2677-2687
    [228]Boudreau A E, Cilium I S. Concentration of Platinum-Group Elements by magmatic fluid in layered intrusions. Econ. Geol., 1992, 87:1830-1848
    [229]Chai Gang, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit,Northwest China. Econ.Geol.,1992a, 87:1475-1495
    [230]Chai Gang, Naldrett A J. The Jinchuan ultramafic intrusion:cumulate ofa high-Mg basaltic magma.Journal of Petrology, 1992b, 33(2): 277-303
    [231]Creaser R A, Papanastassiou D A, Wasserburg G J.Negative thermal ion mass spectrometry of Osmium,Rhenium, and Iridium. Geochim. Cosmochim. Acta,1991, 55:397-401
    [232]Czamanske G K, Wooden J L, Walker R J, et al. Geochemical, isotopic, and SHRIMP age data for Precambrian basement rockes, Permian volcanic rocks,and sedimentary host rocks to the ore-bearing intrusions, Noril'sk-Talnakh district, Siberian Russian. Int. Geol. Rev, 2000, 42(10): 895-927
    [233]Donaldson M J. Redistribution of ore elements during serpentinization and talc-carbonate alteration of some Archean dunites, Western Australia. Econ. Geol., 1981, 76:1698-1713
    [234]Du Andao, Sun Yali, Zou Xiaoqiu, et al. Study on Rhenium-Osmium isotope system by inductively coupled plasma mass spectrometry and its application to copper-nickel sulfide and molybdenite to copper-nickel sulfide and molybdenite dating.,岩矿测试,1996, 15 (4): 263-266
    [235]Eckstrand O R. The Dumont serpentinite: a model for control of nickeliferious opaque mineral assemblage
    
    by alteration reactions in ultramafic rocks. Econ. Geol., 1975, 70: 183-201
    [236] Elbe D S, Naldrett A J. Fractional crystallization of sulfide ore liquids at high temperatures. Econ. Geol., 1996,91:607-621
    [237] Ellam R M, Carlson R W, Shirey S B. Re-Os isotope constraints on flood basalt genesis (abstract). EOS, 1991,72(44) : 579
    [238] Fleet M E, Chryssoulis S L, Stone W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: Experiments on the fractional crystallization of the sulfide melt. Contr. Miner. Petrol., 1993, 115:36-44
    [239] Fleet M E, Crocket J H, Stone W E. Partitioning of platinum-group-elements(Os,Ir,Ru,Pt,Pd) and gold between sulfide liquid and basalt melt. Geochim. Cosmochim. Acta, 1996, 60: 2397-2412
    [240] Fleet M E, Stone W E. Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature. Geochim. Cosmochim. Acta, 1991, 55: 245-253
    [241] Foster J G, Lambert D D, Frick L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites. Nature, 1996, 382: 703-706
    [242] Frost B R. On the stability of sulfides, oxides and native metals in serpentinite. J. Petrol., 1985, 25(1) : 31-63
    [243] Fodor R V, Sial AN, Mukasa S B, et al. Petrology, isotopic characteristics and K-Ar ages of the Maranhao, Northern Brazil, Mesozoic basalt province. Contr. Miner. Petrol., 1990, 104: 555-567
    [244] Fuchs W A, Rose A W. The geochemical behavior of platinum and palladium in groundwater. Econ. Geol.. 1974, 69: 332-346
    [245] Gao Shan, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 2002, In press.
    [246] Grieve E A F, Mastitis V L. The economic potential of terrestrial impact craters. International Geology Review, 1994,36: 105-151
    [247] Groves D I, Hudon D R, Hack T B C. Modification of iron-nickel sulfides during serpentinization and talc-carbonate alteration at Black Swan, Western Australia. Econ. Geol., 1974, 69: 1265-1281
    [248] Hart S R, Kinloch E D. Osmium isotope systematics in Witwatersrand and Bushveld ore deposit. Econ. Geol., 1989,84: 1651-1655.
    [249] Hawkesworth C J, Blake S, Evans P, et al. Time scales of crystal fractionation in magma chambers-integrating physical, isotopic and geochemical perspectives. J. Petrol., 2000, 41 (7) : 991-1006
    [250] Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994,370:519-527
    [251] Hofmann A W. Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385: 219-229
    [252] Hutchinson C S. Economic deposits and their tectonic setting. Wiley and Sons Inc., New York, 1983, 196-248
    [253] Jagoutz E, Palme H. The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Geochim. Cosmochim. Acta, 1979, 11: 2031-2050
    [254] Keays R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos, 1995, 34: 1-18
    [255] Lambert D D, Simmons E C. Magma evolution in the Stillwater Complex, Montana: I. Rare earth element evidence for the formation of ultramafic series. American Journal of Science, 1987, 287: 1-32
    [256] Lambert D D , Foster J G, Frick L R, et al. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system. Econ. Geol., 1998 , 93(2) : 121-136.
    [257] Lambert D D, Foster J G, Frick L R, et al. Re-Os isotopic systematics of the Voisey's Bay Ni-Cu-Co magmatic ore system, Labrador, Canada. Lithos, 1999, 47: 69-88
    [258] Lambert D D, Frick L R, Foster J G, et al. Re-Os isotope systematic of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada:Ⅱ. Implications for Parental magma chemistry, ore genesis, and metal redistribution. Econ.Geol., 2000, 95(4) : 867-888
    [259] Laznicka P. Quantitative relationships among giant deposits of metals. Econ. Geol., 1999, 94(4) : 455-473
    [260] Li C, Barnes S J, Makovicky E, et al. Partitioning of Ni, Cu, Ir, Rh.Pt and sulfide liquid: effects of composition and temperature. Geochim. Cosmochim. Acta, 1996,60:1231-1238
    
    
    [261 ] Li C, Lightfoot P C, Amelin Y, et al. Contrasting petrological and geochemical relationships in the Voisey's Bay and Mushuau intrusions, Labrador, Canada: implications for ore genesis. Econ. Geol., 2000, 95(4) : 771-799
    [262] Li C, Naldrett A J, Coats C J, et al. Platinum, Palladium, Gold, Copper-rich stringers at the Strathcona mine, Sudbury: their enrichment by fractionation of a sulfide liquid. Econ. Geol., 1992, 87: 1584-1598
    [263 ] Li C, Naldrett A J, Ripley E M Critical factors for the formation of a nickel-copper deposit in an evolved magma system: from a comparison of the Pants Lake and Voisey's Bay sulfide occurrences in Labrador, Canada. Mineralium Deposita. 2001, 36(1) : 85-92
    [264] Li C, Naldrett A J. Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids. Lithos, 1999, 47: 1-31
    [265] Lightfoot P C, Hawkesworth C J, Hergt J, et al. Remobilisation of the continental lithosphere by a mantle plume : Major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk district, Siberian trap, Russia. Contr. Miner. Petrol., 1993, 115: 171-188
    [266] Lightfoot P C, Keays R R, Morrison G G, et al. Geochemical relationships in the Sudbury igneous complex: origin of the main mass and off set dikes. Econ. Geol., 1997, 92: 289~307
    [267] Likhachev A P. Formation conditions of copper-nickel deposits. Int. Geol. Rev., 1983, 9: 1027-1038
    [268] Luck J M, Allegre C J. 187Re-187Os systematics in meteorites and cosmochemical consequences. Nature, 1983,302:130-132
    [ 269] Maier W D, Barnes S J, Teigler B, et al. Cu/Pd and Cu/Pt of silicate rocks in the Bushveld Complex : Impications for platinum-group element exploration. Econ. Geol., 1996, 91: 1151-1158
    [270] Maier W D. Platinum-group elements in Cu-sulphide ores at Carolusberg and East Okiep, Namaqualand, South Africa. Minerialium Deposita, 2000, 35: 422-429
    [271 ] Marakushev A A. Petrological models of chromite, Platinum and Sulfide ore formations.地学前缘, 1999, 6 (1) : 55-69
    [272] Marcantonio F, Reisberg L, Zindler A, et al. An isotopic study of the Ni-Cu-PGE-rich Wellgreen intrusion of the Wrangellia Terrance: Evidence for hydrothermal mobilization of rhenium and osmium. Geochimica et Cosmochimica Acta. 1994,58: 1007-1017
    [273] Marston R J, Groves D I, Hudson D R, et al. Nickel sulfide deposits in Western Australia: a review. Econ. Geol., 1981,76: 1330-1363
    [274] Martin C E. Osmium isotopic characteristics of mantle-derived rocks. Geochim. Cosmochim. Acta, 1991, 55: 1421-1434
    [275] Mcbride J S, Lambert D D, Nicholls 1 A, et al. Osmium isotopic evidence for crust-mantle interaction in the genesis of continental intraplate basalts from the newer volcanics province, Southeastern Australia. Journal of Petrology, 2001, 42 (6) : 1197-1218
    [276] McCandless T E, Ruiz J. Rhenium-Osmium evidence for regional mineralization in North America. Science. 1993, 261: 1282-1286
    [277] McDonough W F, Sun S-S. The composition of the earth. Chemical Geology, 1995, 120: 223-253
    [278] Mcinnes B A, Mcbride J S, Evans N J, et al. Osmium isotope constraints on ore metal recycling in subduction zones. Science, 1999, 286: 512-516
    [279] Mcinnes B 1 A, McBride J S, Evans N J, et al. Osmium isotope constraints on ore metal recycling in subduction zones. Science, 1999, 286: 512-516
    [280] Moody J B. Serpentinization: a review. Lithos. 1976, 9: 125-138
    [281 ] Murthy R V. Early differentiation of the earth and the mantle siderophile elements: A new approach. Science, 1991,253:303-306
    [282] Naldrett A J. A portion of the system Fe-S-O and its application to sulfide ore magma. Journal of Petrology, 1969, 10: 171-202
    [ 283 ] Naldrett A J, Cabri L J. Ultramafic and related mafic rocks: their classification and genesis with special reference to the concentration of nickel sulfides and Platinum-group-elements. Econ. Geol., 1976, 71: 1131-1158
    [284] NaldrettAJ. IGCP. Project No. 161 and a proposed classification of Ni-Cu-PGE sulfide deposits. Canadian Mineralogist, 1979, 17: 143-145
    [285] Naldrett A J, Duke J.M. Platinum metals in magmatic sulfide ores. Science,1980, 208: 1417-1428
    [286] Naldrett A J. Nickel sulfides deposits: classification, composition, and genesis. Econ. Geol., 1981,
    
    6: 28-85
    [287] Naldrett A J, Lightfoot P C, Doherty V A, et al. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implication for the origin of the Ni-Cu ores. Econ. Geol., 1992, 87(6) : 975-1004
    [288] Naldrett A J. A model for the Ni-Cu-PGE ores of the Noril'sk region and its application to other areas of flood basalt. Econ. Geol., 1992, 87(8) : 1945-1962
    [289] Naldrett A J, Fedorenko V A, Asif M, et al. Controls on the compositions of Ni-Cu sulfide deposits as illustrated by those at Noril'sk, Siberia. Econ. Geol., 1996, 91: 751-773
    [290] Naldrett A J. World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineralium Deposita, 1999a, 34: 227-240
    [291 ] Naldrett A J, Asif M, Scandal E, et al. Platinum-group elements in the Sudbury ores: significance with respect to the origin of different ore zones and to the exploration for footwall ore bodies. Econ. Geol., 1999b, 94(2) : 185-210
    [292] Naldrett A J, Asia M, Krstic S, et al. The composition of mineralization at the voisey's Bay Ni-Cu sulfide deposit, with special reference to Platinum-group-elements. Econ.Geol., 2000, 95(4) :845-865
    [293] Orberger B, Xu Y, Reeves S J. Platinum group elements in mantle xenoliths from eastern China. Tectonophysics, 1998, 296: 87-101
    [294] Pegram W J, Allegre C J. Osmium isotopic compositions from oceanic basalts. Earth and Planetary Science Letters, 1992, 111: 59-68
    [295] Prefect S A, Lightfoot P C, Keys R R. Evolution of the sublayer of Sudbury igneous complex: geochemical Sm-Nd isotopic and petrologic evidence. Lithos, 2000, 51(4) : 271-292
    [296] Rajamani V, Naldrett A J. Partitioning of Fe, Co, Ni, Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ. Geol., 1978, 73: 82-93
    [297 ] Redneck R L, Fountain D M. Nature and composition of the continental crustal: A lower crusts perspective. Review of Geophysics, 1995, 33: 267-309
    [298] Ringwood A E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta, 1991, 55(8) : 2083-2110
    [299] Ripley E M, Lambert D D, Frick L R, Foster J G. Re-Os, Sm-Nd and Pb isotopic constraints on mantle and crustal contributions to magmatic sulfide mineralization in the Duluth Complex. Geochim. Cosmochim. Acta, 1998, 62: 3349-3365
    [300] Roscoe S M, Card K D. Early Proterozoic tectonics and metallogeny of the lake Huron region of the Canadian shield. Precambrian Research, 1992, 58(1-4) : 99-119
    [301 ] Rose L A, Brenan J M. Wetting properties of Fe-Ni-Cu-0-S melts against olivine: implications for sulfide melt mobility. Econ. Geol., 2001, 96(1) : 145-158
    [302] Saal A E, Redneck R L, Ravish G E, et al. Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature, 1998, 393: 58-61
    [303 ] Schiellerup H, Lambert D D, Prestvik T, et al. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites. Nature, 2000, 405: 781-784
    [304] Selby D, Creaser R A. Re-Os geochronology and systcmatics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ. Geol., 2001, 96(1) : 197-204
    [305] Shcheka S A, Romanenko 1 M, Chubarov V M, et al. Sillica-bearing magnetites. Contr. Miner. Petrol., 1977,63(2) : 103-111
    [306] Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem., 1995,67:2136-2141
    [307] Singer D A. World-class base and precious metal deposits: A quantitative analysis. Econ. Geol., 1995, 90: 88-104
    [308] Smoliar M I, Walker RJ, Morgan J W. Re-Os ages of group ⅡA, ⅢA, ⅣA, and ⅣB iron meteorites. Science, 1996,271: 1099-1102
    [309] Stein H J, Markey R J, Morgan J W, et al. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shannxi Province China. Econ. Geol., 1997, 92: 827-835
    [310] Sun S S, Nesbitt R W. Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth element. Contr. Miner. Petrol., 1978, 65: 301-325
    [311 ] Taylor S R, McLennan S M. The geological evolution of the continental crust. Review of Geophysics, 1995,
    
    33:241-265
    [312] Theriault R D, Barnes S J, Severson M J. Origin of Cu-Ni-PGE sulfide materialization in the Partridge River Intrusion, Duluth complex, Minnesota. Econ. Geol., 2000, 95(5) : 929~943
    [313] Tschauner O, Zerr A, Specht S, et al. Partitioning of nickel and cobalt between silicate perovskite and metal at pressures up to 80 GPa. Nature, 1999, 398: 604-607
    [314] Walker R J, Morgan J W, Koran M F, et al. Re-Os isotopic evidence for an enriched-mantle plume source for the Noril'sk-type ore-bearing intrusions, Siberia. Geochim. Cosmochim. Acta, 1994, 58: 4179~4198
    [315] Walker R J, Morgan J W, Naldrett A J, et al. Re-Os isotope systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: Evidence for a major crustal component. Earth and Planetary Science Letters, 1991, 105:416-429
    [316] Wedepohl K H. The compositions of the continental crust. Geochim. Cosmochim. Acta, 1995, 59: 1217-1232
    [317] Wenner D B, Taylor H P. D/H and 18O/16O studies of serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta, 1974, 38: 1255-1286
    [318] Xu Zhaowen, Ren Qijiang, Xu Wenyi, et al. Relationship between deep structure and distribution of mineral deposit in Qinling region. Science In China (Series D). 1996, 39(Supp.): 17-23
    [319] Garuti G, Fershtater G, Bea F, et al. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results. Tectonophysics, 1997, 276: 181-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700