用户名: 密码: 验证码:
EM技术在水处理领域的系统应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目应用EM及技术在城市生活污水、啤酒废水和藻型富营养化源水等广泛领域,较全面地研究了EM降解生活污水有机质能力、EM对常见重金属离子耐受力水平、自接种及污泥引种条件下EM活性污泥培养与驯化、EM-SBR反应器处理生活污水运行效果、EM-好氧生物滤池处理啤酒废水性能、KMT及EM-KMT生物流化床处理城市污水中试性能、EM对常见水华藻类生长抑制以及EM控制水体藻型富营养化效果等问题,系统深入地揭示了EM及技术在水处理领域的应用价值,初步探讨了EM相关生物活性的机理。试验结果表明:
     (1)当水温为25℃、HRT为48hr,菌液投加量(VEM/V污水)为1/10000曝气时间为HRT/3,进水pH为8.0时,EM可表现出良好降解生活污水有机质的能力,CODcr、BOD5去除率分别达到75.92%和89.57%。好氧条件下,当VEM/V污水的比值为5/1000时,污水NH4+-N的去除率增幅为37.62%;厌氧条件下,当VEM/V污水的比值为1/10000~1/1000时,污水NO2--N去除率增幅为13.5%~14.8%。
     (2)通过模拟方法研究表明,EM对污水中Cu2+、Zn2+、Pb2+、As3+、Cr6+、Cd2+、Hg2+等7种重金属离子耐受体积质量分别为0.50、1.00、1.00、0.05、0.50、0.50、0.10mg/L,其中对Cu2+、Zn2+、Cr6+的耐受水平略低于一般污泥微生物。
     (3)采用经沉淀后的生活污水,按污泥自接种方式,在EM连续投菌操作下培养EM污泥并启动EM-SBR反应器,出水CODcr稳定去除率为75.89%,比对应常规反应器平均提高9.20%;同样条件下,污泥引种方式的CODcr稳定去除率为81.10%,比对应常规反应器平均提高12.47%。进水0.5hr、曝气4.0hr、静置1.0hr、排水0.5hr、闲置1.0hr是EM-SBR反应器处理生活污水的适宜运行模式。与常规SBR反应器相比,EM-SBR反应器具有水力停留时间短(HRT6.0~9.0hr)、处理效果好、运行稳定性高、降低能耗和运行成本的技术优势。
     (4)与常规活性污泥相比,EM污泥SV30、MLSS、SVI及沉降速度等均有一定程度降低,其中,SVI平均降低19.37%,沉降速度(完成总污泥量95%沉降所用时间)平均缩短3.5min;EM污泥颗粒的凝聚、沉降性能及降解污水有机质“活性”均有明显改善和增强。
     (5)采用株洲市南区典型城市污水,按中试规模(240t/d)运行KMT生物流化床和EM-KMT生物流化床,处理出水CODcr、SS、T-P及BOD5等指标分别达到或接近国家工业冷却用水标准。前者处理出水BOD5、CODcr、SS去除率均达到75~95%。后者处理出水三项指标的平均去除率较前者分别提高16.6%、13.8%、14.3%,但对温度变化的适应能力有所降低,适宜的运行温度区间为20~27℃。两项流化床工艺的设备投资成本和运行成本略高于传统或改进活性污泥法,如实现有关设备国产化,则可挖掘其经济指标的较大潜力。
     (6)采用典型啤酒工业废水,构建EM-好氧生物滤池,当进水COD浓度为1000~1200mg/L,HRT为9.0hr时,处理出水COD、BOD去除率分别可达94.53%、96.47%,出水水质优于污水排放国家一级标准。与一般活性污泥法和
    
    6 摘要
    其它生物膜法相比,EM好氧生物滤池HRT明显缩短,为70~9刀hr。
     (7)外购纯藻种扩繁,投加 EM进行藻类液体培养7d后,衣藻、四尾栅
    裂藻和盘星藻生物量降低百分率分别为45.38%、100%、100%;培养温度、培
    养时间、EM投加量及培养基PH等对EM的抑藻作用均有不同程度的影响上M
    发挥良好抑藻作用(特别是绿藻)的适宜条件可能是,培养温度约30oC,培养
    时间< sd,EM投加量比例为 1用0(细胞培养,体积比人溶液 PH值为 6刀~8刀。
     门)采用南水塘典型藻型富营养化源水,按EM/源水叫 比例投加
    EM菌液并辅以低速间歇式曝气处理8~gd后,源水中叶绿素a、TN、TF、及
    CODcr的降解率分别达到89.25%、45.25%、55.48%及82.37%,明显优于空白
    静置和空臼曝气处理,处理后水质接近国家地表IV类水质标准。处理过程中,
    T-P的变化有一定的波动性,藻类生物量在处理前期(2~3d)出现一定程度的
    表观性“反弹”,总氮、总磷比值(TN/TP)与叶绿素a含量呈负相关关系。
     本项目首次完成了在不同反应器水平上应用EM处理各类废、污水效果与
    性能的系统研究,在藻类细胞液体培养水平上EM抑藻作用与影响因子的基础
    研究,研究方法与初步结论对于同类研究具有一定的推动作用。本研究对EM
    微生物与污水“土著”微生物进行竞争性生长,与藻类生物进行“藻菌互作”
    等机理进行了初步探讨,对于进一步完善和深化EM的相关生物活性机理具有
    一定的指导意义。
A systematic study with application of Effective Micro Organisms (EM) and the relative techniques has been done in the field of municipal domestic sewage treatment, brewery wastewater treatment and algae-type eutrophical water treatment. From the study above, the biodegrading ability and effects of EM on domestic sewage organics, the resistance of EM on some regular heavy metal ions in wastewater, the culturing and domestication of EM active sludge under the condition of both self inoculation and digested sludge as seed, the starting-up of EM Sequencing Batch Reactor (SBR) and its operation effects on domestic sludge treatment, performance of EM Aerobic Bio-Filter Reactor (ABFR) on brewery wastewater treatment, the operation effects of KMT (or EM-KMT) Fluidized-Bed Biofilm Reactor (FBBR) on municipal sewage in pilot, the restraining effects of EM on some regular algae making for water eutrophication and the controlling effects of EM on water algae-type eutrophication in preliminary examination were investigated comprehensively. As the results, the application value of EM in the field of water treatment and its' relative possible mechanisms for some biological activities have been showed roundly and thoroughly in this study. Experimental results demonstrate as below:
    (1) When the settled domestic sewage is used as influent at temperature 25 癈, HRT 48hr, pH 8.0 and at EM casting proportion (VeM/Vsewage) 1/100000, the CODcr and BODs removal efficiency in effluent appear at 75.92% and 89.57% respectively. Under the condition of aerobic, VEM/Vsewaae 5/1000, the increasing amplitude of CODcr removal efficiency of NFU+-N in effluent is about 37.62%. Under the condition of anaerobic, VEM/Vsewage 1/100000~1/1000, the increasing amplitude of CODcr removal efficiency of NO2"-N in effluent is about 13.5%~14.8%.
    (2) The allowable volume mass of EM on 7 kinds of heavy metals ion in wastewater such as Cu2+, Zn2+, Pb2+, As3+, Cr6+, Cd2+ and Hg2+ are respectively about 0.50, 1.00, 1.00, 0.05, 0.50, 0.50, 0.10 mg/L. The result tells that the resistance ability of EM on Cu2+, Zn2+ and Cr6* in wastewater is lower a little bit than general sludge microorganisms.
    (3) While culturing EM active sludge and starting up the EM-SBR at the same time by taking the settled sewage as influent and by the condition of self inoculation, the stable CODcr removal efficiency in effluent is about 75.89% and increases averagely about 9.20% than the routine reactor at the same culturing model. At the same operating condition, the stable CODcr removal efficiency of the one with digested sludge as seed is about 81.10% and increases averagely about 12.47% than the routine reactor at the same culturing model. The suitable operation model for EM-SBR to treat domestic sewage is that 0.5 hr is for influx, 4.0 hr for gas pumping, 1.0 hr for holding, 0.5 hr for pouring and 1.0 hr for slacking. As the results, EM-SBR
    
    
    
    is provided with those advantages such as shorter HRT (6.0 ~ 9.0 hr), better treatment effect, better operation stability, lower energy charge and lower operation cost than routine SBR.
    (4) The correlative indexes of EM active sludge such as SV30, MLSS, SVI and sedimentation speed ( time for 95% of total sludge to settle down) all decrease by some degrees than the routine active sludge in that the decreasing range of SVI is about 19.37% and the sedimentation speed about 3.5 min. The congregating and sedimentation capability, the biodegrading ability on sewage organics called "active" of EM sludge grain are all obviously improved and reinforced.
    (5) Run the KMT and EM-KMT Fluidized-Bed Biofilm Reactor in the pilot plant (240t/d). The result tells that main indexes of effluent from both KMT and EM-KMT can all reach the National Standard for Industrial Cooling Water. Removal efficiencies of BOD5, CODcr and SS in KMT FBBR can all reach 75%~95%. Each one in EM-KMT FBBR can increase respectively 16.6%, 13.8% and 14.3% than in KMT FBBR, but the adaptability of the reactor on temperature accordingly decrease a little and s
引文
[1]刘永懋,21世纪人类面临最严重的危机,水资源保护,1995,(4):22-25
    [2]D E Friedman-Huffman, J B Rose, Emerging Waterborne Pathogens, Water Quality International, 1998
    [3]陈家琦、王浩,水资源学概论,北京:中国水利水电出版社,1996
    [4]刘永懋,水,21世纪人类面临的最严重的危机,水资源保护,1995,4:22-25
    [5]万本太,中国水资源的问题与对策,99北京中美水处理技术国际研讨会论文集,1999
    [6]藤田雅人,排水净化处理技术水有效利用,产业环境,1996,8:88-90
    [7]松岛岂彦,中水利用设备,产业上环境,1996,8:94-97
    [8]须藤隆一,高度净水处理技术开发动向,化学工业,1996,1:41-45
    [9]芳仓太郎,生物膜法上水下水处理适用,水处理技术,1997,38(7):1-10
    [10]三岛浩二,膜利用亨排水处理技术事例,地球环境,1997,6:70-73
    [11]Ammerman D K, Once the province of communities the south and west, water reuse is gaining popularity throughout the United States, Water Environment & Technology, 1998,67-71
    [12]Richmqn M, City sets new standard for converting wastwater to potable water, Water Environment & Technology, 1997, 22-24
    [13]Gambrill M P, Mara D D, Waster treatment for effluent reuse: Lime-induced removal of excreted pathogens, Wat. Sci. Tech., 1989, 21 (3): 79-84
    [14]蹇兴超,城市污水回用技术现状和发展趋势,环境保护,1996,8:15-17
    [15]周国成、高坤瑞,我国城市污水回用事业的现状与发展,化工给排水设计,1996,4:12-22
    [16]籍国东等,我国污水资源化的现状分析与对策探讨,环境科学进展,1998,7(5):85-95
    [17]唐受印等编,废水处理工程,北京:化学工业出版社,1998
    [18]李国欣、李旭东,污水资源化利用技术现状及其应用实例,给水排水,2001,27(5):15-19
    [19]张杰、曹开朗,城市污水深度处理与水资源可持续利用,中国给水排水,2001,3:11-12
    [20]宇振东,污染控制化学研究进展,环境科学进展,1992,(2):17—19
    [21]陈坚主编,环境生物技术,北京:中国轻工业出版社,1999
    [22]HiroshiISHIDA,盛斌译,废水生化深度处理,世界环境,1995,2:14-15
    [23]Richard O, Mines J R et al., Bionutrient removal with a sequencing batch reactor, Water Air and Soil Pollution, 1998, 107 (1): 81-89
    [24]张统等,生物吸附氧化法(AB法)的理论与实践,国外环境科学技术,1993,4:51-55
    [25]朱明权,循环式活性污泥法(CAST)的应用及其发展,中国给水排水,1996,12(6):
    
    
    [26]张木兰等,SBR活性污泥中的主要微生物类群及其基本生态规律初探,环境科学进展,1994,3:32-34
    [27]周律等,三沟式氧化沟处理城市污水的效应,中国给水排水,1997,13(5):4-7
    [28]钱易等著,现代废水处理新技术,北京:中国科学技术出版社,1993
    [29]徐国勋等,超高速活性污泥法的试验研究,城市环境与城市生态,1996,9(2):1-5
    [30]刘雨、赵庆良、郑兴灿编著,生物膜法污水处理技术,北京:中国建筑工业出版社,2000,6-46
    [31]Park D et al., Maximizing nitrification rates through biofilm control: research review and full-scale application, Wat. Sci. Technol., 1997, 36 (1): 255
    [32]Palsotottir G, Bishop P, Nitrifying biotower upsets due to snails and their control, Wat. Sci.Technol., 1997, 36 (1):247
    [33]Schramm A et al., Structure and function of a nitrifying biofilm as determined by microelectrodes and fluorescent oligonucleotide proges, Wat. Sci. Technol., 1997, 36 (1):263
    [34]Renolds S L et al., Down under submerged system provides better biological treatment, Ind. Wastewater, 1997, 5(5): 43
    [35]Borregaard V R, Experience with nutrient removal in a fixed-film system at full-scale wastewater treatment plants, War. Sci. Technol., 1997, 36 (1): 129
    [36]Smith D P, Submerged filter biotreatment of hazardous leachate in aerobic, anaerobic and anaerobic/aerobic systems, Hazardous Waste & Hazardous Materials, 1995, 12 (2): 167-183
    [37]Kooper P F, Atkinson B, Biological fluidized bed treatment of water and wastewater, Ellis Horwood, Chichester, England
    [38]Lazarova V et al., Control of nitrification efficiency in a new biofilm reactor, Wat. Sci. Technol., 1997, 36 (1): 31
    [39]Welander U R et al., Nitrification of landfill leachate using suspended-carrier biofilm technology, Wat. Res., 1997, 31:2351
    [40]Garrido J et al., Nitrous oxide production by nitrifiying biofilm in a viofilm airlift suspension reactor, Wat. Sci. Technol., 1997, 36 (1): 157
    [41]Heijinen J J et al., Simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculating regime, Chem. Eng. Sci., 1997, 52:2527
    [42]Gjaltema A et al., Adhesion and biofilm development on suspended carriers in airlift reactors: hydrodynamic conditions versus surface characteristics, Biotechnol. Bioeng., 1997, 55:880
    [43] Yu H, Rittmann B E, Predicting bed expansion and phase holdups for three-phase fluidized-bed reactors with and without biofilm, Wat. Res., 1997, 31: 2604
    [44]张锦荣等,生物接触氧化法处理生物污水,油气田环境保护,1997,7(4):16-19
    [45]蒋锋等,生物流化床处理含硫污水净化水的探讨,石油化工环境保护,1996,(2):23-26
    [46]刘文君等,生产性生物陶粒滤池对微污染原水中氨氮的去除效果研究,中国给水排水,1995,10(2):41-44
    
    
    [47]张保森等,序批式生物膜法处理屠宰废水,油气田环境保护,1997,7(3):48-52
    [48]周平等,生物膜厚度对流化床反应器性能影响分析,环境科学,1994,15(2):1-5
    [49]陶有胜,水解酸化-生物接触氧化工艺处理啤酒废水工程实例,环境工程,1998,16(4):20-23
    [50]Buyant M P, "Microbial methance production-theoretical aspects", J. Animal Science, 1979, 48:193-201
    [51]周琪,升流式厌氧污泥床反应器处理生活污水工艺与机理的研究,申请清华大学工学博士学位论文,1993
    [52]李清雪等,厌氧浮动生物膜反应器处理高浓度有机废水,城市环境与城市生态,1997,10(3):8-11
    [53]周健等,厌氧流化床处理硫酸盐草浆废水,水处理技术,1997,23(6):363-367
    [54]郑平等,喀麦隆啤酒废水厌氧生物处理的研究,太阳能学报,2001,22(2):230-235
    [55]王松林、汪大庆,内循环UASB反应器+氧化沟工艺在啤酒废水处理中的应用,工业用水与废水,2001,32(2):23-24
    [56]胡启春,国外厌氧处理城镇生活污水技术的应用现状与发展趋势,中国沼气,1998,16(2):11-15
    [57]杨秀山等,厌氧-缺氧-好氧处理城市污水,环境科学,1993,14(6):38-41
    [58]杜赦林等,生物膜法A/O系统处理腈纶废水工业试验,环境科学,1994,15(6):43-46
    [59]罗志腾等,固定化微生物厌氧移动床-好氧法处理偶氮染料废水,城市环境与城市生态,1996,(3):6-8
    [60]何苗等,厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较,给水排水,1997,23(6):31-33
    [61]龚云华,污水生物脱氮除磷技术的现状与发展,环境保护,2000,7:23-25
    [62]袁铭道著,美国水污染控制和发展概况,北京:中国环境科学出版社,1986:95-104
    [63]韩泰畴等,欧洲的芦苇床废水处理系统,环境科学动态,1990,(2):10-13
    [64]青井透等,(朱建国译),营养盐除去大规模生育实验,环境技术,1997,26(11):13-23
    [65]吴振斌等,综合生物塘处理城镇污水的研究,环境科学学报,1994,14(2):222-224
    [66]王宝贞等,生态塘-简易高效的污水处理技术设计应用,城市环境与城市生态,1998,11(2):1-5
    [67]郭笃发等,污水土地处理系统的应用分析,环境科学进展,1995,3(6):64-69
    [68]郭笃发、陈友云,污水土地处理系统的研究现状,山东师范大学学报(自然科学版),1994,9(2):85-88
    [69]诸惠国等,用人工湿地处理乳制品厂废水的研究,环境科学,1996,17(5):30-32
    [70]诸惠国等,新型废水处理工艺-人工湿地的设计方法,环境科学,1993,14(2):39-43
    [71]成水平等,香蒲、灯心草人工湿地研究Ⅲ—净化污水的机理,湖泊科学,1998,10(2):66-71
    [72]Li S R et al., Reed-bed treatment for municipal and industrial wastewater in Beijing, China,J. inst., Water Environ Manag., 1995, 9(6):581-588
    [73]吴晓磊,人工湿地废水研究机理,环境科学,1995,16(3):83-86
    
    
    [74]陈博谦等,湿地土壤因素对污水处理作用的模拟研究,城市环境与城市生态,1999,12(1):19-21
    [75]程树培等,新兴边缘学科—环境生物技术,环境科学进展,1995,3(5):1-5
    [76][日]浦野宏平等,(周抗寒等译),固定化微生物法处理排水研究的现状与课题,国外环境科学技术,1990,(3):47-50
    [77][日]南野立夫等,(朱建国译),包括固定化微生物担体用高度处理技术,用水废水,1997,39(8):24-29
    [78]卞华松等,冷冻固定化优势菌群处理含甲醛苯酚废水,环境科学,1998,19(2):39-42
    [79]黄晓维等,利用多孔陶珠固定化微生物细胞处理印染废水的研究,环境科学学报,1990,10(4):471-475
    [80]梁沈平等,固定化微生物柱对染料废水的脱色试验,环境科学,1998,19(5):10-13
    [81]梁沈平等。固定化微生物柱处理染料废水试验中细菌的存活,环境科学,1998,19(6):21-24
    [82]张永明等,固定化细胞流化床生物反应器处理啤酒废水及其稳定性的研究,南昌航空工业学院学报,1999,(13):61-66
    [83]方冶华等,厌氧流化床反应器微生物固定化载体筛选的研究,环境科学学报,1995,15(4):399-405
    [84]黄晓东等.生物陶粒处理深圳水库水的试验研究.环境科学,1998.19(6):60
    [85]李鱼等,炉渣在中药废水预处理及深度处理中的应用,环境科学动态,1995,(3):17-19
    [86]蔡建安等,三相流化床中混合载体的协同作用,环境科学,1995,16(6):50-52
    [87]汤纯鹏等,中空柱状生物膜载体在处理工业废水工程中的应用,市环境与城市生态,1999,12(1):10-13
    [88]顾平等,中空膜生物床处理生活污水的中试研究,中国给水排水,2002,1:11-16
    [89]Silijudalen J G.,Bekkelaget treatment plant,Nitrogen removal with the KMT process,Oslo Water & Sewage Works,1993,6
    [90]郑领英等,展望21世纪的膜分离技术,水处理技术,1995,21(3):125-131
    [91]翁晓姚等,关于超滤膜的几个问题,工业水处理,1997,17(1):15-17
    [92]山口猛夫,环境保全膜分离技术,化学工业,1996,1:51-56
    [93]小山清,复合型薄膜应用浸透气化法——水混合物分离,科学工业,1996,70(9):368-373
    [94]赵玉坤,国内外反渗透技术应用概况,工业水处理,1998,18(4):1-3
    [95]王大保,反渗透系统设计及预处理工艺探讨,工业水处理,1997,17(4):6-9
    [96]杜启云,反渗透法制工业纯水中几个问题的探讨,工业水处理,1997,1(6):35-36
    [97]山本英生,用杂用水再利用开发,产业环境,1996,8:98-99
    [98]樊耀波、王菊思,水与废水处理中的膜与膜生物反应器技术,环境科学,1995,16(5):79-81
    [99]邢传宏等,无机膜-生物反应器处理生活污水试验研究,环境科学,1997,18(3):1-4
    [100]邢传宏等,超滤膜-生物反应器处理生活污水及其水力学研究,环境科学,1997,18(5):19-22
    
    
    [101]邢传宏等,错流式膜-生物反应器处理生活污水及其生物学研究,环境科学,1997,18(6):23-25
    [102]刘希波等,生物填料反应器在二级处理出水中的应用研究,环境科学,1993,14(5):43—46
    [103]孙金荣、刘武明,啤酒生产废水的综合治理探讨,环境保护,1995,11:8-10
    [104]何增耀等,农业环境科学概论,上海:上海科学技术出版社,1991,175-177
    [105]李家瑞等编著,工业企业环境保护,北京:冶金工业出版社,1992,160-166
    [106]张国柱,酿酒工业废水的治理技术,环境保护,1992,12:9-11
    [107]武道吉、谭风训,啤酒废水处理技术研究,水处理技术,1996,22(4):237-239
    [108]Lettinga G., Treatment of brewery wastewater,Water Sci.&Tech.,1991,24(8):87-107
    [109]周焕祥,啤酒废水处理技术的现状及发展趋势,工业水处理,1993,3(3):8-10
    [110]彭永臻,SBR法的五大优点,中国给水排水,1993,9(2):29-31
    [111]刘永淞,间歇活性污泥法处理啤酒废水试验研究,中国给水排水,1989,5(3):18-20
    [112]纪荣平,SBR法在扬州啤酒厂废水处理中的应用,环境工程,1996,14(6):8-11
    [113]王水生,SBR法处理啤酒废水,环境保护,1997,8:21-22
    [114]王水生,间歇式活性污泥法处理啤酒废水,环境工程,1998,16(1):16-18
    [115]强绍杰等,CASS工艺在啤酒废水处理中的应用,给水排水,1998,24(3):30-32
    [116]刘义等,水解酸化—SBR工艺处理啤酒废水的试验研究,中国给水排水,1997,13:22-25
    [117]Pujot, Biological Aerated Filters: An attractive and alternative biological process, Wat. Sci. Tech., 1992, 26 (13): 693
    [118]Cartier J P, Biological Aerated Filters: Assessment of the process based on 12 sewage treatment plants, Wat. Sci. Tech., 1994, 29 (10-11): 13-22
    [119]Tom Stephenson et al., The small footprint wastewater treatment process, Chemistry & Industry, 1993, 19:533
    [120]李汝琪等,曝气生物滤池处理啤酒废水的研究,环境科学,1999,20(7):83-85
    [121]周陈钢,加压生物接触氧化法处理啤酒废水的研究,环境污染与防治,1993,(3):16-18
    [122]胡金波、孔献珍,加压接触氧化法处理啤废水技术,环境科学研究,1995,8(6):29-31
    [123]刘勃等,酸化水解在啤酒废水处理中的应用,山东环境,1999,4:49-50
    [124]韩洪军等,水解酸化处理啤酒废水的试验研究,哈尔滨建筑大学学报,1990,32(6):97-99
    [125]张永明等,停留时间分布与啤酒废水处理效率的关系,华东理工大学学报,2001,27(2):128-130
    [126]张世扛,效益型资源化啤酒废水处理技术应用及效果,环境保护科学,1993,19(3):61-64
    [127]埃肯费尔德W W著,马志毅译,工业水污染控制,北京:中国建筑工业出版社,1992,249~255
    [128]吴允,啤酒生产废水处理新技术—内循环反应器,环境保护,1997,(9):18-19
    
    
    [129]HulshoffPol L W, UASB and brewery effluent, Wat. Sci. & Tech., 1993, 26 (9): 291-304
    [130]Lettinga G, Anearobic treatment of brewery sewage at ambient temperature using a granular bed UASB reactor, Biotech. & Bioeng., 1993, 40(3): 1701-1723
    [131]王松林、汪大庆,内循环UASB反应器+氧化沟工艺在啤酒废水处理中的应用,工业用水与废水,2001,32(2):23-24
    [132]谢家恕,商丘啤酒厂污水土地处理与利用,农业环境与发展,1997,14(1):28-32
    [133]萧月芳等,啤酒废水对土壤性质的影响,农业环境保护,1997,16(4):149-152
    [134]戴全裕等,丝瓜对食品废水的净化功能及经济效益,城市环境与城市生态,1994,7(4):8-12
    [135]戴全裕、陈钊,多花黑麦草对啤酒废水净化功能的研究,应用生态学报,1993,4(3):334-337
    [136]戴全裕等,水雍菜对啤酒及饮食废水净化与资源化研究,环境科学学报,1996,16(2):249-251
    [137]陈钊等,水生金针菜对啤酒及饮食废水的净化,城市环境与城市生态,1993,6(2):15-19
    [138]金相灿等著,中国湖泊环境,北京:海洋出版社,1995
    [139]张巽等,环境水体富营养化特征的探讨,中国科学技术大学学报,1999,29(2):221-223
    [140]陈水勇、吴掁明等,水体富营养化的形成、危害和防治,环境科学与技术,1999,2:11-15
    [141]金相灿主编,湖泊富营养化控制和管理技术,北京:化学工业出版社,2001
    [142]谢宏斌,南湖富营养化的人工神经网络评价,广西科学院学报,1999,15(1):29-32
    [143]冯耀龙、杨庆学,应用神经网络评价于桥水库水质,海河水利,1999,5:39-41
    [144]杜宝汉、李永安,用灰色关联模型评价湖泊富营养化,四川环境,1999,18(4):48-52
    [145]邹晓雯,水体富营养化生态位及湖泊区域综合评价的理论与方法,武汉水利电力大学硕士学位论文,1999
    [146]齐玉梅、黄志明,湖泊富营养化物元模型及复合应用初探,重庆环境科学,1999,21 (5):9-11
    [147]Hakanson L, On the Principle and Factors Determining the Predictive Success of Ecosystem Models with a Focus on the Lake Eutrophication Models, Ecological Modelling, 1999, 121 (2-3): 139-160,
    [148]邵林广等,武汉东湖水体富营养化现状及其控磷对策,武汉冶金科技大学学报(自然科学版),1999,22(2):139-141
    [149]Siegrist H, Boller M, Effects of the Phosphate Ban on Sewage Treatment [J]. EAWAG News, 1997, 42E: 9-11
    [150]Bosard P, Gachtre R, Controversial Hypotheses Related to the Ban Phosphates: Was Banning Phosphates in Detergents a Mistake? [J]. EAWAG News, 1997, 42:3-9
    [151]钟江平等,南湖污染治理方案探讨,广西土木建筑,1999,24(2):59-61
    [152]王国祥、濮培民,若干人工调控措施对富营养化湖泊藻类种群的影响,环境科学,1999,20 (2):71-74
    
    
    [153]Carpenter SR, Brrock WA, Ludwig D, Management of Eutrophication for Lakes Subject to Potentially Irreversible Change, Ecological Applications, 1999, 9 (3): 751-771
    [154]Eutrophication Process Recorded in Dinoflagellate Cystassemblages—a Case of Yokohama Port, Tokyo, Japan, Science of the Total Environment, 1999, 231 (1): 17-35
    [155]Population Structure, Dynamics and Production of Hydrobia Ulvae (Pennant) (Mollusca Prosobranchia) along an Eutrophicaton Gradient in the Mondegoestuaray (Portugal), Acta Oecologica-lnternational Journal of Ecology, 1999, 20 (4): 289-304
    [156]Lie E et al., Carbon and Phosphorus Tramsformations in a Full-Scale Enhanced Biological Phosphorus Removal Process, War. Res., 1997, 31 (11): 2693-2698
    [157]黄立南、蓝崇钰,湿地处理污水的研究,生态科学,1996,15(2):117-120
    [158]范昌发、贾敬芬,植物整治现状,环境科学进展,1999,7(5):108-112
    [159]陈毓华等,华南地区11种水生维管植物净化城镇污水效益评价,农村生态环境,1995,11(1):26-29
    [160]葛滢等,不同程度富营养化水中植物净化能力比较研究,环境科学学报,1999,19(6):690-692
    [161]何池全等,石菖蒲净化富营养化水体的研究,南昌大学学报(理科版),1999,23(1):73-76
    [162]吴玉树,水生维管植物对滇池水体的净化效应,生态学报,1988,8(4):40-42
    [163]庄源益等,高等水生植物对藻类生长的克制效应,环境科学进展,1995,3(6):44-49
    [164]李敦海等,藻类与植物生长物质,水生生物学报,1999,23(5):524-532
    [165]宋祥甫等,浮床水稻对富营养化水体中氮、磷的去除效果及规律研究,环境科学学报,1998,18(5):489-494
    [166]陈洪达,养鱼对武汉东湖生态系统的影响,水生生物学报,1989,13(4):359-368
    [167]鲢鱼的放养对水质影响的研究进展,生态学杂志,1994,13(2):66-68
    [168]Urabe J, Effect of a Zooplankton Community on Seston Elimination in a Restored Pond in Japan, Restoration Ecology, 1994, 2 (1): 61-70
    [169]林荣根等,虾池水体的富营养化及防治对策,海洋学报,1997,19(6):127-133
    [170]孙刚等,中国湖泊渔业与富营养化的关系,东北师大学报自然科学版,1999,1:74-78
    [171]陈红等,南宁市南湖富营养化综合防治对策的研究,广西科学院学报,1998,14(4):36-42
    [172]罗固源等,三峡市库区水环境富营养化污染及其控制对策的思考,重庆建筑大学学报,1999,21(3):1-4
    [173]杨汉等,洞庭湖的富营养化研究,甘肃环境研究与监测,1999,12(3):120-122
    [174]郑曦、刘登义,镜湖富营养化污染及其治理的初步研究——底泥氮磷及入湖污水对富营养化的影响,徐州师范大学学报(自然科学版),1999,17(2):54-56
    [175]范成新等,梅梁湖和五里湖水-沉积界面的物质交换,湖泊科学,1998,10(1):73-78
    [176]Fan Chengxin et al., Preliminary study on the ecaluation of sludge-dredging work in Lake Kassumigaura using large-size core sample, Proceeding of 6th International Conference on the Conversation and Management of Lakes-Kasumigaura'95, 1995, 3:1890-1893
    
    
    [177]陈宜宜等,西湖底泥中酶活性与养分释放的关系,浙江农业大学学报,1997,23(2):171-174
    [178]Schananing M T et al., Interaction between eutrophication and contaminants. Ⅱ. Mobilization and bioaccumulation of Hg and Cd from marine sediments, Mar. Pollut. Bull., 1996, 33:71-80
    [179]Gunnarsson. J. S. et al., Interaction between eutrophication and contaminants. Ⅲ.Mobilization and bioaccumulation of benzo(a)pyren from marine sediments, Mar. Pollut. Bull., 1996, 33:80-90
    [180]Jonsson. P. (ed.), EUCON—Interaction between Eutrophication and Contaminants in the Aquatic Environment, Research Programme for the period 1995-1996 Swedish Environmental Protection Agent Report, 1996, 52:4690
    [181]Jens Skei et al., Eutrophication and contaminants in aquatic ecosystems, Ambio, 2000, 29(4-5): 184-192
    [182]Lambert T. W. et al., Microcystin class of toxins: health effects and safety of drinking water supplies, Environ. Rev., 1994, (2): 167-186
    [183]余冉,富营养化水体中藻类和藻毒素处理,环境导报,2001,4:14-16
    [184]余国忠等,富营养化水源水中藻类控制技术的研究进展,信阳师范学院学报(自然科学版),2000,13(4):482-485
    [185]Jones G. J et al., Understanding and management of cyanobacterial in sub-tropical reservoirs of queensland, Australia, War Sci. Tech., 1998, 37 (2): 161-168
    [186]Daldorph P. H et al., Management and treatment of algae in low land reservoirs in estern England, Wat Sci. Tech., 1998, 37 (2): 57-63
    [187]Fawell J. K et al., Blue-green algae and their toxins analysis, toxicity and environmental control, War Supp., 1993, 11 (3-4): 109-121
    [188]Lafforgue M et al., Selective mechanisms controlling algal succession in Aydat lake, Wat Sci Tech, 1995, 32 (4): 117-127
    [189]罗岳平等,小球藻(Chlorella vulgaris)与高岭土在实验条件正气凝聚沉降行为研究,环境科学学报,1998,18 (3):278-283
    [190]周鑫玉等,用粉煤灰去除富营养化湖水中酶污染物的研究,粉煤灰综合利用,1997,2:41-43
    [191]杨文龙,湖水藻类生长的控制技术,云南环境科学,1999,18 (2):34-36
    [192]Watanabe M F et al., Release of heptapeptide (microsystin) during the process of microcystis aeruginosal, Natural Toxins, 1992, 1: 48-53
    [193]Kenefick S L, Hrudey S E, Toxin release from microcystis aeruginosa after chemical treatment, Wat. Sci. Tech., 1993, 27 (3-4): 433-440
    [194]Everall N C, Lees D R, The use of barley-straw to control general and bluegreen algal growth in a derbyshire reservoi, War. Res., 1996, 30 (2): 269-276
    [195]尹大强等,稀土元素对富营养化水体中藻类增长的影响,环境科学,1998,5:56-59
    [196]章健等,稀土元素对水体中藻类生长的影响,生物学杂志,1997,14(4):34-35
    [197]熊谷光彦、高村义亲等,蓝藻 Microcysitis aeruginoca 水生微生物 Moraxella nonliquefaciens 相互作用,Jpn., J. Limn., 1986, 47 (3): 219-228
    
    
    [198]Dakhama A et al., Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa, J. Appl. Phycol., 1993, 5:297-306
    [199]David R, et al., DNA: ATP rations in marine microalgae and bacteria: implications for growth rate estimates based on rates of dna synthese, J. phycol., 1995, 31:215-223
    [200]赵以军等,有害藻类及其生物防治的基础—藻菌关系的研究动态,水生生物学,1996,20(2):176-181
    [201]袁峻峰等,中性柠檬酸菌对几种常见藻类生长的他感作用,淡水渔业,1999,29(4):12-15
    [202]任翱,应用微生物组合技术治理富营养化水体的研究,上海环境科技,1999,18(5):25-29
    [203]李雪梅等,有效微生物群控制富营养化湖泊蓝藻的效应,中山大学学报(自然科学版),2000,39(1):81-85
    [204]潘立勇等,利用微生物消除故黄河藻类的初步研究,环境科学与技术,2001,3:39-41
    [205]比嘉照夫,地球救大变革,东京:株式会社,1994
    [206]李维炯、倪永珍,EM(有效微生物群)的研究与应用,生态学杂志,1995,14(5):58-62
    [207]康白主编,微生态学,大连:大连出版社,1998,106-110
    [208]比嘉照夫,救世自然农法EM技术,财团法人,自然农法国际研究开发,1992,15-18
    [209]朱章玉等,光合细菌的研究及其应用,上海:上海交通大学出版社,1991
    [210]杨长平,EM(有效微生物)的研究综述,四川农业科技,1997,6:20-23
    [211]李维炯、倪永珍,EM有效微生物的研究与应用,天津畜牧兽医,1995,12(4):1-4
    [212]马月玲,EM——生物工程技术在农业上的应用,天津农林科技,1998,3:42-43
    [213]倪永珍,EM技术应用研究,北京:中国农业大学出版社,1998
    [214]陈丽嫒等,有效微生物群EM的应用及研究现状,微生物学杂志,2000,20(2):54-59
    [215]王冬梅、郭书贤等,EM技术在酒精糟综合利用上的研究,粮食与饲料工业,1998,4:25-27
    [216]王平、李科林等,啤酒糟EM生物转化的初步研究,中南林学院学报,1999,1:35-38
    [217]王冬梅、郭书贤等,EM技术在啤酒糟发酵饲料上的应用研究,粮食与饲料工业,1999,4:25-26
    [218]比嘉照夫,EM环境革命—EM情报大百科,东京:综合株式会社,1995,299-348
    [219]邵青,有效微生物及其在乡镇给排水中的应用,中国农村水利水电,2001,4:32-33
    [220]朱亮等,EM在污水生物降解中的试验研究,环境工程,2001,19(6):15-16
    [221]邵青,EM对生活污水常见污染物的去除效果,中国给水排水,2001,3:10-13
    [222]邵青,EM除磷效果初探,工业水处理,2001,21(2):16-19
    [223]李捍东等,优势复合菌群用于城市生活污水净化新技术的研究,99北京中美水处理技术国际研讨会论文集,1999
    
    
    [224]黄永春等,有效微生物制剂(EM)对建鲤生长和水质变化的影响,集美大学学报(自然科学版),1999,4(1):41-46
    [225]厉以强,EM及有效微生物群新技术,环境导报,1997,3:43
    [226]李少英等,EM 液在贮藏过程中的主要微生物数量的变化规律,内蒙古畜牧科学,1998,3:8-10
    [227]国家环保局,水和废水监测分析方法(第三版),北京:中国环境科学出版社,1994
    [228]贾乃光主编,数理统计(第二版),北京:中国林业出版社,1993
    [229]胡家骏、周群英编著,环境工程微生物学,北京:高等教育出版社,1997
    [230]王洪臣等编著,城市污水处理厂运行控制与维护管理,北京:科学出版社,1997
    [231]秦麟源等编著,废水生物处理,上海:同济大学出版社,1989
    [232]山根靖弘等著,贺振东等译,环境污染物质与毒性,成都:四川科技出版社,1987
    [233]Dangcong P, Bernet N et al., Effcets of oxygen supply methods on the performance of a Sequencing Batch Reactor for high ammonium nitrification, Water Environ. Res., 2000, 72 (2): 195-200
    [234]Nguyen A, Sheldon J B et al., Application of feedback control based on dissolved oxygen to a fixed-film Sequencing Batch Reactor for treatment of brewery wastewater, Water Environ. Res., 2000, 72 (1): 75-83
    [235]程树培主编,环境生物技术,南京:南京大学出版社,1994
    [236]奚旦立等编,环境监测(修订版),北京:高等教育出版社,1995
    [237]唐受印、戴友芝等编,水处理工程师手册,北京:化学工业出版社,2000
    [238]龙腾锐等,变速生物滤池处理城市污水的效能研究,中国给水排水,2002,1,15-20
    [239]殷培杰,SBR 及其复合工艺在南方城市小区生活污水处理中的应用,中南林学院硕士学位论文,2001
    [240](内部资料)建设部中南设计院,株洲市龙泉污水处理厂工程初步设计书,2000
    [241]国家城市给水排水工程技术研究中心,给水排水工程概预算与经济评价手册,北京:中国建筑工业出版社,1993
    [242]章宗涉、黄祥飞编著,淡水浮游生物研究方法,北京:科学出版社,1991
    [243]韩茂森等编绘,淡水浮游生物图谱,北京:农业出版社,1983
    [244]刘建康主编,高级水生生物学,北京:科学出版社,1999
    [245]高玉荣等,氮磷对污水净化中藻类叶绿素含量的影响,水生生物学报,1995,19(4):289-298
    [246]黄世玉、黄邦钦,不同磷源对藻类生长及其生化组成的影响,台湾海峡,1997,16(4):458-463
    [247]史绮等,水体增温对浮游藻类的影响研究,苏州城建环保学院学报,1999,12(6):6-11
    [248]梁文懂、米本年邦,绿藻的光培养及其生长机理研究,武汉冶金科技大学学报(自然科学版),1999,22(3):248-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700