用户名: 密码: 验证码:
西藏改则地区金矿成矿规律和找矿方向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏是我国重要的黄金产地之一,尤其班公错—怒江结合带,自古以来就是西藏的重要产金地,沿着班公错—怒江结合带一线,尚遗留有大量的古代采金遗迹。近10余年来,地质工作者在班公错—怒江结合带做了一些工作,证实该带是西藏最重要的黄金成矿带。随着找矿工作的开展,取得了一定的成果。但是随着西藏第一个大型金矿—崩纳藏布金矿探明并开采成功以来,受眼前利益的驱动,金矿工作处于遍地开花的局面,而理论研究工作却未受到应有的重视,以致岩金勘查工作未有明显的突破,影响了该区找矿工作布署和对该区找矿潜力的评价。西藏作为世界最大环球成矿带之一的阿尔卑斯—喜玛拉雅成矿带的重要组成部分,具有得天独厚的成矿条件,本应受到最大限度的重视,但因地处高原、气候恶劣、交通不便,长期以来一直是我国地质工作最落后的地区。随着西部大开发这个历史机遇的到来和科学技术水平的提高,利用新理论、新方法、新技术、新手段对该区进行以指导生产为主的科研工作,将是正确评价其找矿远景,指导找矿的行之有效的措施。
     本论文以藏北改则地区为重点研究区,以区域成矿系统理论为指导,采用地质学、岩石学、矿床学、成因矿物学、同位素年代学以及物、化、遥相结合的方法,对改则地区的地质构造、岩浆活动、物化遥异常、各地质体的含金性及金的赋存状态、金与相关元素的组合特征、典型矿床特征、成矿时代、成矿过程及矿床形成后的破坏作用等进行了较详细的研究。
     研究结果表明,区内金矿的形成不是孤立的,它与羌塘—三江板片和冈底斯—念青唐古拉板片的离散-俯冲-碰撞等一系列区域构造事件直接相关。在早-中侏罗世班公错—怒江边缘海扩张过程中,海底岩浆及其热液作用,为侏罗系木嘎岗日群和雁石坪群部分层位提供了大量的矿源,使其成为初始矿源层;早白垩世晚期,羌塘地块和冈底斯—念青唐古拉地块碰撞拼贴,造成了有利的构造条件、岩浆条件、成矿流体条件,形成矿床。
     归纳起来,本文取得的新成果和新进展有以下几方面:
     1.根据翟裕生院士的区域成矿学理论,对西藏改则地区区域构造背景、金矿床成矿控制因素及其产物、矿床形成后变化和保存的条件及机理、成矿系统的时空结构和物质结构等方面进行了较为系统的研究,并在此基础上尝试建立了区域成矿系统模型,为今后在该区部署金矿地质工作,提供了一定的理论依据。
     2.对该区与成矿有密切关系的脉石英进行了成矿流体方面的研究。通过对石英矿物中的流体包裹体特征、成分、流体水的氢、氧同位素及其物理化学参数的分析与测定,论证了成矿流体的成分及物理化学条件。成矿流体的压力平均为687(10~5Pa),主成矿期成矿温度平均为181℃,推算出成矿时的深度平均为2410 m。成矿过程是在两个体系混合作用下进行的,成矿流体属盐度较低的NaCl-H_2O体系和CO_2-NaCl-H_2O体系,早期和主成矿期成矿流体的盐度和密度没有明显的变化。
     3.为了厘定改则地区金矿成矿热液活动的年代学,在改则地区的两个典型矿区,进行了K-Ar同位素年龄测定。结果表明,热液驱动成矿物质定位矿化开始阶段的年龄值93.86±2.11Ma,主要的金成矿作用发生在晚白垩世早期。
     4.对本区含矿地层、岩浆岩及矿石矿物中微量元素、稀土元素及硫、铅、硅同位素和包裹体中水的氢、氧同位素进行了分析与较为系统的研究,证明本区岩金矿成矿物质主要来源:一是班公错—怒江边缘海扩张时期,海底喷流-炭质沉积及海底火山沉积作用,形成初始矿源层;二是冈底斯—念青唐古拉地块和羌塘地块碰撞拼贴时期,在岩浆演化过程中,岩浆热液系统中的成矿物质逐渐在晚期浓集,并在合适的构造部位形成矿床。
Tibet is one of most significant gold-bearing areas in China Especially, Bangongcuo-Nujiang suture zone has long been an important gold-producing district since ancient time. There are still lots of gold mining remainders along Bangongcuo-Nujiang suture zone. Quite a lot geological survey and exploration in the suture zone have been done in last decade, proving that it is the most important gold metallogenic belt in Tibet. With the development in both theory and technology of mineral exploration, considerable progress has been made in mineral exploration in the belt. However, while gold mining bloomed all over Tibet, driven by momentary benefits, theoretical research has not been paid enough attention to since the first large gold deposit (Bongnazangbu) in Tibet was successfully prospected and mined. It gave negative effects on the assessment of potential of gold resources and exploration. As a result, no breakthrough in exploration of primary gold deposits has been made so far. Tibet as an integrate part of
     Alps-Himalayan metallogenic belt, one of giant word-class metallogenic belts, posses favorable conditions for the formation of gold deposits. Therefore, it should have been paid the most attention. Nevertheless, it remains the most underdeveloped region in geological survey and research in our country because of extremely high altitude and very bad traffic. Facing to a historical opportunity of large-scale exploitation of me West and advancement in science and technology, it is wise to conduct exploration-aiming research by using new theories, technology and methods so as to make correctly assessment of potential of gold resources and raise efficiency of gold exploration.
    Under the theory of regional metallogenic system, this paper, focusing on Gaize district in Tibet, conducted carefully research in geological structure, magma activity, geophysical anomaly, geochemical anomaly, gold-bearing geological bodies and gold occurrence state, association of gold with other related elements, characteristics of typical deposits, metallogenic age, metallogenic process, post-ore-forming destruction of deposits in Gaize district based on methods of geology, petrology, economic geology, genetic mineralogy, isotopic chronology, geophysical and geochemical prospecting, and remote sensing.
    The results suggest that the formation of gold deposits was related closely to a series of tectonic events during the period of dispersion-subduction-collision between Qiangtang-Sanjiang plate and Gangdise-Nianqingtanggula plate.
    It seems that submarine magmatism and hydrothermal activity provided abundant ore-forming material for partly strata of Mogaganri and Yanshiping formations during the extension of Bangongcuo-Nujian marginal sea in early-middle Jurassic. Therefore parts of Jurassic Mogaganri and Yanshiping formations became original source of ore-forming material. In later early Jurassic, the collision and collage between Qiangtang block and Nianqing-Tanggula block made favorable conditions in geological structure, magma and ore-forming fluids for the formation of gold deposits.
    New results and progress in this paper are summarized as follows:
    1. A model of regional metallogenic system in Gaize district has been established according to Zhai Yusheng's regional metallogenic theory on the basis of studies of tectonics settings, controlling factors and products of the formation of gold deposits, changes and preserving conditions of the deposits and their mechanism after the formation of the deposits, and the time-space structure and material structure of metallogenic system. This model will be helpful to deploying gold exploring in the region interested.
    
    
    2. Considerable progress has been made in the study of ore-forming fluids. The composition and physicochemical condition of ore-forming fluids were determined by the analysis of chemical composition, 6 D, 18O and physical chemistry parameters of fluid inclusions in quartz veins, which are closely related to gold mineralization in Gaize area. It was estimated the ore-f
引文
1.常承法等,喜马拉雅地质发展史构造带的划分和隆起原因探讨,国际交流地质学术论文集(1),北京,地质出版社,1980
    2.陈文寄、李齐、周新华等,西藏高原南部两次快速冷却事件的构造意义,地震地质,1996,18:109~115
    3.陈毓蔚、许荣华,西藏南部中酸性岩中锆石铀—铅计时讨论,地球化学,1981,(2):128~135
    4.崔之久、高全训、刘耕年等,夷平面、古岩溶与青藏高原隆升,中国科学(D辑),1996,26:378~385
    5.戴潼谟、洪阿实,~(40)Ar/~(39)Ar计时及西藏南部喜马拉雅期几个黑云母年龄的测定地球化学,1982,1:48~55
    6.戴潼谟、朱炳泉等,从花岗闪长岩的~(40)Ar/~(39)Ar年龄谱分析探讨印度—巽他—欧亚板块碰撞与热动力作用历史,地球化学,1986,2:97~107
    7.邓晋福、赵海玲、莫宣学等,中国大陆根-柱构造—大陆动力学的钥匙,北京,地质出版社,1996
    8.邓万明、孙宏娟,青藏高原新生代火山活动与高原隆升关系,地质论评,1999,Vol 45(Sulp.):952~958
    9.邓万明,中昆仑钾玄质火山岩的地质、地球化学和时代,地质科学,1991,(3):193~206.
    10.丁林、钟大赉,青藏高原岩石圈结构演化和动力学,广东科技出版社,1998,381~417
    11.董文杰、汤懋苍,青藏高原隆升和夷平过程的数值模型研究,中国科学(D辑),1997,27:65~69
    12.杜光树等,西藏金矿地质,西南交通大学出版社,1993
    13.傅昭仁等,变质核杂岩及剥离断层的控矿构造解析,武汉,中国地质大学出版社,1992
    14.桂训唐、成忠礼、王俊文,西藏拉萨冈底斯岩带中酸性岩类的Rb-Sr同位素研究,地球化学,1982,(3):217~225
    15.郭铁鹰、梁定益、张益智等,西藏阿里地质,武汉,中国地质大学出版社,1991
    16.黄汲清、陈炳蔚,中国及邻区特提斯海的演化,北京,地质出版社,1997
    17.江博明,太古代岩石的定年—方法学和局限性的讨论,地球化学,1989,2:103~119
    18.金成伟,西藏拉萨曲水花岗岩类岩基中的包体—岩石学报,2卷,2期,1986
    19.金成伟、许荣华,喜马拉雅和冈底斯山脉中段的花岗岩类(李光芩和J.L.麦尔西叶主编,中法喜马拉雅考察成果),北京,地质出版社(1980),273~294
    20.赖绍聪,青藏高原新生代三阶段造山隆升模式:火成岩岩石学约束,矿物学报,2000,20(2):183~190
    21.李华芹等,热液矿床流体包裹体年代学研究及其地质应用,北京,地质出版社,1993
    22.李吉均、方小敏、马海洲等,晚新生代黄河上游地貌演化与青藏高原隆起,中国科学(D辑),1996,26:36~322
    23.李吉均、文世宣、张青松等,青藏高原隆起的时代、幅度和形式的探讨,中国科学,1979(6):608~616
    24.李家振、张有瑜、骆红羿,1992,西藏当雄羊应乡地热田新生代火山岩特征及其成因探讨,现代地质,Vol.6,No.1:96~109
    25.李秋生、王建平,西藏东部丁青—怒江蛇绿混杂岩带的地质特征(张旗主编:蛇绿岩与地球动力学研究),北京,地质出版社,1996b:195~198
    26.李秋生、王建平,西藏班公湖—怒江蛇绿岩带东段古特提斯蛇绿岩(中国地质学(编),“八五”地质科技重要成果学术交流会议论文选集),北京,冶金工业出版社,1996a:161~164
    27.李璞、戴潼谟等,西藏希夏邦马地区岩绝对年龄数据的测定,科学通报,1965,(10):925~926
    28.李廷栋,青藏高原隆升的过程机制,地球学报,1995,(1):1~9
    29.李廷栋、郑英龙,青藏高原早期地质调查研究史略(王鸿祯主编:中国地质学科发展的回顾—孙云铸教授百年诞辰纪念文集),武汉,中国地质大学出版社,1995,209~215
    30.李胜荣、邓军、侯增谦、肖润等,西藏冈底斯带区域性断裂与金矿化剥蚀程度:Ag/Au比值的启示,中国
    
    科学,2001,31(增刊)
    31.李舒等,中国金矿床工业类型及其特点,北京,地震出版社,1999
    32.李曙光、陈移之、张国伟等,一个距今10亿年侵位的阿尔卑斯型橄榄岩体,北秦岭晚元古代板块构造体质的证据,地质论评,1991b,37(3):235~241
    33.刘丛强、解广轰、增田彰正,中国东部新生代玄武岩的地球化学(Ⅱ):Sr、Nd、Ce同位素组成,地球化学,1995,24(3)
    34.刘丛强、解广轰、增田彰正等,新疆于田县康苏拉克新生代火山岩Sr、Nd、Ce、O同位素及微量元素地球化学,科学通报,1989,23:1893~1906
    35.刘若新主编,中国新生代火山岩年代学与地球化学,北京:地震出版社,1992
    36.罗建宁,论特提斯形成与演化的墓本特征,特提斯地质(19),北京,地质出版社,1995
    37.罗建宁、张正贵等,三江特提斯沉积与成矿,北京,地质出版社,1992
    38.莫宣学等,三江特提斯火山作用与成矿,1993,北京,地质出版社
    39.莫宣学等,三江中南段火山岩—蛇绿岩与成矿,北京,地质出版社,1998
    40.潘桂棠等,东特提斯地质构造形成演化,北京,地质出版社,1997
    41.潘桂棠、王培生、徐耀荣等,青藏高原新生代构造演化,北京,地质出版社,1990:32~58
    42.邱瑞照、周肃等,香花岭花岗岩稀土元素演化,现代地质,2002,3:53~58
    43.宋全友,措勤盆地林子宗群火山岩地球化学特征,地质力学学报,1999,5(2):65~70
    44.孙鸿烈,青藏高原研究的新进展,地球科学进展,1996,11(6):525~528
    45.谭富文、潘桂棠、徐强,羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升,岩石矿物学杂志,2000,19(2):121~130
    46.同位素地质样品分析方法(DZ—T 0184.1-0184.22~1997),中国标准出版社,1997
    47.涂光炽、张玉泉,西藏南部花岗岩类地球化学,科学出版社,1982
    48.涂光炽、张玉泉、赵振华等,西藏南部花岗岩的特征和演化,地球化学,1981,1:1~7
    49.王碧香、张元奇、周剑雄,西藏拉萨—麻江地区火山岩中熔融包裹体的研究(喜马拉雅地质文集编辑委员会编辑,喜马拉雅地质Ⅱ—中法合作喜马拉雅考察1981年成果之一),北京,地质出版社,1984:183~204
    50.王碧香、叶和飞、彭勇民,青藏羌塘盆地中、新生代火山岩同位素地球化学特征及其意义,地质论评,1999,45(增刊):946~951
    51.王增、申屠保涌、丁朝建等,藏东花岗岩类及其成矿作用,成都,西南交通大学出版社,1995
    52.王松产,西藏冈底斯火山弧东段林子宗火山岩系特征(李光芩和J.L.麦尔西叶主编,中法喜马拉雅考察成果),北京,地质出版社,1980:305~319
    53.王天武等,西藏冈底斯地区早第三纪林子宗群火山岩地球化学特征及成因,地质论评,1999,Vol.45 Sup:966~971
    54.王希斌、鲍佩声、邓万明著,西藏蛇绿岩,北京,地质出版社,1987
    55.武警黄金指挥部,砂金矿勘查工作手册,原于能出版社,1988
    56.吴功建、肖序常,揭示青藏高原的隆升—青藏高原亚东—格尔木地学断面,地球科学,1996,21(1):34~40
    57.吴锡浩、安芷生,黄土高原黄土—古土壤序列与青藏高原隆升,中国科学D辑1996,26/22,103
    58.西藏自治区地质矿产局,西藏自治区区域地质志,北京,地质出版社,1993
    59.西藏自治区地质矿产局,西藏自治区区域矿产总结,江苏,内部出版,1994
    60.西藏自治区地质矿产局,西藏自治区岩石地层,北京,中国地质大学出版社,1997
    61.西藏自治区区调大队,区域地质调查报告(1:1百万日土幅),地质出版社
    62.西藏自治区区调大队,区域地质调查报告(1:1百万改则幅),地质出版社
    63.肖序常、王军,青藏高原构造演化及隆升的简要评述,地质论评,1998,44(4):372~381
    
    
    64.熊清华,西藏曲水岩基4个系列花岗岩类的特征及构造意义,1998,17(4):347~352
    65.邢光福、沈渭洲、王德滋等,南极乔治王岛中-新生代岩浆岩Sr、Nd、Pb同位素组成及源区特征,岩石学报,1997,13(4)
    66.许荣华、成忠礼、桂训唐等,西藏聂拉木群主变质时代的讨论,1986,岩石学报,2:13~21
    67.许荣华、金成伟,西藏曲水岩基地球化学研究,地质科学,1984,4:414~422
    68.许志琴、姜枚、杨经绥,青藏高原北部隆升的深部构造物理作用,地质学报,1996,70(3):195~206
    69.尹安,喜马拉雅-青藏高原造山带地质演化—显生宙亚洲大陆生长,地球学报,2001,22(3):194~230
    70.游再平,西藏丁青蛇绿混杂岩~(40)Ar—~(39)Ar年代学,西藏地质,1998,2:24~30
    71.于津生主编,中国同位素地球化学研究,科学出版社,1997
    72.翟裕生等,大型构造与超大型矿床,北京,地质出版社,1997
    73.翟裕生等,区域成矿学,北京,地质出版社,1999
    74.赵崇贺、李国良,阿里地区蛇绿岩(郭铁鹰等,西藏阿里地质),武汉,中国地质大学出版社,1991:201~261
    75.赵志丹、莫宣学、张双全等,西藏中部乌郁盆地碰撞后岩浆作用—特提斯洋壳俯冲再循环的证据,中国科学(D辑)待刊
    76.郑剑东,青藏高原形成、演化及动力学研究现状,地质科技情报,1993,12,1:11~1
    77.张浩勇、巴登殊、郭铁鹰等,罗布莎铬铁矿床研究,西藏人民出版社,1996
    78.张旗、张魁武、李达周,横断山区镁铁-超镁铁岩,北京,科学出版社,1992
    79.张玉泉、戴潼谟、洪阿实,西藏高原南部花岗岩类同位素地质年代学,地球化学,1981,(1):,8~17
    80.张玉泉、朱炳泉、谢应雯等,青藏高原西部的抬升速率:叶城—狮泉河花岗岩40Ar-39Ar年龄的地质解释,岩石学报,1998,14/1:11~21
    81.钟大赉、丁林,青藏高原的隆起过程及其机制探讨,中国科学(D辑),1996,26/4:289~295
    82.中国科学院贵阳地球化学所同位素年龄实验室,珠穆朗玛峰地区变质岩系同位素地质年龄测定(珠穆朗玛峰地区科学考察报告1966~1968)(地质),北京,科学出版社,1974
    83.中国科学院贵阳地球化学所同位素地质研究室,中国西藏南部珠穆朗玛峰地区变质岩系同位素地质年龄的测定,中国科学,1973,(3):280~288
    84.中国科学院地质所同位素钾-氩年龄组,西藏南部同位素地质年龄的测定与喜马拉雅运动的分期,地质科学,1979,(1):13~21
    85.周祥,西藏板块构造-建造图及说明书,北京,地质出版社,1989
    86.周云生、张魁武等,喜马拉雅花岗岩带—西藏岩浆活动和变质作用,科学出版社,1981
    87. Allègre et al., Structure and evolution of the Himalaya-Tibet orogenic belt, Nature, 1984,307:17~22
    88. Arnaud N O, Ph Vidal, P Tapponnier at al., The high K20 volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth. Planet Sci lett. 1992, 111. 351~367
    89. Arnaud NO, Vidal Ph, Tapponnier P et al., The high K20 volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet. Sci. Lett. 1993, 111: 351~67
    90. Beck R. A, Burbank P, Hamilton J, et al. Stratigraphic evidence for an early collision between northwest India and Asia, Nature, 1995, 373: 55~58
    91. Burchfiel B C, Molnar P, Zhao Ziyun, et al., Geology evolution of Ulugh Muztagh, northern Tibet; Earth and Planetary Science letters, 1989, (94): 57~70
    92. Chen WP, Molnar P, Constraints on the seismic wave velocity structure beneath the Tibetan Plateau and their tectonic implications, J. Geophys Res., 1981, 86: 5937~5962
    93. Coleman M E, Hodges K. Evidence for Tibet plateau uplift before 14 Myr ago from a new minimum age
    
    for east-west extension Nature, 1995 ,374:49-52
    94. Coleman M E, U-Pb constraints on Oligocene-Miocene deformation and anatexis within the central Himalaya, Marsyandi Valley, Nepal, American Journal of Science, 1998, Summer:553-571
    95. Copeland P, Harrison TM, Episodic rapid uplift of Higher Himalayas by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, begal fan, Geology, 1990, 18:354-357
    96. Coulon,C., Wang, S. et al., Mesozoic and Cenzoic volcanics rocks from central and southern Tibet 39Ar-40Ar dating, petrogical characteristics and geogynamical significance, Earth and Planetary Science Letter, 1986, 79: 281-302
    97. Dewey J F, Bird J M. Mountain belts and new global Tectonics. J. Geophys. Res., 1970, 74(4) : 2625?2 467
    98. Dewey J F, Burke K. Tibetan, Variscan and Precambrian basement reativation: products of continental collision. J. Geol. , 1973,81:683-92
    99. Dewey JF, Burk K, Tibetan,Variscan and Precambrian basement reactivation: products of continental collision, J. Geol., 1973, 81:683-92
    100. England, P. C. & Houseman. G. A., The mechanics of the Tibeat plateau, Philosphical Transactiom of the Royal Society of London, 1988, A326-319
    101. E.W.斯宾塞,地球构造导论,朱志澄等译,北京,地质出版社,1981
    102. Francois Debon, Patrick le Fort, Simon M. F. Sheppard et al., The Four Plutonic Belts of the Transhimalaya-Himalaya: a Chemical, Mineralogical, Isotopic, and Chronological Synthesis along a Tibet-Nepel Section Journal of Petrology Vol.27, Part 1, pp219-250, 1986
    103. Gaetani M, Garzanti E., Multicyclic history of the northern India continental margin(northwestern Himalaya), Am. Assoc. Pet. Geol. Bull. , 1991, 75:1427-46
    104. Gansser A. The Geology of the Himalayas. Interscience Pub. John Wiley and Sons, New York: 1964, 1-289
    105. Gopel C.Allegre C J. Xu ronghua Lead isotope study of the Xigaze ophiolits(Tibet): the problem of the relationship between magmatites(gabbros, dolerites, lavas and tectonites(harzbergites) Earth Planet Sci. Lett. 1984, 69: 301-310
    106. H. Maluski, F. Proust X.C.Xiao 39Ar/40Ar dating of the trans-Himalayan calc-alkline magmatism of southern Tibet, 1982 Nature Vol.298 152-156
    107. H.马吕斯基,P.普鲁斯特,肖序常,西藏南部外喜马拉雅山钙碱性岩浆作用的年龄:利用39Ar/40Ar方 法获得的初步结果,见:李光芩和J.L.麦尔西叶主编,中法喜马拉雅考察成果(1980) ,322~326,北京:地质出版 社
    108. Harris, N. B. W., Inger, S., and Xu, R., 1990. Cretaceous plutonism in central Tibet: an example of post-collision magmatism?. Journal of Volcanology and Geotheraml Research, 44:21-32.
    109. Harrison T, Copelead P, Kidd W S F et al., Raising Tibet Science, 1992, 255:1663-1670
    110. Jaeger J-J, Courtillot V, Tapponnier P. Paleontological view of the ages of the Deccari traps, the Cretaceous/Tertiary boundary and the India-Asia collision. Geology, 1989,17:316-19
    111. Jiang Hai Wang, An Yin, Harrison, TM., et al., A tectonic model for Cenozoic igneous activities in the eastern Idao-Asian collision zone, Earth Planet Sci. Lett. 2001, 188:123-133
    112. Kazuo Amano, Asaira Taira. Two-prase uplift of Higher Himalayas since 17Ma, Geology, 1992,20:391-394
    113. Klootwijk CT, Conaghan PJ, Nazirullah R, et al. , Further palacomagnetic data from Chitral (Eastern Hindukush) : evidence for an early India-Asia contact. Tectonophy. 1994, 237:1-25
    
    
    114. Klootwijk CT, Gee FS, Peirce JW, et al., An early India contact: paleomagnetic constraints from Ninetyeast Ridge,ODP Leg 121. Geology, 1992, 20:395-98
    115. Li. Q. & Chen, W. J., The rapid colling of Gandese Batholith(GB) and it' s Tectonic implication, Chinese Science Bulletin, 1998, 43 Supp. :74
    116. Li-Cai, The 40Ar/ 39Ar age and its significance of the crossite from the blueschists in the mid-Qiangtang area, Tibet. Chinese Science Bulletin. 1997,42(1) :88
    117. Lisa Gilley, T. Mark Harrison, F. J. Ryerson et al., Dirct dating of lelf-lateral slip along the red river shear zone, .地学前缘,2000,7(增刊):275
    118. Mahoney JJ, Frei R, Tejada MLG et al. Tracing the Indian Ocean mantle domain through time: Isotopic results from old West Indian, East Tethyan, and South Pacific seafloor, Journal of Petrology, 1998, 39 (7) : 1285-1306
    119. Mckenna LW., Walker JD., Geochemistry of Crustally dereved leucocratic igneous rocks from the Ulugh Muztagh Area, Northern Tibet and their implications for the formation of the Tibetan Plateau.. J.Geophys Res., 1990, 95 (B13) : 21, 483-502
    120. Mckenna, L. W. and Walker, J. D. Geochemistry of crustally derived leucocrtic igneous from the Ulugh Muztagh area, Northern Tibet and their implication for the formation of the Tibetan Plateau, J. Geophys. Res., 1990, 21483-21502
    121. Mock, C., Arnaud, NO., Cantagrel, JM., An-early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range(Qianghai, NW China), Earth and Planetary Science Letters, 1999, 171:107-122
    122. Molnar P, England P,Martinod J. Mantle dynamics, the uplift of the Tibetan Plateau and Indian monsoon. Rev. Geophys. 1993, 31:357-96
    123. Molnar P, Tapponnier P. Cenozioc tectionics of Asia; ontinental collision. Science, 1975. 189:419-26
    124. Molnar P, Burchfiel B C, Zhao Ziyun, et al., The geologic evolution of north Tibet; Results of an expedition to Ulugh Muztagh, Science, 1987, 235-280
    125. Ni J, Barazangi M. Seismotectonics of the Himalaya collision zone: geometry of the underthrusting India plate beneath the Himalaya. J. Geophys. Res. 1984, 89:1147-1163
    126. Philippe Patriat and Jose Achache. India-Eurasia collisiona chronology has implications for drustal shortening and driving mechanism of plates, Nature, 1984, 311: 615-621
    127. P.J.威利,动力地球学,朱夏译,北京,地质出版社,1978
    128. Powell CM. .Conaghan PG., Plate tectonics and the Himalayas. Earth Planet Sci. lett., 1973, 20:1-12
    129. Prell WL., Kutzbach JE., Sensitivity of the Indian monson to forcing parameters and implications for its evolution Nyainqentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plataeu. Nature, 1992,360,647-652
    130. R. H. Xu, U. Scharer and C. J. Allege, Magmatism and metamorphism in the Lhasa block(Tibet): an U-Pb geochronological study J. Geol. 1985,93,41-57,
    131. Rat S L, Frisch W, Chen C, et al., Deformation and motion along the southern margin of the Lhasa Block (Tibet) prior or/and during the India-Asia collision. Journal of Geodynamics, 1992, 16(1-2) :21-54
    132. Raymo ME. And Ruddiman WF., Tectonic forcing of late cenzoic climate. Nature, 1992, 359,117-122
    133. Rowley DB, Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J. Geol. 1998,106:229-35
    
    
    134. Ruddiman, W, Early uplift in Tibet? Nature, 1998, 394:723-725
    135. R.W.博伊尔,金的地球化学及金矿床,马万均等译,北京,地质出版社,1984
    136. S.Turner, N. Arnaud, J.Liu et al. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts, Journal of petrology, 1996, 37, 45-71
    137. Shackleton R M、常承法,青藏高原新生代隆起和变形:地貌证据(青藏高原地质演化-中、英青藏高原 综合地质考察队),北京,科学出版社,1990:372~383
    138. Shi X, Yin J, Jia C. Mesozoic to Cenozoic sequences stratigraphy and sea-level changes in the Northern Himalayan, southern Tibet, China. Newsl. Stratigr, 1996. 33: 15-61
    139. Sun-Lin Chung, Ching-Hua Lo, Tung-yi Lee et al. Diachronous uplift of the Tibetan plateau start ing 40 Myr age. Nature, 1998,394: 769-773
    140. T.Mark Harrison, Oscar M. Lovera, Marty Grove New insights into the origin of two contrasting Himalayan granite belts, Geology, 1997, 25 (10) :899-902
    141. Tapponnier, P. Peltzer, G. Le Dain et al. , Propagating extrusion tectonics in Asia, new insights from simple experiments with plasticine. Geology, 1982, 10:611-616
    142. Tapponnier, P and Molnar, P. Active faulting and Cenozoic ectonics of China. Geophys. Res,, 1977,84:3425-3459
    143. Turner S, Hawksworth C J, Lin J Q et al., Timing of Tibetan uplift constrained by analysis volcanic rocks, Nature, 1993, 364,50-53
    144. Urs Scharer, Jean Hamet and Claude J. Allegere, The Transhimalaya(Gangdese) Plutonism in the Ladakh region: a U-Pb and Rb-Sr study , Earth and Planetary Science Letters, 1984,67:327-339
    145. Urs Scharer, Rong-Hua Xu and Claude J.Allegere, U-Pb geochronology of Gangdese (Transhimalaya) Plutonism in the Lhasa-Xigaze region, Tibet Earth and Planetary Science Letters, 1984,69:311-320
    146. Willems H., Zhou Z., Zhang B., Graf e K-U., Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol. Rundsch. 1996,85:723-54
    147. Willems H, Zhou Z, Zhang, B, et al., Stratigraphy of the Upper Cretaceous and lower Tertiary strata in Tethyan Himalayas of Tibet (Tingri area, China). Geol. Rundsch, 1996,85:723-54
    148. W.K.汉布林,地球动力系统,殷维翰等译,北京,地质出版社.1980
    149. Wortel M J R, Hansen U, Sabadini R, Convective removal of thermal boundary of thickened continental lithosphere:a breif summary of causes and consequences with special reference to the Tibetan plateau and surrounding regions, Tectonophysics, 1992, 233(1-2) :67-73
    150. Xiongwei Hu, Rongfu Pei, Su Zhou, Sm-Nd Dating for Antimony Mineralization in the Xikuangshan Deposit, Hunan, China, RESOURCE GEOLOGY, 1996. 4, Japan
    151. Zhao W, Nelson K D&Project INDEPTH Team. Deep seismic reflection evidence for continental India underthrusting beneath S.Tibet. Nature. 1993,366:557-559

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700