用户名: 密码: 验证码:
超高压管式反应器安全工程中损伤问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高压管式反应器(以下简称反应器)是聚乙烯生产装置中关键设备之一,其运行是否安全可靠直接关系到企业的产值、利润,甚至人的生命。反应器安全工程中的损伤问题研究是工程界和理论界急需解决的现实问题。对这一问题进行探索性的研究,将为反应器安全研究和工程中制定合理检维修计划,提供可依赖性的理论依据。
     针对实际工程提出的问题,论文试图在损伤力学的层面上揭示反应器的损伤机理。从损伤力学理论的角度,结合试验,对反应器的自增强损伤机理、反应器疲劳损伤寿命、热冲击下反应器残余应力的衰减等问题展开研究工作。
     由反应器工作的现场提取试样,依据反应器实际运行条件(温度、压力等)和服役史(运行记录),进行了一系列反应器材料30CrNiMo8钢的常规力学试验和疲劳损伤试验。反应器的疲劳试验结果充分反映了反应器材料在不同应力应变水平下的疲劳寿命。这对该反应器进行检验与评定提供了可靠的数据。由于该钢材为引进材料,国内对这种型号的钢材料还没有进行系统的研究,因此,本试验结果将为国内该材料反应器的设计及维护提供可靠的数据基础。
     在阐述热力学内变量理论与损伤本构方程、各向同性材料耦合损伤理论的基础上,建立了非线性损伤本构方程等损伤理论模型。研究了反应器自增强损伤的机理。采用细观力学的方法,建立并给出了损伤区和判定初始损伤区的条件;指出用损伤技术使反应器圆筒产生自增强的原因,是由于其材料内部细观结构的变化。从残余应力计算中可知,采用损伤力学原理,使厚壁圆筒产生自增强的效果,从理论上是可行的。
     反应器裂纹萌生寿命是衡量反应器安全等级的重要参量,进行反应器的疲劳试验和疲劳损伤分析是反应器安全损伤研究的必须环节。由疲劳循环和损伤间存在耦合关系出发,从唯象的角度,基于低周疲劳试验和高低循环复合疲劳试验,建立并确定了裂纹萌生寿命的疲劳损伤模型。进一步给出弹、塑性光滑试件疲劳裂纹萌生寿命弹性解、塑性解和弹塑性通解的公式。该公式具有一个反映结构形状与边界条件约束的影响函数f(ξ),其中ξ与即时周期的应力、应变分布相关,因而它不仅考虑了材料本身的疲劳特性,同时还考虑具体结构特性和环境载荷的作用情况。与Manson-coffin公式相比,公式具有的准确性和适用性,不仅为工程实际问题的解决提供了方便,而且在理论上具有创新性。
     应用损伤理论和实验进行了反应器实际工况的疲劳损伤分析,确定了反应器实际裂纹萌生寿命,得出反应器的有效损伤半径和影响参数及影响参数的函数值,从而给出裂纹萌生寿命的设计曲线及计算公式。这些为反应器的安全评估提供了理论和实验的参考依据。
    
    哈尔滨工程大学博士学位论文
     提出了疲劳寿命的减少系数凡的概念,给出了计算凡预测结构的疲劳
    寿命的具体过程,这一问题的研究使以平滑材料控制应变疲劳试验得出的
    S一N曲线图为基础来预测有损伤材料的疲劳寿命成为可能。
     反应器既要承受上千度异常高温,又要承受温度、压力急剧增加和急剧
    下降的过程,造成了反应器的热冲击损伤。论文研究了反应器承受热冲击作
    用的应力响应,给出了热弹性力学基本方程及方程解,探讨了热应力随时间
    的变化及当量应力与半径的关系,从而为研究反应器减小热冲击损伤提供了
    理论参考。
     对反应器自增强损伤机理和疲劳损伤等问题的研究为超高压容器取材、
    安全性设计以及确保高压容器长期、稳定和安全运行有着建设和指导意义。
Super-high pressure tubular reactor is one of the most important equipments in the productive process of polyethylene. Its safety and reliability are vital to the production, profit and workers' life. Study on the damage problem of reactor safety engineering in theory and practice is necessary and urgent. The exploratory study in the field will provide a reliable theoretical basis for the safety study of reactor and reasonable project of overhaul.
    To the practical engineering issues, the author tries to show the damage mechanism of the reactor in view of damage mechanics. Combined with the tests, the author uses the damage mechanics theory to study the self-reinforced damage mechanism, reactor life of fatigue damage, and the decay of residual stress under thermal impact action.
    According to the practical working condition and operating record, a series of normal mechanics and fatigue damage tests are carried out with the reactor materials (30CrNiMo8), the test materials are obtained from the practical field. The results of fatigue test of reactor manifest the fatigue life of the reactor materials under different strain and stress condition. This provides the reliable data for examination and assessment of the reactor. Because the materials of the reactor are imported, there is no systematic study on the materials. Thus, the experimental results given in the paper will provide reliable data for reactor design and repair with the materials.
    On the basis of expounding the theory of the thermal inner variables, the constitutive equation of fatigue damage, and the coupling damage theory of the homogeneous isotropic materials, the author set up the theory model of constitutive equation of non-linear damage and so on. The self-reinforced damage mechanism was also studied. By the microscopic mechanics, the damage zone and the initial damage condition are given. The cause of self-reinforcement by using the damage technology was point out. that is due to the changes of inner microstructure of the materials. From the calculation results, it is feasible in theory to produce self-reinforced effect of reactor by adopting the damage mechanical principle.
    The producing time of crackle is very important parameter to judge the safe grade of the reactor. Fatigue tests and fatigue damage analysis are very important for study of the reactor safe and damage. Begin with the coupling relationship between the fatigue cycle and damage, based on low cycle fatigue test and combined fatigue test with high and low cycles, the model of fatigue damage for
    
    
    determined the crackle producing time was established in view of the macroscopic aspect, and the general formula with elastic solution, plastic solution and elastic-plastic solution for the reactor crackle life of elastic and plastic smooth work pieces are also given in the paper. The formula is a function /( ξ), effected by the structure shape and the boundary condition restriction, there ξ is related to the distribution of the instant cycle's strain and stress, and it considered not only the fatigue characteristic, but also, the real structure characteristic and the effect of the loading. Compared with Manson-Coffin equation, the formula is more accurate and applicable. It is not only providing a convenience to solve the practical problem, but also innovating in theory.
    By damage theory and test, and analysis the fatigue damage of the reactor in working state, the reactor life of crackle producing was determined. And the effective radium, influence factors and their function values were obtained. Therefore, the designed curve and calculative equation for reactor life of crackle were given in the paper. These are references of theory and test for safety assess of reactors.
    The paper put forward the concept of decrease coefficient (KD), and the actual calculation process of KD for forecasting the fatigue life of the structure. The research made it possible to forecast the fatigue life of damaged materials, and the prediction was based on the S-N curve from the fatigue test of th
引文
[1] 陈国理,陈柏暖,王作池.超高压容器设计.北京:化学工业出版社,1997:1~35页
    [2] 张永弘,黄小平,潘秉智.压力容器断裂与疲劳控制设计.北京:石油工业出版社,1997:125~175页
    [3] 徐灏.疲劳强度.北京:高等教育出版社,1988:1~117页
    [4] 何晋瑞.金属高温疲劳.北京:科学出版社,1988:12~104页
    [5] 曹玉璋,邱绪光.实验传热学.北京:国防工业出版社,1998:21~64页
    [6] 刘康林,黄小平.高压聚乙烯反应管自增强残余应力的无损检测.中国机械工程,2001,12(9):983~985页
    [7] 朱务学,查子初.自增强厚壁圆筒的弹塑性应力分析.力学学报,1987,19(增刊):245~255页
    [8] 包行方.自增强残余应力的衰减对在役高压聚乙烯反应器安全性影响.石油化工设备,1990,11(2):23~28页
    [9] 黄小平,孙庚,潘秉智.自增强管残余应力测量的数据处理方法.广州:全国材料强度、残余应力学术会议论文集,1995:225~231页
    [10] 孙庚,潘秉智.自增强厚壁管残余应力测试边界效应的实验研究.广州:全国材料强度、残余应力学术会议论文集,1995:235~240页
    [11] 潘秉智,朱瑞东等.在役自增强反应器残余应力松弛规律实验研究.压力容器,1994,11(5):403~410页
    [12] 陈国理等.压力容器及化工设备.广州:华南理工大学出版社,1989:157~177页
    [13] 关家锟,柳曾典等.高压聚乙烯装置超高压管失效分析.中国锅炉压力容器安全,1997,13(6):22~25页
    [14] 钟汉通,陈国理等.超高压聚乙烯反应器爆破试验.压力容器,1991,8(2):21~24页
    [15] 翟鹏.SB4反应器超温后的安全分析.压力容器,1998,15(2):1l~18页
    [16] 朱磊,陶晓亚.在役超高压反应器的疲劳强度及裂纹扩展寿命的研究.压力容器,1993,10(2):29~34页
    [17] 柳曾典,朱磊等.在役高压聚乙烯管式反应器的安全性研究.压力容器,1992,9(1):22~48页
    [18] 赵少汴,王忠保.抗疲劳设计-方法与数据.北京:机械王业出版社,1997:68~88页
    [19] 徐芝纶.弹性力学.北京:高等教育出版社.1985:45~70页
    
    
    [20] 虞和济,候广琳.故障诊断的专家系统.北京:冶金工业出版社,1991:86~103页
    [21] 黄载生.超高压容器爆破压力计算.压力容器,1992,9(3):254~258页
    [22] 郑修麟.金属疲劳的定量理论.西安:西北工业大学出版社,1994.
    [23] 化工设备设计全书编辑委员会.超高压容器设计.上海:上海科学技术出版社,1983:57~62页
    [24] 化工设备设计全书编辑委员会.化工设计全书—超高压容器设计.上海:上海科学技术出版社,1984:5~12页
    [25] 潘家祯.美国PVRC所建议的压力容器研究的长远方向及目前国际压力容器界的研究动向.压力容器,1994,11(6):451~455页
    [26] 邵国华.超高压容器设计.上海:上海科学技术出版社,1984:12~52
    [27] 陈国理,钟汉通等.超高压容器的安全性问题.锅炉压力容器安全技术,1989,5(1):12~18页
    [28] 中国机械工程学会材料学会主编.脆断失效分析.北京:机械工业出版社,1993:56~75页
    [29] 1997, 45~48C T
    [30] 高家驹.国内外超高压容器研究动向.第二届超高压容器学术交流会专题报告,1994:435~442页
    [31] 徐鸿.从ICPVT-9看世界压力容器技术发展现状与趋势(二).压力容器,2000,17(6):63~67页
    [32] 徐鸿.从ICPVT-9看世界压力容器技术发展现状与趋势(四).压力容器,2001,18(2):69~82页
    [33] L.P. Antalffy, P N. Chaku, Tatsuo Hasegawa. Modern Hydroprocessing Reactor Damage Categorization, Flaw Assessment and damage repair. ICPVT-9 Proceedings.Sydney, Australia, April 2000,2:429~440P
    [34] 谢凤英.影响压力容器安全可靠性的主要因素.工业生产与技术进步,2000,28(2):127~130页
    [35] 邓世强.茂名10万t/a高压聚乙烯技术简介.现代塑料加工应用,1999,11(2):20~23页
    [36] 高压聚乙烯装置DCS改造总体方案及特殊问题考虑.石油化工自动化,1999,2:53~59页
    [37] 姜宁生.超高压试压筒的定期检验及其疲劳校核.中国锅炉压力容器安全,1993,9(1):30~33页
    [38] 赵正修.石油化工压力容器设计.北京:石油工业出版社,1989:234~
    
    258页
    [39] 李泽震,周泽恭.断裂力学在锅炉及压力容器上的应用.北京:劳动人事出版社,1984:33~124页
    [40] 许忠斌,钟汉通.高压聚乙烯反应器的自增强处理效果分析.仲恺农业技术学院学报,1997,10(1):1~4页
    [41] 郑津津等.多层超高压容器爆破压力研究.化工机械,1994,21(5):271~277页
    [42] 潘秉智,朱瑞东等.自增强理论与实验研究(Ⅰ).大庆石油学院学报,1990,12(1):14~16页
    [43] 西岗邦夫,平川贤尔等。超高压管疲劳设计.高压.1974,2(4):8~15页
    [44] [日]平修二.金属材料的高温强度理论与设计.北京:科学出版社,1983
    [45] Joseph F Throo P Jjohn H. Thermal relaxation in autofrettaged cylinders AD-ALL 13210P
    [46] 王祖荫.内压圆筒应力场对损伤萌生的影响.四川轻化工学院学报,1999,12(3):30~34页
    [47] 程光旭.压力容器低周疲劳寿命的损伤力学理论研究.西安交通大学学报,1994,28(11):59~65页
    [48] 邓增杰,周敬恩编著.工程材料的断裂与疲劳.机械工业出版社.1995:23~56页
    [49] Surech S.著.王中光等译.材料的疲劳.北京国防工业出版社.1993:2~11,226~283页
    [50] M.A. Miner. Applied Mechanics. Trans. ASME. Voi. 12,159~164页
    [51] 吴清可.防断裂设计.北京:机械工业出版社,1995:41~85页
    [52] Paris P C. Erdugam F. Critical analysis of crack propagation laws. Trans. ASME. J. Basic Eng. 1963,85:528~534P
    [53] Paris P C. Gomez M P. etal. A rational analytic theory of fatigue. Trend in Engineering. 1961,13:9~14P
    [54] S.S. Manson. Fatigue Dbehavior in Strain Cycling in the low and Inter-cycle Range, Fatigue An Inter disciplinary Approoch. Syracuse University Press. 1964
    [55] S.S. Manson. Fatigue:A complex Subject-some simple Approximation,J. of Experiment Mechanics. 1965,5(7):5~7P
    [56] T.H. Topper, R.M. Wetzel, J. Dean. Morrow. Neuber's Rule Applied to Fatigue of Notched Speciments. J. of Materials. 1969,4(1):1~3P
    [57] R.M. Wetzel, J. of Material, 1981, (3):646~657P
    [58] R,M. Wetzel, A Method of Fatigue Damage Analysis, Ph.D. Thesis, Dept. of Civil Engineeing, University of Water
    
    loo, Ontario. Canada. 1971
    [59] 仇仲翼.局部应力—应变法的过去、现在和未来.国外航空技术.1984
    [60] 格鲁门公司.根据缺口应力—应变计算疲劳裂纹形成寿命.国外航空技术,1981,27~40页
    [61] 哈宽富.断裂物理基础。北京:科学出版社,2000:12~32页
    [62] 程光旭,楼志文.一种基于材料近性耗散模型的疲劳损伤研究方法.力学学报,1997,25(4):234~239页
    [63] 冯西桥,何树延.表面裂纹疲劳扩展的一种损伤力学方法.清华大学学报,1997,(5):156~162页
    [64] 张行,赵军.金属构件应用疲劳损伤力学.北京:国防工业出版社,1998:1~86页
    [65] Riedel H.A continuum damage approach to creep crack growth,in:Edited by B A Bilby et al. Fundamental of Deformation and Fracture.Cambridge University Press, Cambridge, 1984
    [66] Zhao J and Zhang X. The asymptotic of fatigue crack growth based on damage mechanics. Eng. Fract. Mech.,1995,50(1): 234P
    [67] 朱瑞东,潘秉智.自增强厚壁筒残余应力松弛的研究.石油化工设备,1990:123~129页
    [68] 王洪纲.热弹性力学概论.北京:清华大学出版社,1989:78~94页
    [69] Dillon O W. Thermoelasticisity when the material coupling parameter equals unity. J Appl Mech, 1965,10:378~382 P
    [70] Dillon 0 W. A nonlinear Thermoelasticisity theory. J Mech Phys Solids, 1962,10:123~131P
    [71] Davision L and Stevens A L. Thermo mechanical constitution of spalling elastic bodies. J Appl Phys, 1973,44(2): 668~674P
    [72] Nemes J A, Eftis J and Randles P W. Yiscoplastic constitutive modeling of high strain deformation material damage and spall fracture. J Appl Mech, 1990,57:282~291P
    [73] Meyers M A and Aimone C T. Prog Mat Sci, 1983,28(1): 1~96P
    [74] 马晓青编著.冲击动力学.北京理工大学出版社,1992:64~68页
    [75] 黄筑平等.材料的动态损伤和失效.力学进展,1993,23(4):433~467页
    [76] 卡恰诺夫L M.著.杜善义 王殿富译.连续介质损伤力学引论.哈尔滨工业大学出版社,1989:123~138页
    [77] Rabotnov Y N, Creep problems in structural members, North-Holland, Amsterdam, 1969
    [78] Lemaitre, J. Chaboche, J. L., Aspect phenomenologique de la rupture par endommagemeat, J. Meca, Appl.,1978,2(3):317~365P
    
    
    [79] Cheboche, J. L., and Rousselter, G., On the plastic and viscoplastic constitutive equation- Part Ⅰ: Rules developed with internal variable concept; Part Ⅱ: Application of internal variable concepts to the 316 stainless steel, Journal of Pressure Vessel Technology, 1983,105: 153~158,159~164P
    [80] Krajcinovic, D., Continuum damage mechanics, J. Appl. Mech. Reviews, 1884,37(1):1~6P
    [81] Truesde11, C. A., and Nolls W., The non-linear field theories of mechanic, Handbuch der Physik, Bd. Ⅲ/3, Springer. Berlin, 1965
    [82] Biot M A, Theory of stress-strain relation in anisotropic viscoelasticity and relaxation phenomena, J. Appl. Phys. 1954,25 (11): 1385~1391P
    [83] A C艾林根.连续系统力学.北京:科学出版社,1991
    [84] Coleman, B. D., Gurtin, M.E., Thermodynamics with internal state variable. J. Chem.Phys. 47 1967:597~613 P
    [85] Coleman, B. D., Thermodynamic of materials with memory, Arch Ration Mech. Angl.,1964,17:1~46P
    [86] Krajcinovic D and Fonseka G U, The continuous damage theory of brittle materials. Part 1: general theory, J. Appl. Mech. 1981, 48:809~815P
    [87] Whitmen L, Int. J. Numerical Analy. Methods Geomech.,1985,9:71P
    [88] Budiansky, B. Hutchinson, J_W. and Slutsky, S., Void growth and collapse in viscous solids, Mechanics of solids, the Rodney Hill 60th Anniversary Volume, eds. Hopkins. H.G. and Selvell, M. J., 1982.
    [89] 王自强,段祝平.塑性细观力学.北京科学出版社,1995:148~172页
    [90] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and Related problems, Proc. Roy. Soc., London, A241,1957: 376~396P
    [91] Hill R, Continuummicro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 1965,13:89~101P
    [92] Tanaka, K. and Mori, T., Note on volume integrals of the elastic field around an ellipsoidal inclusions, J. Elasticity, 1972,2: 199~200P
    [93] 唐立强,田德谟.一个压力敏感材料的本构方程.哈尔滨船舶工程学院学报.1994,15(1):6~12P
    [94] 陈会军.泥岩的本构方程及油水井套管剪切破坏机理的研究.哈尔滨:
    
    哈尔滨工程大学.2002
    [95] Gurson, A. L., Continuum theory of ductile rupture by the void nucleation and growth, J. Eagng. Mater. Technology, 1977,99: 234~245P
    [96] McClintock, F.A., A criterion for ductile fracture bythe growth of holes, J. Appl. Mech., 1968,35:363~371P
    [97] Riee, I. R and Tracey, D.M. On the ductile enlargement of voids in triaxil stress fields, J. Mech. Phys. Solids, 1969,17:201~227P
    [98] Ashby, M.F. and Hallam, S. D.. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall.,1986,34: 497~510P
    [99] Horii, Nemat-Nasser S. Overall moduli of solids with microcracks load induced anisotropy. J. Mech. Phys. Solids, 1983,31:155~171P
    [100] Horii ,H. and S. Nemat-Nasser, Brittle fracture in compression: splitting, faulting and brittle - ductile transition. Phil. Trans. Roy. Soc. London. 1986,319:337~374 P
    [101] 高玉臣等.含微裂纹材料的损伤理论.力学学报,1987,19:541~549页
    [102] Carroll M M and Holt A C. Static and dynamic pore collapse relations for ductile porous materials, J Appl Phys,1972,43(4):1626~1635P
    [103] Johnson J N. Dynamic fracture and spallation in ductile solids. J Appl Phys,1981,52 (4):2812~2825P
    [104] Davison L, Stevens A L and Kipp M E. Theory of spall damage accumulation in ductile materials. J Mech Phys Solids, 1977, 25:11~28P
    [105] 黄克智,肖纪美主编.材料的损伤断裂机理和宏微观力学理论.北京:清华大学出版社,1999:7~32页
    [106] 杨卫.宏微观断裂力学.北京:国防工业出版社,1995:67~87页
    [107] 陆明万,罗学富.弹性理论基础,上册.北京:清华大学出版社,2001:71~91页
    [108] Lamailtre. J. Formulation and identification of damage;Kinetic Constitutive eguation. CISM Conrse on Damage Mechanics, UNINE, 1986
    [109] 刘长海,姜民政,唐立强.30CrNiMo8钢的低周疲劳试验.东北林业大学学报,2001,29(4):49~51页
    [110] 刘长海,林玉娟.42CrMo钢机械性能概率统计分布研究.佳木斯大学学
    
    报,1999,25(1):30~34页
    [111]王志文主骗.化工容器设计.北京:化学工业出版社,1998:161~179页
    [112]苏红军,黄小平等.自增强技术研究(Ⅱ).大庆石油学院学报,1995,19(2):78~82页
    [113]苏红军,朱瑞东等.自增强技术软件.大庆石油学院学报,1993,17(4):75~79页
    [114]国家技术监督局.中华人民共和国国家国家标准GB150-1998钢制压力容器.北京:中国标准出版社,1998,174~180页
    [115]国家技术监督局.中华人民共和国国家标准GB4161-80金属材料平面应变断裂韧度K_(IC)试验方法,1980
    [116]国家技术监督局.中华人民共和国国家标准GB2038-80利用J_R阻力曲线确定金属材料延性断裂韧性,1980
    [117]冶金部钢铁物理测试情报网.钢铁材料材料标准试样图汇编.北京:印证号3388-91388,1990:106~107页
    [118]国家技术监督局.中华人民共和国国家标准GB6399-86,1986
    [119]张名铬.钢制压力容器.武汉:湖北科学技术出版社,1993:174~208页
    [120]张康达等编著.锅炉压力容器的疲劳失效.北京:劳动人事出版社,1988:6~17页
    [121]郑修麟著.金属疲劳的定量理论.西北工业大学出版社.1994:1~6
    [122]李泽震等编.压力容器安全评定.北京:劳动人事出版社,1987:179~201页
    [123]乔宇,洪友士.短裂纹群体行为及疲劳寿命预测.力学进展,1997,27(3):56~64页
    [124]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993:23~116页
    [125]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997:282~315页
    [126]楼志文.损伤力学基础.西安:西安交通大学出版社,1991:91~104页
    [127]冯西桥.脆性材料的细观损伤理论和损伤结构的安全分析.北京:清华大学博士.1995
    [128]刘长海,姜民政.无残余应力的管式反应器的断裂疲劳.大庆石油学院学报,2000,25(2):54~57页
    [129]樊三林,汲寿广.超高压聚乙烯管式反应器R401缺陷评定.石油化工设备技术,2001,22(6):6~8页
    [130]刘长海等.注水泵泵头系统的可靠性分析.大庆石油学院学报.1999。23(1):48~53页
    [131]国家技术监督局.中华人民共和国国家国家标准GB6399-86.金属材料轴向等幅低循环疲劳,1986
    [132]唐立强,蔡艳红,刘长海等.双材料界面动态扩展裂纹尖端的渐近场.哈
    
    尔滨工业大学学报,2002,34(1):87~90页
    [133]姜民政,刘长海等.直井抽油杆杆柱磨损机理及原因.大庆石油学院学报,2002,26(2):84~87页
    [134]唐立强,蔡艳红,刘长海.粘弹性材料Ⅲ型动态扩展裂纹尖端场.哈尔滨工程大学学报,2002,23(1):108~112页
    [135]Ishii Y etc. Low and Intermdiate Cycle Fatigue Strength of Butt Welds Containing Weld Defects, 非破坏检查, 1968, (18)
    [136]陈孝渝编著.潜艇和潜水器结构的低周疲劳.北京:国防工业出版社,1990.
    [137]侯维廉.潜艇耐压结构大比尺模型的疲劳试验.舰船性能研究,1990.
    [138]肖芳淳编.断裂力学在石油管柱中的应用.北京:石油工业出版社,1986.
    [139]徐秉业,陈森灿.塑性理论简明教程.北京:清华大学出版社,1981:84~117页
    [140]佐藤邦彦等[日].焊接接头的强度与设计.北京:机械工业出版社,1983.
    [141]Lemaitre J and Chaboche J L. Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.
    [142]Sub C M, etc., Simulation of the Fatigue Crack Process in Type 304 Stainless Steel at 538℃, Fatigue Fract Engng., Mater. Struct., 15, 1992.
    [143]Laws N and Brockenbrough J R, The Effect of Micro-Crack Systems on the Loss of Stiffness of Brittle Solids, Int. J. solids Structures, 23, 1987.
    [144]李键.化工设备.北京:化学工业出版社,1984:157~183页
    [145]全国化工与炼油机械行业技术情报网.高压容器.兰州石油机械研究出版社,1971:9~27页
    [146]张翼,刘长海.化学镀技术与应用.北京:石油工业出版社,1999:174~203页
    [147]郑津津,董其伍,桑芝富.过程设备设计.北京:化学工业出版社,2001:363~390页
    [148]杨世铬,陶文铨.传热学.北京:高等教育出版社,1998:33~36页
    [149]1998 32~36 C T
    [150]郑津津,朱国辉,黄载生.超高压容器的典型事故案例和对策分析.压力容器,1991,8(4):52~56页
    
    
    [151]沈士明,赵建平,夏翔鸣.加氢裂化反应器随机试块回火脆化研究.石油化工设备,2002,23(3):36~40页
    [152]陈国理,陈柏暖,许忠斌.锅炉及压力容器的剩余寿命评估及延寿分析.石油化工设备技术,1995,16(4):1~5页
    [153]尹士安,田燕等.在役4340钢超高管的腐蚀疲劳开裂.压力容器,1998,14(5):10~13页
    [154]Krajcinovic, D.,Distributed damage theory of beams in pure bending, J. Appl. Mech.,1979,46(1):592~596P
    [155]Evans, A G., Perspective on development of high-toughness ceramics, J. Am. Ceram. Soc.,1990,72(2):187~206P
    [156]黎在良,刘殿魁.固体中的波.北京:科学出版社,1995:415~422页
    [157]钟伟芳,聂国华.弹性波的散射理论.武汉:华中理工大学工大学出版社,1997:174~198页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700