用户名: 密码: 验证码:
橡胶隔震支座力学性能及隔震结构地震反应分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隔震结构体系是区别于传统抗震结构体系的一种被动控制体系,通过设置隔震层来吸收并消耗地震能量,减小结构的地震反应,确保结构的安全。隔震结构体系改变了传统抗震结构体系的耗能原理,即通过隔震层的耗能装置、而不是结构和结构构件来吸收并消耗地震能量,这种优越的耗能特性是传统抗震结构体系所不能够实现的。经过近三十年的研究,隔震技术在应用基础理论和工程应用等方面取得了较大的研究成果,世界上已经有近二十个国家和地区兴建了隔震建筑。1994年Northridge和1995年神户产发生的大地震强震观测记录表明,这种隔震结构体系是有效的减轻地震灾害的新型结构体系之一。
     本论文在众多学者和研究人员研究的基础上,较为系统地研究探讨了隔震技术相关应用基础理论和试验研究工作,具体内容包括以下几个方面:从线性弹性和非线性弹性领域研究了橡胶隔震装置的力学计算模型和分析理论,内容涵盖了隔震支座的压缩特性、拉伸特性、剪切特性、回转特性和屈曲特性等方面;在隔震装置理论研究的基础上,完成了天然橡胶隔震支座和铅芯橡胶隔震支座针对性的试验研究,验证提出的计算模型和分析理论的可靠性和计算精度;完成了小高宽比隔震结构模型和大高宽比隔震结构模型的地震模拟振动台试验,在试验的基础上建立了大高宽比隔震结构体系的多质点计算分析模型,基于建立的计算模型完成了大高宽比隔震结构模型的地震反应分析;研究提出大高宽比隔震结构体系的简化计算模型,建立相应的地震反应分析预测理论;研究提出的新计算模型在实际大高宽比隔震结构体系中的实用性。
     橡胶隔震支座是隔震结构体系的主要组成装置,本论文较系统地从线性弹性和非线性弹性领域对隔震支座的压缩、拉伸、剪切、回转和屈曲等特性进行了应用基础理论研究。在压缩特性理论相关的研究中,发现并找到了天然橡胶和铅芯橡胶隔震支座竖向刚度相关的一个常数,并将其定义为压缩刚度因子,基于刚度因子建立了竖向刚度简化计算理论。压缩刚度因子和其他压缩相关的弹性模量相比具有一个显著的特点,即能够从试验直接测得,是一个可测量的参数。此外,为系统地评价隔震支座的刚度特性,提出了原点压缩刚度、原点纵压缩弹性模量、偏压竖向刚度等基本概念,同时还提出了相应的理论计算式和试验评价方法。在新提出基本概念和计算理论的基础上,建立了压缩相关的隔震支座纯压缩状态和剪切压缩状态的竖向变形计算理论。
     橡胶隔震支座应用基础理论研究中还建立了拉伸特性相关的理论,在压缩刚度因子的基础上,提出了拉伸刚度因子的概念,并给出了拉伸刚度因子的取值。提出了原点拉伸刚度、原点拉伸弹性模量、偏拉原点刚度等基本概念,并明确给出了橡胶隔震支座体积弹性模量的数值。本论文还提出了双刚度应力应变模型和原点拉伸刚
    
     北京工业大学工学博士学位论文
    一
    度应力应变模型,用于评价橡胶隔震支座在非线性拉伸变形领域的力学特性。根据
    新提出的刚度和应力应变计算模型,建立了单纯拉伸和剪切变形状态下橡胶隔震支
    座拉伸的变形计算理论。
     在压缩特性和拉伸特性相关理论的基础上,研究了橡胶隔震支座零剪切应变状态
    转动刚度特性,同时还提出了剪切应变状态下的非线性回转刚度计算式。基于Haringx
    弹性体理论,将剪切应变特性相关的非线性回转刚度引入了橡胶隔震支座压缩、回
    转和剪切共同作用的计算模型。橡胶隔震支座应用基础理论的研究最后探讨了竖向
    压缩界限、竖向拉伸界限和屈曲特性等理论和试验评价方法。
     针对上述新提出的橡胶隔震支座应用基础理论,系统地进行了压缩特性、拉伸特
    性、剪切特性、回转特性和屈曲特性等力学性能研究。压缩刚度特性试验采用了12
    个大直径的试验体完成了压缩刚度因子、原点压缩刚度、纯压缩变形等试验研究;
    偏压竖向刚度试验采用4个试验体测定了隔震支座的偏压竖向刚度、压缩剪切状态
    的竖向变形等特性;拉伸刚度和变形试验采用2个试验体系统地评价了提出的原点
    拉伸刚度、偏拉竖向刚度、双刚度应力应变模型和原点拉伸刚度应力应变模型等特
    性,并将试验得到的刚度和变形数值与计算结果进行了比较分析,结果显示实测值
    和计算值一致性较理想。
     回转刚度特性试验研究分无剪切应变的压缩回转刚度特性试验研究和剪切变形
    状态下的回转刚度特性试验研究,无剪切应变的压缩回转刚度特性试验结果显示本
    论文提出的拉伸刚度和拉伸体积弹性模量等概念和取值是合适的。针对非基础隔震
    结构体系隔震支座可能存在回转的特点,完成了变动竖向压力和变动回转角状态下
    橡胶隔震支座水平有效刚度和阻尼等特性随剪切变形的变化规律,给出了隔震结构
    动力反应分析时隔震支座刚度和阻尼等力学特性的取值范围。
     隔震技术在高层、超高层隔震结构体系、以及塔型隔震结构体系中的应用是近年
    的发展方向。本论文完成了高宽比5刀的大高宽比基础隔震结构模型的地震模拟振动
    台试验,隔震层采用纯铅芯橡胶隔震支座、中弹性天然橡胶隔震支座加油阻尼器、
    低弹性天然橡胶隔震支座加油阻尼器等三种类型?
Seismic isolated structure system is a passive active control system, which is different from traditional anti-seismic structure system. Through setting isolation layer, earthquake energy is absorbed and dissipated and earthquake response of structure is reduced, so that the safe of structure is ensured. Isolated structure system changes the energy dissipation mechanism of traditional anti-seismic structure, i.e. the earthquake energy is absorbed and dissipated by energy dissipative device set in a isolation layer rather than by the structure and structure elements. This excellent energy dissipation characteristic can not be realized by traditional anti-seismic structure. After studying for thirty years, many research results of applied foundation theory and engineering application of isolation technique have been obtained. Up to now, near twenty countries and region in the world have constructed isolated buildings. The strong motion observation records of Northridge earthquake 1994 and Kobe earthquake 1995 have indicated that this isolated structure system is one of the effective and new type structure system for earthquake disaster reduction.
    Based on the research of many scholars and researchers, this dissertation investigates systematically applied foundation theory and test research related isolation technique, including following aspects: (1) Research on the calculation model and analysis theory of mechanics property of rubber isolating device, such as compression property, tension property, shear property, rotational property and yielding property of isolating bearings, etc. (2) Based on the theory of isolating device, the related test research on natural rubber isolating bearings (RB) and lead-rubber isolating bearings (LRB) has been completed, so as to verify the reliability and calculation precision of proposed calculation model and analysis theory. (3) Simulated earthquake tests of small or large height-width ratio of isolated structure model on a shaking table have been completed, based on the tests, the multi-mass calculating analysis model of the isolated structure system with large height-width ratio has been completed. (4) Proposing the simplified calculation theory of isolated structure system with large height-width ratio and establishing corresponding analysis theory of earthquake response. (5) Researching the practicality of the proposed new calculating model in real isolated structure system with large height-width ratio.
    Rubber isolating bearing is the key element of isolated structure system .In this dissertation, the research on applied foundation theory of compression, tension, shear, rotation and yielding property of isolating bearing was carried out systematically in the field of linear and nonlinear elasticity. In the research related to compression property theory, a constant related to the vertical stiffness of NRB and LRB has been found respectively, which is defined as compression stiffness factor. The simplified calculation theory of vertical stiffness is established based on stiffness factor. In comparison with other
    
    
    
    elastic modulus related to compression, the compression stiffness factor has a significant feature, i.e. it can be obtained directly from test, so that it is a measurable parameter. In addition, in other to estimate systematically the stiffness property of isolating bearing, a series of basic concepts, such as origin compression stiffness, origin longitudinal compression elastic modulus, biasing pressure vertical stiffness, etc. are suggested with corresponding theoretical formula and testing estimation method. Based on the basic concept and calculating theory suggested newly, the deformation calculating theory related to pure compression state and shear- compression state of isolating bearing is established.
    In the research on applied foundation theory of rubber isolating bearings, the theory related tension property is also established. Based on the compression stiffness factor, concept of tension stiffness factor is proposed and its value is given. The
引文
1 沈聚敏、周锡元、高小旺、刘晶波编著.抗震工程学[M].2000.北京:中国建筑工业出版社.
    2 周福霖.工程结构减震控制[M].1997.北京:地震出版社.
    3 宇佐美龙夫,新编日本被害地震总览[M].1987.东京大学出版社.
    4 胡聿贤.地震工程学[M].1988.北京:地震出版社.
    5 Skinner,R.I.,Robinson,W.H.,Mcverry,G.H..工程隔震概论[M].1996.谢礼立、周雍年、赵兴权译.北京:地震出版社.
    6 日本隔震构造协会.隔震结构入门[M].1995.东京:OHM出版社.
    7 中华人民共和国国家标准GB 50011-2001.建筑抗震设计规范[S].2001.北京:中国建筑工业出版社.
    8 Architectural Institute of Japan. "Recommendation for the Design of Base Isolated Building" [M]. 1993. Tokyo: Marozen Corporation.
    9 东野雅言、石濑俊明、滨田纯次等.浮体并用结构上下振动特性相关研究[C].东京:日本建筑学会学术讲演梗概集.2001.B-2,pp.581-582.
    10 石濑俊明、东野雅言、滨田纯次等.重泥水悬挂隔震建筑物的振动特性试验研究[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.583-584.
    11 Bashshi, A., Araki, H. and Shimazu, T.. "Evaluation of the Performance of a Suspension Isolation System Subjected to Strong Ground Motion"[J]. Earthquake Engineering & Structural Dynamics. 1998. Vol.27, No.1 :pp29-47.
    12 Bashshi, A., Shimazu, T. and Araki, H.. "A Practical Proposal for Seismic Isolation Design Against Extremely Strong Earthquakes" [C]. 2000. 12WCEE 1336.
    13 唐家祥.建筑结构隔震设计[M].1993.武汉:华中理工大学出版社.
    14 佐藤效典、小川祥、西村拓也等.隔震住宅和制震住宅的开发(开发概要和原形隔震住宅的振动台试验)[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.715-722.
    15 李杰、李国强.地震工程导论[M].1992.北京:地震出版社
    16 Robinson, W.H., and Tuker, A.G.. "Test results for Lead-Rubber Bearings for the William M. Clayton Building, Toe Toe Bridge, and Waiotukupuna Bridge" [J]. Bull. New Zealand Natl. Soc. Eng. 1983. Vol. 14, No.1, pp.21-33.
    17 The Society of Rubber Industry. Handbook for Isolated Rubber Bearings[M]. 2000. Tokyo: Ricohtosho Corporation.
    18 高山峰夫、多田英之等.4秒隔震设计方法[M].1997.东京:理工图书.
    19 刘文光、周福霖、庄学真、三山刚史等.铅芯夹层橡胶隔震垫基本力学性能研究
    
    [J].地震工程与工程振动.1999.Vol.19,No.1,pp.93-99.
    20 刘文光、周福霖、庄学真、三山刚史等.中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究[J].地震工程与工程振动.2002.Vol.22,No.1,pp.114-120.
    21 刘文光、周福霖、庄学真、冯德民等.大直径夹层橡胶垫力学性能研究[J].世界地震工程.1999.Vol.15,No.1,pp.62-68.
    22 Gent, A. N., Meinecke, E. A.. "Compression, Bending, and Shear of Bonded Rubber blocks"[J]. Ploymer Engineering and Science. 1970. Jan., Vol. 10, No. 1.
    23 Gent, A. N., Henry, R. L.. Roxbury, M. L.,"Interfacial Stresses for Bonded Rubber Blocks in Compression and Shear"[J]. Journal of Applied Mechanics. 1974. Vol. 15, No. 12.
    24 多田英之、安西胜彦、高山峰夫等.隔震支座相关研究之6-7[C].日本建筑学会学术讲演梗概集.1982,B-2,pp.783-786.
    25 Naeim, F., and Kelly, J. M.. "Design of Seismic Isolated Structures" [M]. 1999. John Wiley & Sons, Inc.
    26 电力中央研究所.高速炉隔震设计相关研究[R].1998.综合报告:U34、财团法人电力中央研究所.
    27 冯德民、三山刚史、刘文光、周福霖.天然和铅芯橡胶隔震支座力学性能报告集[R].2002.高环境株式会社.
    28 加藤隆一、岡研二郎、高山峯夫.天然橡胶隔震支座压缩界限相关试验研究[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.617-620.
    29 国冈恭子、菅也俊介.隔震建筑物设计相关的调查研究[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.697-698.
    30 Zhou F. L.. "Seismic Isolation of Civil Building in P. R. China"[J]. Progress in Structural Engineering and Materials. 2002. Vol.3, No.3.
    31 Koh, C. G, and Kelly, J. M.. "A Simple Mechanical Model for Elastomeric Bearings Used in the Isolation"[J]. Int. J. Mech. Sci.. 1988. Vol.30, No. 12, pp933-943.
    32 Hirata, K., Takahiro, S.. "Evaluation of Ultimate Capacity for Seismic Isolation Layer Considering Randomness of Rubber Bearing"[C]. 1992. Earthquake Engineering, Tenth World Conference.
    33 Ceccoli, C., Mazzotti C. and Savoia M.. "Non-linear Seismic Analysis of Base-Isolated RC Frame Structures"[J]. Earthquake Engineering and Structural Dynamics. 1998. Vol.28, pp.633-653.
    34 Fujita. L., et al.. "High Damping Rubber Bearings for Seismic Analysis of Base-Isolation of Buildings" [C]. Trans, Japan Soc. Mech. Eng. 1990. C56, pp.658-666.
    35 Feng, D. M., Miyama, T., Tsugio, T., et al.. "A New Analytical Model for the Lead Rubber Bearing" [C]. 12WCEE, New Zeland. 2000. 0203.
    
    
    36 Derham, C. J., Thomas, A. G.. "The Design of Seismic Isolation Bearings"[J]. Century 2-Emerging Technology Conferance. 2000. San Francisco.
    37 高山峰夫.基础隔震建筑物结构设计相关研究[D].1990.东京大学博士论文.
    38 Lindley, P. B.. "Natural Rubber Structural Bearings"[J]. Joint Sealing and Bearing System for Concrete Structures. 1981. Vol.1, ACI, pp353-378.
    39 藤田隆史、藤田聪、铃木重信等.建筑隔震用橡胶隔震支座相关试验研究[C].日本机械学会论文集.1988.C,Vol.54,No.507,pp.2618-2623.
    40 可见长英、岩部直征、高山峰夫等.天然橡胶、高阻尼橡胶、铅芯橡胶的剪切拉伸特性[C].日本建筑学会学术讲演梗概集.1999.B-2,pp.559-566.
    41 近藤俊成、乔村宏彦、瓜生满.天然橡胶的拉伸特性试验[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.625-630.
    42 多田英之、高山峰夫、多天罗史郎等.隔震支座模型试验相关研究[C].日本建筑学会学术讲演梗概集.1982.B-2,pp.781-782.
    43 田边泰一、高山峰夫、横山浩明等.标准型隔震支座原型试验——200kg/cm~2时的特性确认试验[C].日本建筑学会学术讲演梗概集.1992.B-2,pp.711-712.
    44 Lindley P. B.. "Engineering Design with Natural Rubber"[J]. The Nature Rubber Producers. 1964. Research Association Technical Bulletin No.8.
    45 Kelly, J. M., Bueuke, K. E., and Skinner, K. E.. "Experimental Testings of a Friction Damped Aseismic Base Isolation System with Fail-safe Characteristics" [R]. Rep. No. 80/18, Earthquake Engrg. Res. Ctr.. 1980. University of California, Berkeley, Calif..
    46 AL-Hussaini, T. M. Zayas, et al.. "Seismic Isolation of Multi-story Frame Structures Using Spherical Sliding Isolation System"[R]. Rep. No. NCEER-94-0007, National Center for Earthquake Engineering Research. 1994. State of University of New York at Buffalo.
    47 猿田正明、齐藤知生、仓林浩等.轻量建筑物用隔震装置的振动台试验[C].日本建筑学会学术讲演梗概集.1999.B-2,pp.709-710.
    48 坂田功、深崛美英、加茂和世等.原型木结构隔震住宅的振动台试验[C].日本建筑学会学术讲演梗概集.1999.B-2,pp.715-731.
    49 吕西林、朱玉华等.组合基础隔震房屋模型振动台试验研究[J].土木工程学报.2001.Vol.34,No.2,pp.43-48.
    50 周锡元、韩淼、曾德民等.橡胶支座与R/C柱串联隔震系统水平刚度系数[J].振动工程学报.1999.Vol.12,No.2,pp.157-165.
    51 周锡元、韩淼、曾德民等.组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法[J].地震工程与工程振动.1999.Vol.19,No.4,pp.38-44.
    52 冯德民、加藤泰正、三山刚史.有回转变形的橡胶隔震支座相关力学特性[C].日本建筑学会学术讲演梗概集.1999.B-2,pp.569-570.
    
    
    53 日本建筑学会.隔震结构设计指针(第三版)[M].2001.东京:丸善出版社.
    54 饭冢真巨.高轴力下橡胶隔震支座的力学特性研究[C].第九届日本地震工程研讨会.1994.pp.1759-1764.
    55 Derham, C. J., Thomas, A. G.. "The Design of Seismic Isolation Bearings"[C]. Century 2-Emerging Technology Conference's. 1980. San Francisco.
    56 瓜生满、西川孝夫.隔震用橡胶隔震支座刚度、变形和界限特性相关研究[J].日本建筑学会构造系论文集.1999.No.479,pp.119-128.
    57 P.K. Freakley, A. R. Payne. "Theory and Practice of Engineering with Rubber"[M]. 1978. Applied Science Publishers.
    58 藤田聪.采用橡胶隔震支座的产业设施的隔震结构相关研究[D].东京大学博士论文.1987.pp.78-111.
    59 刘文光、周福霖、冯德民、三山刚史、李峥嵘.G4天然橡胶隔震支座力学性能[R].2002.广州大学橡胶隔震支座报告集.
    60 刘文光、周福霖、冯德民、三山刚史、李峥嵘.G6天然橡胶隔震支座力学性能[R].1999.广州大学橡胶隔震支座报告集.
    61 刘文光、周福霖、冯德民、三山刚史、李峥嵘.G4铅芯橡胶隔震支座力学性能[R].2001.广州大学橡胶隔震支座报告集.
    62 刘文光、周福霖、冯德民、三山刚史、李峥嵘.G6铅芯橡胶隔震支座力学性能[R].1999.广州大学橡胶隔震支座报告集.
    63 中国工程建设标准化协会标准.叠层橡胶隔震支座隔震技术规程[S].2001.
    64 日本建筑构造技术者协会编.反应控制结构设计法、Ⅱ-1:隔震结构设计指针[M].2000.东京:彰国社.
    65 Clough, R. W., Penziien, J.. Dynamic of Structures[M]. 1975. McGRAW-Hill Book Company.
    66 柴田明德.最新抗震结构解析[M].2001.东京:森北出版社株式会社.
    67 Kelly, J. M.. Earthquake Resistant Design with Rubber[M]. Second Edition. 1997. Springer Verlag London Limited.
    68 Hwang, J. S., Chang, K. C., M. H. Tsai. Composite Damping Ratio of Seismically Isolated Regular Bridges[J]. Engineering Structures. 1997. Science Ltd, Vol. 19, No. 1, pp55-62.
    69 李中锡、周锡元.规则型隔震房屋的自振特性和地震反应分析方法[J].地震工程与工程振动.2002.Vol.22,No.2,pp.33-41.
    70 小林正人、洪忠熹等.中间层隔震结构的抗震性能评价[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.671-674.
    71 小琦均、铃木重信、向野聪彦等.适合超高层隔震建筑天然橡胶隔震支座相关研究[C].日本建筑学会学术讲演梗概集.2000.B-2,pp.639-642.
    72 菊地隆志、芳尺利和、村井信义等.超高层隔震结构的开发和适用[C].日本建筑
    
    学会学术讲演梗概集.2000.B-2,pp.643-644.
    73 岸本光平、长濑正、河田康夫.42层超高层RC隔震结构的设计[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.705-706.
    74 中华人民共和国国家标准.高层建筑混凝土结构技术规程[M].2001.中国建筑工业出版社.
    75 池田雄一、长桥纯男.高层隔震住宅用橡胶隔震支座的拉伸性能及水平、竖向地震动同时输入的影响.日本建筑学会构造系论文集[J].1999,No.515,pp.75-82.
    76 Hirata, K., Takahiro, S.. "Evaluation of Ultimate Capacity for Seismic Isolation Layer Considering Randomness of Rubber Beating" [R]. Research Reports on Seismic Isolation System. 1992. Vol.2, pp.39-44.
    77 Mazda, T., Shiojiri, H.. "Numerical Analysis of Laminated Elastomer by FEM" [R]. Research Reports on Seismic Isolation System. 1992. Vol.2, pp. 132-137.
    78 Hirata, K., Takahiro, S.. "Fragility Estimation of an Isolated FBR Structure Considering the Ultimate State of Rubber Bearings" [C]. Nuclear Engineering and Design. 1994. 147, pp.183-196.
    79 Ikennaka, M., Ohtori, Y., Nishikawa, I., et al.. "Study on Simple Evaluation Methods of Rubber for Isolation Bearing"[R]. Research Reports on Seismic Isolation System. 1998. Vol.3, pp. 128-134.
    80 Seki, W., et al.. "A Large-Deformation Finite Element Analysis for Multilayer Elastmeric Beatings[C]. American 133th Chemical Society, Rubber Division. 1987. pp.856-869.
    81 Makris, N., and Chang, S. P.. "Effect of Viscous, Viscoplastic and Friction Damping on the Response of Seismic Isolated Structures"[J]. Earthquake Engineering and Structural Dynamics. 2000. Vol.29, pp.85-107.
    82 Almazan, J. L., De La Llera, J. C. and Inaudi, J. A.. "Modeling Aspects of Structure Isolated with the Frictional Pendulum System" [J]. Earthquake Engng. Struct. Dyn. 1998. Vol.27, pp.845-867.
    83 闫维明、谭平、周福霖.主动变刚度·阻尼体系的模拟地震振动台试验[J].北京工业大学学报[J].2001.Vol.15,No.1.
    84 杨巧荣、庄学真、刘文光.夹层橡胶隔震支座全刚性性能、回转刚性及高压缩应力性能试验研究[J].地震工程与工程振动.1999,Vol.19,No.3,pp118-125.
    85 赵斌、吕西林、吴敏哲等.基础隔震建筑混合控制的变结构趋近律方法[J].地震工程与工程振动.1999.Vol.19,No.3,pp96-101.
    86 闫维明、刘季、周永程.非经典振型反应组合及非经典反应谱[J].哈尔滨建筑大学学报.1996.Vol.29,No.3,pp6-11.
    87 李大望、王东炜、霍达、蒋晓东.滑动隔震结构的非线性动力可靠性分析[J].世界地震工程.2000.Vol.20,No.1,pp28-31.
    
    
    88 苏经宇、韩淼、周锡元、曾德民.橡胶支座基础隔震建筑地震作用实用计算方法[J].振动工程学报.1999.Vol.12,No.2,pp229-234.
    89 胡聿贤、周锡元.地震工程的跨世纪发展趋势[J].工程抗震.1999.No.1,pp3-8.
    90 江宜城、唐家祥.多维地震动作用下基础隔震结构地震响应分析[J].工程抗震.2002.No.2,pp1-6.
    91 康锦霞、魏德敏、韩海葳.高层隔震结构的地震响音分析[C].现代地震工程进展.2003.pp575-578.
    92 杨佑发、周福霖.隔震结构地震反应分析的实用计算方法[J].世界地震工程.2000.Vol.20,No.1,pp72-76.
    93 菊地优.橡胶隔震支座竖向恢复力特性相关研究[C].日本建筑学会学术讲演梗概集.1998.B-2,pp.561-562.
    94 濑户裕、竹中康雄.修正双线性模型表现隔震装置两方向非线性模型的延伸[C].日本建筑学会学术讲演梗概集.1996.B-2,pp.805-806.
    95 饭冢真巨.橡胶隔震支座安定界限水平变形的评价法[C].日本建筑学会学术讲演梗概集.1996.B-2,pp.709-710.
    96 秋山宏、伊山润、原田幸博.采用能量反应谱的刚体倾覆预测[C].日本建筑学会构造系论文集.1996.No.486,pp.49-55.
    97 菊地优、田村和夫、北村佳久.橡胶隔震支座出现拉伸应力时的隔震建筑地震应答解析[C].第10回日本地震工学研讨会.1998.pp.2351-240.
    98 高山峰夫、森田庆子等.隔震建筑用天然橡胶隔震支座的压缩界限承载力[J].日本建筑学会构造系论文集.1996.No.482,pp.43-51.
    99 深堀美英.隔震用橡胶支座的市场、技术动向以及未解决事项[J].日本橡胶协会会刊.1997.Vol.70,pp.426-429.
    100 井上范夫.基于单自由度质点系钢筋混凝土结构物地震时位移反应预测方法[C].日本建筑学会学术讲演梗概集.1999.C-2,pp.689-692.
    101 宫崎光生.中高层隔震建筑地震时的特性(LRB的场合)、隔震技术的开发和地震观测结果[R].日本建筑中心.1992.pp.598-610.
    102 藤泽一裕、松下裕臣、佐佐木辉男等.橡胶隔震支座恢复力特性模型相关研究[C].日本建筑学会学术讲演梗概集.1993.B-2,pp.505-506.
    103 和田章、吉田献一.考虑橡胶隔震支座上下变形的隔震结构动力特性相关研究[C].日本建筑学会学术讲演梗概集.1992.B-2,pp.769-770.
    104 福岛太明、加藤朝郎、大场政章等.FBR隔震设计相关研究之FBR模型建筑的振动台试验[C].日本建筑学会学术讲演梗概集.1998.B-2,pp.1153-1154.
    105 齐藤贤二、栗林博之、铃木干夫等.橡胶隔震支座、滑板支承和油阻尼器组合使用的隔震建筑设计例[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.699-700.
    106 冈本修司、高山峰夫、森田庆子.隔震结构地震反应分析等价线性化法的考察[C].
    
    日本建筑学会学术讲演梗概集.2001,B-2,pp.661-664.
    107 秋山宏.1987.建筑物的抗震极限设计[M].东京大学出版社.pp33-43.
    108 和田章、吉田献一.考虑橡胶隔震支座上下变形的隔震结构动力特性相关研究[C].日本建筑学会学术讲演梗概集.1992.B-2,pp.769-770.
    109 深堀美英.隔震用橡胶支座的市场、技术动向以及未解决事项[J].日本橡胶协会会刊.1997,Vol.70,pp.426-429.
    110 冈本修司、高山峰夫、森田庆子.隔震结构地震反应分析等价线性化法的考察[C].日本建筑学会学术讲演梗概集.2001.B-2,pp.661-664.
    111 铃木干夫、齐藤贤二、梅田真吾等.橡胶隔震支座和回转支承共同使用的隔震建筑设计例[C].日本建筑学会学术讲演梗概集.2000.B-2,pp.737-740.
    112 Shinozaki, Y., Nakazawa A.. "A Base Isolation System of Sliding Bearings and rubber Bearings with Viscous Dampers"[R]. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. 1998. pp.607-610.
    113 Mckevitt, W. E., Anderson, D., et al.. "Towards a Simple Energy Method for Seismic Design of Structure"[C]. Proc. 2~(nd) U S. Nat. Conf. Earthquake Eng.. 1972. pp.383-392.
    114 Park, J. G., Otsuka, H.. "Optimal Yield Level of Bilinear Seismic Isolation Devices"[J]. Earthquake Engineering & Structural Dynamics. 1999. Vol.28, pp.941-945.
    115 Filiatrault, A. P., Tinawi, R.. "On the Comptation of Seismic Energy in Structure"[J]. Earthquake Engineering & Structural Dynamics. 1994. Vol. 16, pp.425-436.
    116 Valente, D. Cardone, D., Colce, M., et al.. "Shaking Table Tests of R/C Frames with Various Passive Control Systems"[C]. 12WCEE. 2000. No.2271.
    117 Feng, D. M., Liu, W. G. Masuda, K., et al.. "Shaking Table Test of Various Seismic Isolation System" [C]. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. 2002. B-2, pp.541-542.
    118 Zhou, Q., Lu, X. L., Wang, Q. M., et al.. "Dynamic Analysis on Structures Base-Isolate by a Ball System with Restoring Property" [J]. Earthquake Engineering & Structural Dynamics. 1998. Vol.27, pp.773-791.
    119 Matsuzaki, H., Sakei, S.. "The Observation of Earthquake on Building with High Damping Rubber Bearing and Lead Damper" [C]. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. 2002. B-2, pp.565-566.
    120 Nogawa, D., Fukuwa, N., Tobita, J., et al.. "Vibration Tests and Earthquake Observation of Base Isolated Full-Scale Building (Part 6. Amplitude-Dependency and Wind Excitation)"[C]. Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan. 2002. B-2, pp.549-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700