用户名: 密码: 验证码:
芳香烃化合物的微生物降解及基因工程菌的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以苯酚为唯一的碳源和能源从农药厂活性污泥和煤气厂污水排放口周围的土壤中分离到三株降解能力较好的革兰氏阴性的芳香烃降解菌,分别命名为ZD 2、ZD 4-1和ZD 4-3。通过细菌的16S rDNA序列比对分析以及相关形态学和生理生化特性分析,将ZD 2、ZD4-1和ZD4-3三株菌分别鉴定属于多食鞘氨醇杆菌(Sphingobacterium multivorum),睾丸酮丛毛单胞菌(Comamonas testosteroni)和铜绿假单胞菌(Pseudomonas aeruginosa)。基于16S rDNA序列的系统分类研究表明,菌株ZD4-1和ZD4-3分别属于两个不同的分类亚组。
     研究了Sphingobacterium multivorum ZD 2对五氯酚(PCP)的共代谢降解。结果表明,苯酚作为生长底物对细菌的生长有一定的抑制作用,PCP共代谢降解效率低。以葡萄糖为生长底物时PCP降解效果更好,当葡萄糖的量能够满足细菌的生长以及提供降解PCP所需的还原性物质的量时,则生长底物不再是PCP降解的限制性因素,继续增加葡萄糖不能促进PCP的降解,葡萄糖和PCP之间不存在底物的竞争性抑制现象。蛋白质电泳结果表明,葡萄糖为生长底物时,PCP的降解酶是由非生长底物PCP本身所诱导,它们不同于细菌利用葡萄糖的酶。GC-MS分析PCP共代谢降解中间产物结果表明,在好氧降解情况下,PCP的共代谢降解可能也存在渐次脱氯生成苯酚并最终被矿化的过程。
     以菌株Comamonas testosteroni ZD4-1和Pseudomonas aeruginosa ZD4-3为材料,研究了它们对芳香烃化合物的降解机理。结果表明,ZD4-1和ZD4-3分别利用邻苯二酚1,2-双加氧酶催化的邻裂途径和邻苯二酚2,3-双加氧酶催化的间裂途径降解苯酚。邻苯二酚1,2和2,3-双加氧酶都是可诱导的双加氧酶,其活性强烈的依赖于其降解底物的出现。细菌ZD4-3中的间裂途径对苯酚的降解效率要高于菌株ZD4-1的邻裂途径,但是后者降解苯酚的适宜pH值范围以及对芳香烃化合物利用的基质谱范围宽于前者。
     通过质粒消除、PCR扩增以及Southern杂交等方法将Pseudomonas aerugionas ZD4-3中的邻苯二酚2,3-双加氧酶基因(pheB)定位于细菌染色体上。采用PCR扩增的方法从ZD4-3菌中克隆得到大小为0.9kb左右的pheB基因。测序结果表明,pheB基
    
    因全长924bp,编码由307个氨基酸组成的邻苯二酚2,3一双加氧酶。利用表达载体pET22b
    (+)对pheB进行了表达,酶活性检测结果表明,大肠杆菌粗酶提取液中的酶活性为
    3.5617U/mg蛋白质,明显高于野生菌ZD4一3中的酶活性。
     为了解pheB基因编码的邻苯二酚2,3一双加氧酶序列与功能之间的关系,利用生物
    信息学软件对其结构与功能进行了分析。在GenBank中搜索得到相关的11个外二元醇
    双加氧酶的序列,用 Bioedit软件进行同源比对分析发现,在全序列中共有12个氨基酸
    同源区域,它们主要分布在氨基酸的C一末端和N一末端,而且甘氨酸同源的几率出现较
    多。根据对已知的外二元醇双加氧酶的晶体结构分析推断,外二元醇双加氧酶的Gly一31、
    His一157、Leu一184很可能是形成酶的催化活性中心结构域,而C一末端和N一末端的保守
    序列可能是酶的结构域形成中心。催化单环芳烃裂解的双加氧酶和催化双环芳烃裂解的
    双加氧酶之间的同源性比值较低,遗传距离上较远,它们之间存在明显的差别,而常温
    性的C23O与耐热的C23O在氨基酸同源性方面没有显示出明显的差别。
     为了方便基因工程菌监测,将邻苯二酚2,3一双加氧酶基因pheB和绿色荧光蛋白编
    码基因肺融合后同时导入到受体菌中。采用一种不需要限制核酸酶和连接酶的新方法
    —“三引物PcR一步法”(TP一PCR)将pheB基因和肺基因融合,构建得到户g融
    合蛋白基因。测序结果表明,户g基因的5’端为pheB基因序列,3’端为加基因序列,
    中间为柔性肤段一Gly4Ser-的序列,符合预期结果。为验证融合蛋白基因的功能,对户g
    基因在E.colt中进行了表达实验。结果表明,蛋白质电泳出现大小约64KD的蛋白条带、
    荧光显微镜检测到细菌发出的绿色荧光,IPTG诱导后检测到破碎上清液中邻苯二酚2,3-
    双加氧酶酶活性为3.2224U/mg蛋白。以上结果说明,户g基因得到了表达,表达的融
    合蛋白具有绿色荧光蛋白和邻苯二酚2,3一双加氧酶的活性。这为将户g基因导入野生菌
    中构建到芳香烃降解基因工程菌奠定了基础。
     将乡g基因重组到叫Tmini一Tns转座子载体pU下Hg中,构建了一个户g基因的转
    基因载体pUT-Hg:fPg。利用双亲接合转移技术将户g基因插入到受体菌c口ma用onas
    testosteroni ZD4一1的染色体中,并筛选到一株转基因工程菌Comamonas testostero爪
    ZD4一1:加g。ZD4一卜加g在荧光显微镜下受480nxn紫外光激发能够发出绿色荧光,但是
    办瞥基因中pheB基因表达的邻苯二酚2,3一双加氧酶活性比较弱,不很稳定,有待后续
    
    工作中进一步完善。基因稳定性试验表明,户g基因能够在ZD4一1-fPg中稳定的存在,
    由于ZD4一卜加g在480nm紫外光激发下能发出绿色荧光,因此该菌能够作为生物修复
    的示踪菌,在污染环境生物修复中具有潜在的应用价值。
Three aromatic compounds degrading bacterial strains ZD 2, ZD 4-1 and ZD 4-3 were isolated from the sludge of pesticide manufacturing factory and the soil around the coal gas factory. All these isolates are Gram-negative, aerobic, non-spore-forming rods. Based on phenotypic characteristics and 16S rDNA sequence alignment, strains ZD 2, ZD 4-1 and ZD 4-3 were identified as Sphingobacterium multivorum, Comamonas testosteroni and Pseudomonas aeruginosa, respectively. The result of phylogenetic analysis showed that strain ZD 4-1 and ZD4-3 were positioned in two different subclusters. Cometabolism of pentachlorophenol (PCP) was studied by using Sphingobacterium multivorum ZD 2 to investigate the metabolism mechanism of PCP. The effect of PCP degradation with the phenol or glucose as growth substrates was compared. The results revealed that not only the PCP but also the phenol inhibited the bacterial cells and glucose was better than the phenol as a growth substrate for PCP cometabolism because there was no compet
    itive inhibition between the glucose and PCP. Protein electrophoresis results showed that the unspecific enzymes for PCP degradation were induced by the non-growth substrate PCP itself when glucose was served as growth substrate. Gas chromatograph-Mass (GC-MS) analysis indicated that phenol was one of intermediate products during PCP cometabolism, suggesting that the dechlorination reaction increasingly happened even on the condition of aerobic biodegradation process.
    To investigate the characteristic and biochemical mechanism about the biodegradation of aromatic compounds by bacteria, bacterial strains ZD 4-1 and ZD 4-3 were used to degrade phenol. The identification of the intermediates and the detection of the corresponding catabolic enzymes in crude extracts indicated that the strains ZD 4-1 and ZD 4-3 metabolized phenol via ortho-pathways and wefar-pathways, respectively. The results of induction experiment showed that the catechol dioxygenases, both catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O), were all inducible. Finally, the results of biodegradation and enzyme assays showed that the biodegradation efficiency of phenol by meta-Tpathways was higher than that by ortho-pathways but the former is in an inferiority
    
    
    position in terms of adaptation to pH fluctuation and of growth ability on other aromatic compounds compared with the latter.
    C23O is one of extradiol-type dioxygenases cleaving aromatic C-C bond at meta-position of dihydroxylated aromatic substrates. C23O is able to catalyze the conversion of catechol to 2-hydroxymuconic semialdehyde (HMS). Based on curing experiment, PCR identification and Southern Hybridization, the C23O encoding gene pheB was localized on a 3.5 kb EcoRI/BamHI fragment and was then cloned from P. aeruginosa ZD 4-3 that was able to degrade both single and bicyclic compounds via a meta-cleavage pathway. A complete nucleotide sequence analysis of the C23O revealed that it has one open reading frame (ORF) encoding 307 amino acids, which showed a strong overall amino acid similarity to the known Gram-negative bacterial mesophilic C23Os. The heterogonous expression of the pheB gene in E. coll BL21 indicated that the activity of C23O was 3.5617U/mg protein and was higher that that of the C23O in wild bacterium.
    In order to probe the relationship of the structure and function of C23O encoded by pheB gene, the alignment was performed by comparing the homology between the pheB deduced amino acids sequence and the other extradiol dioxygenases by the Bioinformatics software. The alignment analysis showed that 12 homology areas aroused during the whole sequences and these homology areas mainly distributed near the C-end and N-end. According to three-dimension crystal structure of the known extradiol dioxygenases, the amino acids Gly-31, His-157, Leu-184 were speculated to be the active sites of the C23O in this study. Moreover, there are evident differences between the extradiol dioxygenases which degrade single ring aromatic compounds, and those bicyclic
引文
1. Alexander, M. Biodegradation ad bioremediation. Academic Press. New York, 1994
    2. Alvarez-Cohen, L., McCarty, P.L., Cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol. 1991, 25,1381-1387.
    3. Alvarez-Cohen L, McCarty P, L., Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 1991, 57:1031-1037.
    4. Alvarez-Cohen L. McCarty P. L. Two-staged dispersed-growth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 1991, 25, 1387-1392.
    5. An, H.R., Park, H. J., Kim, E. S. Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiology Letters, 2001,195:17-22
    6. Antizar-Ladislao, B., Galil, N.I. Simulation of bioremediation of chlorophenols in a sandy aquifer. Water Research. 2003, 37:238-244
    7. Boopathy R, Kulpa C F. Trinitrotoluene (TNT) as a sole nitrogen source of a sulfate reducing bacterium Desulfovibrio sp. (B Strain) isolated from an anaerobic digester. Curr Microbiol, 1992, 25: 235-240.
    8. Boopathy R, Kulpa C F. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B St rain). Can J Microbiol, 1993, 39: 430.
    9. Boopathy R, Willson M, Kulpa C F. Anaerobic removal of 2, 4,6-t rinitrotoluene (TNT) under different electron accepting conditions: laboratory study. Water Environ Res, 1993, 65: 271-274.
    10. Boyd, D.R., Sharma, N. D. Allen, C. CR., Aromatic dioxygenases: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 2001, 12:564-573
    11. Brazil, G.M., kenefick, L, Callanan, M., Haro, A., et. al. 1995, Construction of a rhizosphere pseudomonad with potential to degrade plolychlorinated biphenyls and detection of bph gene expression in the phizosphere. Appl. Environ. Microbiol. 61(5):
    
    1946~1952
    12. Burlage, R., Hooper, W., Sayler, G.S. The TOL (pWW0) catabolic plasmid. Appl. Envrion. Microbiol. 1989, 55(6): 1323-1328
    13. Chalfie M, TU Y, Euskirchen G, et al. Green flurorescent protein as a marker for gene expression. Science, 1994, 263 (5418):802~804
    14. Chang M.K., Voice T. C. and Criddle C. S. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene and p-xylene by two Pseudomonas isolates. Biotechnol. Bioeng. 1993, 41, 1057-1065.
    15. Chaudhry, G.R., Chapalamadugu. S. Biodegradation of halogenated organic compounds. Microbiol. Rev. 1991,55:59-79
    16. Cherry JR. Directed evolution of microbial oxidative enzymes. Curr. Opin. Biotechnol. 2000,11:250~254
    17. Crameri A. Raillard SA. and Bermudez E. et al. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998, 391:288~291
    18. Collie SL, Donnell YK, Hba EB, et al. Degradation of 2, 4, 6-trinitrotoluene (TN) in anaerobic reactor. Chemosphere, 1995, 31 (4) : 3025-3032.
    19. Commandeur, L.C.M., Parsons, J.R. Degradation of halogenated aromatic compounds. Biodegradation, 1990,1: 207-220
    20. Criddle C. S. The kinetics of cometabolism. Biotechnol. Bioeng. 1993, 41, 1048-1056
    21. Daniel R N, David L F. Characterizat ion of products from the biotransformation of 2,4-dinitro toluene by denitrifying enrichment cultures. Water Environ Res, 1997, 69 (3): 260-268.
    22. Dalton H. and Stirling D.I. Co-metabolism. Philos. Trans. R. Soc. London Ser. B: 297, 481-496.
    23. de Lipthay, J. R., Barkay, T., Sφrensen S. J., Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenases. FEMS Microbiol. Ecology, 2001, 35:75-84
    24. De Lorenzo V., M Herrero, U Jakubzik et al. Mini-tn5 transposon derivatives for insertion mutagenesis promoter probing, and chromosomal insertion of cloned dna in gram-negative eubacteria. J. Bacteriol. 1990, 172(11):6568-6572
    
    
    25. De. Lorenzo, V. Herrero, M. Sanchez, J.M. et al. Mini-transposons in mincrobial ecology and environmental biotechnology. FEMS Microbiol. Ecolo. 1998, 27:211-224
    26. De Lorenzo, V. Fernandez, S. Herrero, M. et al. Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene, 1993, 41-46
    27. Duffner, F. M. Kirchner U., Bauer M.P., et al. Phenol/cresol degradation by the thermophilic Bacillus thermoglucosidasius A7: cloning and sequence analysis of five genes involved in the pathway. Gene 256 (2000) 215-221
    28. Eltis LD. Bolin JT. Evolutionary relationships among extradiol dioxygenases. J. Bacteriol. 1996,178:5930~5937
    29. Errampalli D, Leung K, Cassidy M B, et al. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods, 1999, 35, 187~199
    30. Errampalli, D., Okamura, H., Lee, H., Trevors, J.T., van Elsas, J.D., 1998. Green fluorescent protein as a marker to monitor survival of phenanthrene-mineralizing Pseudomonas sp. UG14Gr in creosote-contaminated soil. FEMS Microbiol. Ecol. 26, 181-191.
    31. Florella, P D, Spain J C. Transformation of 2,4, 6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol, 1997, 63 (5): 2007-2015.
    32. Folsorn, B.R. Chapmane, P.J. Pritchard, P.H. Phenol and Trichloroethylene Degradation by Pseudomonas cepacia G4; Kinetics and Interactions between Substrates. Appl. Eniron. Microbiol. 1990,56,1279-1287
    33. Franken SM, Rozeboom H J, Kalk KH, Dijkstra BW: Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J 1991,10:1 297-1302.
    34. Furukawa, K., Arimura, N. Miyazaki, T. Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonass, In S. Silver, A.M. Chakrabarty, B. Iglewske, and S. aplan (ed.), Pseudomonas: biotransformations, pathogenesis, and evolving biotechnology. American Society for Microbiology, Washington, D.C. 1990, p. 111-121
    35. Furukawa K. Engineering dioxygenase for efficient degradation of environmental
    
    pollutants. Curr. Opin. Biotechnol. 2000,11:244~249
    36. Gibson D. T., Parales, R. E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol., 2000, 11:236-243
    37. Guerin, W.F. and Boyd, S.A. maintenance and induction of naphthalene degradation activity in pseudomonas putida and an alcaligenes sp. Under different culture conditions. Appl. Environ. Microbiol. 1995,61,4061
    38. Hao O. J., Kim M. H., Seagren E.A., Kim H. Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere, 2002,46:797-807
    39. Harayama S. Kok M. and Neidle EL.Function and evolutionary relationships among diverse dioxygenases. Annu.rev. Microbiol. 1992, 46:565~601
    40. Harayama S. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol. 1997, 8:268-273
    41. Haro, M.A. De Lorenzo, V. Metabolic engineering of bacteria for environmental apliactions: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotechnol. 2001, 85:103-113
    42. Hartnett, C., Neidle, E.L. Ngai, K.L., et al. DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence. J. Bacteriol. 1990, 172:956-966
    43. He, Z. Q, Spain, J. C. Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl Environ M icrobiol, 1997, 63 (12) : 4839-4843.
    44. Henry S. M. and Grbic-Galic D. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl. Environ. Microbiol. 1991, 57, 236-244.
    45. Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K: Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. J Biol Chem 1996, 271: 20322 -20330.
    46. Hofrichter M., Gunther T. and Fritsche W. Metabolism of phenol, chloro- and
    
    nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation, 1993, 3, 415-421.
    47. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 1972, 36, 146-155.
    48. Herrero M, V. de Lorenzo, KN Timmis. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal inertion of foreign genes in gram-negative bacters. J. Bacteriol. 1990, 172(11):6557-6567
    49. Janke D. and Ihn W. Cometabolic turnover of ani-line, phenol, and some of their monochlorinated derivatives by the Rhodococcus mutant stain AM 144. Arch. Microbiol. 1989,152, 347-352.
    50. Joo H, Arisawa A and Arnold FH. A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. Chem Biol 1999,6:699~706
    51. Kabisch, M., Fortnagel, P. Nucleotide sequence of metapyrocatechase I (catechol, 2,3-dioxygenase I) gene mpcI from Alcaligenes eutrophus JMP222. Nucleic Acids Res. 1990, 18:3405-3406
    52. Kellogg, S.T., Chatteriee, D., Chakrabarty, A. M. Plasmid-assisted molecular breeding: New technique for enhanced biodegradation of persisted toxic chemical. Science,1981,214:1133-1135
    53. Khan, A.A., Walia, S.K. Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida. ApplEnviron, Microbiol. 1991, 57:1325-1332
    54. Kim, M. H, Hao, O.J. Cometabolic degradation of chlorophenols by Acinetobacter species. Water research, 1999,33 (2):562-574
    55. King JMH. Digrazia PM. Applegate B. et al. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990, 249:778~780
    56. Kohler H. P. E., Kohler-Staub D. and Focht D. D. Cometabolism of polychlorinated biphenyls: enhanced transformation of Arochlor 1254 by growing bacterial cells. Appl. Environ. Microbiol. 1988, 54, 1940-1945.
    57. Kumamaru T. Suenaga H. and Mitsuoka M. et al. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat.
    
    Biotechnol. 1998, 16:663~666
    58. LaPara, T. M., Nakatsu, C. H. Pantea, L.M. Alleman, J.E. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Research, 2002, 36:638-646
    59. Lau, P.C.K. de Lorenzo, V. 1999. Genetic Engineering: the frontier of bioremediation. Environ. Sci. Technol., 3:124-128
    60. Leadbetter E. R. and Foster J. W. Oxidation products formed from gaseous alkanes by the bacteriumPseudomonas methanica. Arch. Biochem. Biophys. 1959, 82, 491-492.
    61. Lee JY. Jung KH and Chol SH. et al. Combination of the tod and tol pathways in pathways in redesigning a metabolic route of pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl. Environ. Microbial. 1995, 61(6):2211-2217
    62. Lehning, A., Fock, U., Wittich, R. F., Timmis, K.N., Pieper, D.H. et al., Metabolism of chlorotoluenes by Burkholderia sp. strain PS12 and toluene dioxygenase of Pseudomonas putida F1: Evidence for monooxygneation by toluene and chlorobenzene dioxygenases. Appl. Environ. Microbiol. 1997, 63, 1974-1979.
    63. Loh, K.C., Yu, Y.G., Kinetics of carbazole degradation by pseudomonas putida in presence of sodium salicylate. Water Res. 2000, 34:4131-4138
    64. Maria-amaro H, V De Lorenzo. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotechnol.2001, 103-113.
    65. Menke B. and Rehm H. J. Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl. Microbiol. Biotechnol. 1992, 37, 655-661.
    66. Meyer J. S., Marcus M. D. and Bergman H.L. Inhibitory interactions of aromatic organics during microbial degradation. Environ. Toxicol. Chem. 1984, 3, 583-587.
    67. Mu D.Y. and Scow, K.M. Effect of Trichloroethylene (TCE) and Toluene concentrations on TCE and toluene biodegradation and the population density of tce and toluene degraders in soil. Appl. Environ. Microbial. 1994,60,2661-2669
    
    
    68. Murakami S., Takashima A., Takemoto J., et al. Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Gene, 1999, 226:189-198
    69. Nelson M. J. K., Montgomery S. O., Maha.ey W. R. andPritchard P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 1987, 53,949-954.
    70. Noda, Y., Nishikawa, S. Shiozaka, K.I. et al. Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J.Bacteriol. 1990, 172:2704-2709
    71. Ohtsubo, Y. Nagata Y and Kimbara K. et al. Expression of tile bph genes involved in biphenyl/PCB degradation in pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoic acid. Gene. 2000,256:223~228
    72. Olsen M, Iverson B and Georgiou G. High-throughput screening enzyme libraries. Curr. Opin. Biotechnol. 2000,11:331~337
    73. Pieper, D. H. Reineke W. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol., 2000,11:262-270
    74. Rainer.W. Erb, Christine A. Eichner, Irene Wagner-Dbler, Kenneth N. Timmis. Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nature Biotechnology, 1997,15,378-382
    75. Ramanand, K.K. Balba, M. T. Duffy, J. Applied and Environmental Microbiology, 1992, 59 (10) :3266~3272
    76. Ramos, J.L., Mermod, N., Timmis, K.N. Regulatory circuits controlling transcription of TOL plasmid oeron encoding meta-cleavage pathway for degradation of alkybenzoates by Pseudmonas. Mol. Microbiol. 1987,1:293-300
    77. Ronald J S, Spain J C, Shirley F N, et al. Biodegradation of 2, 4-dinitro toluene by a Pseudomonas sp. Appl Env iron Microbiol, 1991, 57 (11):3200-3205.
    78. Rapp, P. Timmis, K.N., Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp strain PS14 in liquid cultures and in soil. Appl. and Environ. Microbiol. 1999, 65 (6):2574~2552
    79. Reineke, W., Knackmuss, H. J. Microbial degradation of haloaromatics. Annu. Rev.
    
    Microbiol. 1988, 42:263-287
    80. Reineke W. Development of hybrid strains for the meneralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol. 1998,52:287~331
    81. Sa ez, P. B. and Rittmann B. E. Biodegradation kinetics of a mixture containing a primary substrate (phenol) and inhibitory co-metabolite (4-chlorophenol). Biodegradation, 1993, 4, 3-21.
    82. Saito, A., Iwabuchi, T., Harayama, S. Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere, 1999, 38(6):1331-1337
    83. Sayler, GS. and Steven R. Field applications of genetically engineering microorganisms for bioremediation processes. Curr. Opin. Biotechnol, 2000,11:286~289
    84. Schackmann A, Muller R. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl Microbiol Biotechnol, 1991, 34: 809-814.
    85. Schmidt, L.M., Delfino, J.J., Preston, J.F. et al. Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater. Chemosphere, 1999, 38(12): 2897-2912
    86. Smidt, et al. 2000
    87. Schweizer, H.P. Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Current Opinion biotechnol. 2001, 12:439-445
    88. Shaw, J.P., Harayama, S., Purification and characterization of TOL plasmid encoded benzyl alcohol dehydrogenaseand benzaldehyde dehydrogenase of Pseudomonas putida. Eur. J. Biochem. 1990, 191,705-714
    89. Shirley, F.N. Spain, J.C. Oxidative pathway for the biodegradation of nitrobenzene by Com am onas sp. strain JS765. Appl Environ Microbiol, 1995, 61 (9) :2308-2313.
    90. Speitel, G. E., Segar, R.L. cometabolism in biofilm reactors. Wat. Sci. Tech. 1995,31 (1): 215-225
    91. Stafford, D. E., Stephanopoulos, G. Metabolic engineering as an integrating platform for strain development. Current Opinion in Microbiology. 2001, 4:336-340
    92. Stemmer. WPC. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994.
    
    370:389~391
    93. Steven R. David EN and Yeonghee A. et al. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 2000, 34:846~853
    94. Taira, K., Hayase, N., Arimura, N., Yamashita, S., et al. Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene form the PCB degrading strain of Pseudomonas paucimobilis Q1. Biochemistry,1988, 27:3990-3996
    95. Takeo, M., Fujii, T., Takenaka, K., et al. Cloning and sequencing of a gene cluster for the meta-cleavage pathway of aniline degradation in Acinetobacter sp. Strain YAA. J. Ferm. Bioeng. 1998,85(5): 514-517
    96. Tilmann S. A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl Environ Microbiol, 1998, 64 (2): 446-452.
    97. Timmis, K. N. Pieper. D. H. Bacterial designed for bioremediation. Trends. Biotechnol., 1999, 17:201~204
    98. Timmis, K.N., Steffan, R.J., Untermann, R., Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol. 1994, 48, 525-557.
    99. van der Meer, J.R., de Vos, W.M., Harayama, S.,et al, Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 1992.56, 677-694.
    100. Van Elsas, J.D. Duarte, G.F. Rosado, A.S. Smalla, K Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiological Methods, 1998, 32:33-154
    101. Wackett L. R and Gibson D. T. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 1988, 54, 1703-1708.
    102. Wang, S. J. Loh, K. C. Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation 1999,10:261-269
    103. Wang S. J. Loh K.C., New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol Wat. Res. 2000, 34(15):3786-3794
    104. Watanabe, K., Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol., 2001,
    
    12:237-241
    105. Yadav, J.S., Reddy, C.A., Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ. Microbiol. 1993, 59:756~762
    106. Zylstra, G.J. Gibson, D.T. Toluene degrading by Pseudomonas putida F1. J. Biol. Chem. 1989, 264:14940-14946
    107. Zylstra, G.J., Olsen, R.H., Ballou, D.P. Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase. J. Bacteriol. 1989, 171:5915-5921
    108. 尹萍,杨彦希.微生物降解硝基芳香烃及其在环境保护中的应用.环境科学.1998,19(6):79-83
    109. 金赞芳,陈英旭.环境的PAHs污染及其生物修复技术研究进展.农业环境保护,2001,20(2):123-125
    110. 张锡辉,Bajpai,R.氯代有机溶剂共降解研究进展.环境污染治理技术与设备.2000,1(1):13-20
    111. 罗如新,张素琴,李顺鹏.邻苯二酌1,2-双加氧酶(C120)基因的定位、克隆和表达.应用与环境生物学报.1999,5(2):208-211
    112. 钟文辉.2,4—二氯酚的微生物降解及其相关基因的克隆.浙江大学博士论文,2001.杭州
    113. 张小凡,小柳津广志.鞘氨醇单胞菌PY3菲降解基因的克隆及序列分析.微生物学报,2002,42(6):680-685
    114. 陈勇生,庄源益,戴树桂.氯代芳香化合物的微生物降解研究.环境科学进展.1997,5(2):17-26
    115. 王菊思,赵丽辉,匡欣,等.某些芳香化合物生物降解性研究.环境科学学报,1995,15(4):407-415.
    116. 周集体,黄丽萍,王竞,张劲松,吕红.芳香族硝基化合物生物降解代谢研究现状与展望.大连理工大学学报,2000,40(增刊1):47-53
    117. 甘平,朱婷婷.氯苯类化合物的生物降解.环境污染治理技术与设备,2000,1(4):1-12
    118. 瞿福平,张晓键,吕昕,顾夏声,氯代芳香化合物的生物降解性研究进展.环境科
    
    学,1997,18(2):74~78
    119. 崔中利,张瑞福,何键,等.对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建.微生物学报,2002,42(1):19—25
    120. 吕萍萍,王慧,施汉昌,陈国强.基因工程菌强化芳香化合物的处理工艺.中国环境科学.2003,23(1)12—15
    121. 刘智,洪青,徐剑宏,张国顺,李顺鹏.耐盐及苯乙酸、甲基对硫磷降解基因工程菌的构建.微生物学报,2003,43(3):554—559

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700