用户名: 密码: 验证码:
桂西铝多金属矿矿床地质地球化学特征及综合利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桂西地处东南地洼区赣桂地洼系与滇桂地洼系相接地带,区内褶皱、断裂构造发育。本区铝多金属矿资源十分丰富,主要分布于古大新溶蚀平原的周边地带—平果、靖西、德保、田东等地,按成因类型划分为两种:一种为沉积型铝多金属矿,另一种为岩溶堆积型铝多金属矿。沉积型铝多金属矿:赋存于下二叠统茅口灰岩浸蚀面之上—上二叠统底部合山组地层中,矿体呈层状或似层状,与煤层、黄铁矿密切共生,S含量较高,目前尚未利用;堆积型铝多金属矿:赋存于第四系更新统红土层中,且有埋藏浅、规模大、分布广、矿石质量好的特点,是目前主要利用对象。
     原生铝多金属矿中S的含量大大高于堆积矿,其余化学组分在两种铝多金属矿中基本相同:主要为Al_2O_3、Fe_2O_3、SiO_2、TiO_2和H_2O~+,其次伴生有Ga、V_2O_5、Sc、Nb、Ta、REE等有益组分。
     原生铝多金属矿中黄铁矿含量较高,而堆积矿中褐铁矿及针铁矿含量相对较高,其余矿物组分在两种铝多金属矿中基本相同。
     在本区德保隆华堆积矿的矿泥中发现一未知矿物,经X射线衍射分析及格林-凯利(Greene-Kelly,1953)方法鉴别,该矿物为贝得石;经蒙脱石—贝得石系系列的蒙脱石群定量法(Jones,1964)测定,该矿物的含量为15.45%。
     电感耦合等离子体质谱技术是80年代发展起来的新的分析测试技术,该技术提供了极低的检出限、极宽的动态线性范围(8-11个数量级)、谱线简单、干扰少、分析精度高、分析速度快以及可提供同位素信息等分析特性。本次,建立了一套可行的ICP-MS分析方法,对本区铝多金属矿中的微量元素进行了比较系统的分析。
     铝多金属矿中伴生的镓含量较高,主要是以类质同象的形式存在于铝矿物中,与铝成显著的正相关关系。
     铝多金属矿中稀土元素含量也较高,以化学分析为基础,结合ICP-MS仪器及矿物学分析表明:稀土主要赋存于硬水铝石矿物中,与铝呈正相关关系;其赋
    
    存形式可能是以纳米级的矿物微粒存在于铝矿物的晶格中。沉积型铝多金属矿中
    稀土元素含量及配分特征与堆积型铝多金属矿稍有不同。
     稀土元素地球化学特征:Zr、H长Nb、Ta、Tio:等稳定元素与A12O3之比值
    特征;B、Be、Sr/Ba、Th月口元素特征;S同位素特征;元素Zr、Cr、Ga三角
    图解;含矿岩系的重砂组合和标型特征,特别是其中的Zr月扭f比值特征;贵金属
    元素地球化学特征;含矿岩系剖面特征及分布特征表明:
     1、本区沉积型铝多金属矿是以古风化壳(基底茅口灰岩)、大新古陆岩石风
    化物为主要物质来源,有部分基性火山灰的介入,具有多来源的特征;
     2、沉积型铝多金属矿形成于以海相为主的环境;
     3、堆积新型铝多金属矿是由沉积铝多金属矿在地洼构造演化中,于表生条
    件下,经物理、化学风化作用改造而形成的;
     4、生物和衍生的有机质的成矿作用遍及各个阶段:如早期风化淋滤作用,
    搬运阶段的护胶作用:沉积水盆中有机物的吸附、分解及净化作用,同生、成岩
    阶段在还原环境下形成水铝石与黄铁矿,以及后期表生阶段有机质与黄铁矿的氧
    化作用使矿石去硅去硫而变成优质铝多金属矿。
     本区铝多金属矿的成矿模式可概括为“多阶段、多因素、多来源”的沉积-
    淋滤富集改造的多因复成矿床。
     经高压拜尔法溶出试验及溶出浆液沉降性能试验表明:本区堆积铝多金属矿
    适应于拜耳法规模生产作业,嫁主要富集于循环母液中,而钦、稀土、错、妮、
    担等元素在赤泥中加以富集,综合利用前景广阔。
Western Guangxi lies in the southeast Diwa zone, between Gong-Gui Diwa system and Dian-Gui Diwa system, where folds and faults war developed very well. In this region, aluminum resources are very rich, Al-polymetal deposits are distributed in the ancient Daxin dissolved plain such as Pingguo, Jingxi, Debao, and Tiandong and so on . According to the genesis of these ore deposits, they can be divided in two types: one type is sedimentary deposit, the other is accumnlated Al-polymetal deposit, the first is occurring on the erosion surface of early Permian Maokou limestone - the bottom of late Permian rocks of Heshang group with coal bed and pyrite deposit together as bedlike or bedway, which is not utilized at present because of the high content of S. The other Al-polymetal deposit is occurring in the red soil bed of Quaternary, featuring shallow buried, wide distribution, high A/S and good quality, which is being mostly utilized at present.
    The chemistry components have not obvious difference between the two types of Al-polymetal ore except the content of S, both of them consist much of Al2O3, Fe2O3, SiO2, TiO2 , H2O+and some of Ga, V2O5, Sc, Nb, Ta, rare earth elements and so on .
    They almost consist of the same minerals between the two kinds of Al-polymetal deposit ores except the content of pyrite is relatively high and the limonite and pin-iron ore are relatively low in the sedimentary Al-polymetal ores.
    In the mud of Debao Longhua Al-polymetal deposit, an unknown mineral is determined as Beidellite using way of XRD and Greene-Kelly, the content of this kind of mineral is 15.45% by way of montmorillonite group quantitative analysis .
    In 1980's, a new analytical technique--Inductively coupled
    plasma mass spectrometry (ICP-MS) was introduced to the marketplace, the success of ICP-MS as analytical techniques stems mainly from the following important capabilities: very low detection limits (10"12), broad dynamic concentration ranges (8-11 orders of magnitude for many elements), simple mass spectra, few spectral interferences, good precision,
    
    
    ability to routinely provide elemental isotopic information, and so on. A sets of feasible ICP-MS analytical technique for trace element in western-Guangxi Al-polymetal ores have been developed in this paper.
    The content of gallium is relatively high, it distributes in all sorts of Al-polymetal ores almost at all as isomorphism with aluminum, and which has good correlation with aluminum.
    The content of rare earth elements (REE) are relatively high. It is known that the REE distribute in diaspore crystal lattice as nano- meter mineral matters and prominent positive correlation with AI2O3 by ICP-MS analytical technique based on analytical chemistry and mineralogy analytis. There have some different between sedimentary and accumnlated deposit about the content and distribution pattern of REE too.
    The geochemistry feature of REE; B, Be, Sr/Ba, Th/U, sulfur isotopes, noble metals, the ratio feature between Zr, Hf, Nb, Ta, TiO2 and Al2O3, the triangle diagrammatize feature of Zr, Cr, Ga, and the ore-bearing profil and distribution features show that:
    (1) the ore-forming materials of the Al-polymetal deposit mostly origin from Maokou limestones in the paleoweathering crustal basement and Daxin paleocontinental rocks, some from eruption and so on.
    (2) the deposit Al-polymetals which are marine environmental clastic deposits.
    (3) the accumnlated Al-polymetals anormaly result from the physical , chemical and biological weathering processes of the primary Al-polymetals under the hydrogenic environment duing the Dewa stage.
    (4) Organism and the derived materials played roles in different stages of the Al-polymetal metal-logenesis, such as weathering, eluviating, transportation, organic material protected gel, the absorption, resolution and purification of large amount of orgrnic matter in water of sedimentary basin in which syngenetic and diagenetic stages were under reduction and diaspore and pyrite formed. In the supergenetic stage the oxidation of organic mat
引文
[1]毕诗文等.铝土矿的拜耳法溶出,冶金工业出版社,1996
    [2]曹信禹.试论桂西铝土矿的类型和成因.广西地质科技,1982年第1期,28~45
    [3]柴东浩,屈值明,陈汉成,柴峰.山西铝土矿中稀有稀土元素的新发现及工业意义.轻金属,2002,6:6~11
    [4]陈代演,王华.贵州若干铝土矿床的稀土元素地球化学研究.贵州地质,1997,14(2):132~144
    [5]陈代演,王华.贵州中北部铝土矿若干微量元素特征及其成因意义.贵州工业大学学报,1997,Vol 26(2):37~42
    [6]陈国达.亚洲陆海壳体大地构造,长沙:湖南教育出版社,1998
    [7]陈国达.成矿构造研究法,北京:地质出版社,1978
    [8]陈国达.地洼学说—活化构造及成矿理论体系概论,长沙:中南工业大学出版社,1997
    [9]陈国达.地洼学说新进展,北京:科学出版社,1992
    [10]陈履安,陈有能.贵州遵义—息峰铝土矿氧化还原参数研究和形成环境的地球化学分析有色金属矿产与勘察,1996,5(4):238~244
    [11]陈武,季寿元.矿物学导论.北京:地质出版社,1985
    [12]陈廷臻,张天乐,廖士范.河南不同成因类型铝土矿的矿石特征.矿物学报,1989,9(1):89~94
    [13]程安进.安徽桑巢县二叠纪地层的硼镓含量及硼镓比.地层学杂志,1994,18(4):299~300
    [14]程军,杨学明等.良渚文化玉器的稀土元素特征及其考古学意义.稀土,2000,21(4):1~4
    [15]柴东浩,屈值明,陈汉成,柴峰.山西铝土矿中稀有稀土元素的新发现及工业意义.轻金属,2002,6:6~11
    [16]戴塔根.广西贵县三水铝土矿矿石中钒、镓和稀土元素的赋存状态研究.地质与勘探,1991年第5期,P:42~46
    [17]戴塔根,龙永珍,张启钻.桂西铝土矿中稀土元素特征研究.地质与勘探,2003,6
    [18]范忠仁.河南省中西部铝土矿微量元素比值特征及其成因意义.地质与勘察.1989,7:23~27
    [19]方启学,黄国智,葛长礼,廖新秦.我国铝土矿资源特征及其面临的问题与对策.轻金属矿山,2000(10):8~11
    [20]丰恺.河南铝土矿成因的一点认识.轻金属,1992年第7期,1~8
    [21]冯增昭,金振奎.等.滇黔桂地区二叠纪岩相古地理.北京:地质出版社,1994
    [22]黄世杰,李发良.浅谈风化壳红土型金矿的形成条件及找矿方向.铀矿地质,1989,5(4):207~214
    
    
    [23]黄珍玉,张勤,胡克,吴健玲.等离子体质谱法直接测定地球化学样品中金铂钯.岩矿测试,2001,20(1):15~19
    [24]Hugh R.Rollison著,杨学明,杨晓勇,陈双喜译.岩石地球化学,合肥:中国科学技术大学出版社,2000
    [25]K.E.贾维斯(英),等著.尹明,李冰译.北京:原子能出版社
    [26]雷文高.应当重视岩溶型金矿的找矿.地质与勘察,1990,(10):13
    [27]李春生,柴之芳,毛雪瑛,欧阳宏.化学溶解和电感耦合等离子体质谱法研究地质样品中铂族元素的物相分析.分析化学研究报告,1998,26(3):267~270
    [28]李春生,柴之芳,等.化学溶解和电感耦合等离子体质谱法研究地质样品中铂族元素的物相分析.分析化学研究报告,1998(3):267~271
    [29]李春生,柴之芳,等.火试金预浓集结合中子活化和电感耦合等离子体质谱法测定铂族元素.分析化学研究报告,2001(5):534~537
    [30]李启津,等.平果铝土矿中钽铌铁矿的发现.地质地球化学,1981(11):49
    [31]廖江南.平果铝业公司铝土矿二期工程的复垦研究.矿业研究与开发,2000,20(6):6~10
    [32]廖士范.我国铝土矿成因及矿层沉积过程.沉积学报,1986,4(1):1~8
    [33]廖士范.铝土矿矿床成因与类型(及亚型)划分的新意见.贵州地质,1998,15(2):139~144
    [34]廖士范.我国古生代铝土矿矿石结构构造成因命名及矿床命名问题.贵州地质,1991a,8(2)
    [35]廖士范,等.中国铝土矿地质学,贵州科技出版社,1991b
    [36]刘宝穑,等.沉积岩石学.北京:地质出版社.1986年7月
    [37]刘长龄,覃志安.论中国岩溶铝土矿的成因与生物和有机质的成矿作用.地质找矿论丛,1999,14(4):23~28
    [38]刘长龄.平果岩溶坠积成因碎屑铝土矿的形成条件及其准胶结物中三水铝石发现.地质与勘探,1980(9):40~44
    [39]刘长龄.中国铝土矿的成因类型.中国科学,B辑,1987,(5):535~544
    [40]刘长龄.中国石炭纪铝土矿的地质特征与成因.沉积学报,1988,6(3):1~10
    [41]刘长龄.中国沉积型铝土(岩)矿石结构构造与成因.河北地质学院学报,1989(3):263~275
    [42]刘长龄.中国沉积学.石油工业出版社,1994:689~719
    [43]刘长龄.华北地台铝土矿床的物质来源.轻金属,1985,(8):1~4
    [44]刘虎生,王耐芬,王小燕.ICP-MS法对人发标物中超痕量稀土元素的均匀性检验.光谱学与光谱分析,2002,20(4):522~524
    [45]刘虎生,解清,王小燕,王耐芬.ICP-MS法测定鼠脊髓液中超痕量镧、铈、镨和钕.分析实验室,2000,19(6):65~66
    [46]刘湘生,蔡绍勤等.电感耦合等离子体质谱法测定高纯氧化钆中痕量稀土杂质.分析化学研究简报,1997(4):431~434
    [47]刘湘生,张安定等.电感耦合等离子体质谱法测定高纯金中痕量杂质.分析化学研究简报,2000(3):322~325
    
    
    [48]刘英俊,等.元素地球化学.北京:科学出版社,1984
    [49]刘英俊.马东升,金的地球化学.北京:科学出版社,1991
    [50]龙永珍,戴塔根,胡斌.桂西隆华铝土矿矿物学特征.地质地球化学,2003(1)
    [51]龙永珍,戴塔根,张启钻.桂西铝土矿中稀土元素赋存状态初探.中南大学 2003学术年会
    [52]陆东农.广西某岩溶堆积型铝土矿石物质组分的初步研究.西南矿产地质,1992(1):23~34
    [53]卢文华,韦永坚,廖思福.平果岩溶堆积铝土矿地貌特征及成矿规律研究.广西地质,2000,13(4):21~27
    [54]卢文华,韦水坚,黎乾汉,廖思福.试论平果三水铝石成因、宣集规律及工业价值.广西地质,2001,14(2):15~19
    [55]罗秀光.平果铝土矿资源可持续利用及发展探讨.矿冶,2001,10(1):7~10
    [56]牟保磊.元素地球化学.北京:北京大学出版社,1999
    [57]倪德桢,,赵勇.高纯氧化镧中痕量稀土杂质的ICP-MS测定.稀土,1997,18(6):27~28
    [58]倪嘉缵主编.稀土生物无机化学.北京:科学出版社,1995
    [59]农恒杰.广西新圩铝土矿地质特征.轻金属,1997(8):8~11
    [60]漆亮,胡静.等离子体质谱法快速测定地质样品中的痕量铂族元素和金.岩矿测试,1999,18(4):267
    [61]潘其云.广西平果铝土矿田发现史.广西地质,1994,7(2):89~92
    [62]曲正.铝土矿铝硅比与拜耳法生产能耗的关系.轻金属,1998(11):20~23
    [63]曲献通.21世纪我国铝土矿资源可持续发展战略.世界采矿快报,2000 (4):32~35
    [64]任达明,王乃梁.现代沉积环境概论.北京:科学出版社,1985
    [65]沙庆安,吴望始,傅家谟.黔桂地区二叠系综合研究.北京:科学出版社,1990
    [66]孙亚莉,管希云,杜安道.锍试金富集贵金属元素等离子体质谱法测定地质样品中痕量铂族元素.岩矿测试,1997,16(1):12
    [67]覃志安.我国古生代沉积型铝土矿含矿岩系的特征、形成条件及找金的可能性.地质找矿论丛,1997,12(2):67~74
    [68]涂光炽等.地球化学.上海:上海科学技术出版社,1984
    [69]涂光炽.本世纪80年代地球科学若干问题的新进展.地质论评,1990,36(6):510~517
    [70]万兵.等.广西铝土矿的物源探讨.地质与勘探,1981,(1):25~32
    [68]王刚中、于学元、赵振华.稀土元素地球化.北京:科学出版社,1989
    [69]王建立,保静华.影响—水硬铝石型铝土矿溶出的因素比较分析.轻金属,2000,12:25~27
    [71]王力堂.赤泥利用的有效途径.世界有色金属.1998,8:45~48
    [72]王濮、潘兆橹等编著.系统矿物学(中册).北京:地质出版社,1984
    [73]王鑫书,黄德修.赤泥利用的研究.轻金属,1995,5:13~15
    [74]王顺昌.世界镓的供需状况.世界有色金属,2000,11:28~29
    
    
    [75]韦国深.桂西堆积型铝土矿床地质特征和控矿因素.有色金属矿产与勘查,1999(12)
    [76]W.E.克伦宾著;杨承运,张昀,等译.微生物地球化学.北京:地质出版社,1990
    [77]吴国炎.华北铝土矿的物质来源及成矿模式探讨.河南地质,1997,15(3):161~166
    [78]肖金凯,雷剑泉,夏祥.黔中铝土矿及其赤泥中钪的某些特征.矿物学报,1994,14(4):388~393
    [79]谢烈文,侯泉林等.电感耦合等离子体质谱分析通古斯大爆炸地区沉积物中超痕量铂族元素,岩矿测试,2001,20(2):88~90
    [80]徐安武,杨晓勇.等.安徽蒙城尉迟寺遗址大口尊古陶器的稀土元素地球化学研究,稀土,1999(6):1~4
    [81]徐刚,廖春生,严纯华.我国钪资源开发利用的战略思考.中国有色金属学报,2000,11(16):12~15
    [82]须藤俊男著,严寿鹤,刘万,贾克实译.粘土矿物学.地质出版社,1981
    [83]杨冠群.贵州修文铝土矿床显微结构及其堆积特征和次生富集现象.沉积学报,1987,5(1):69~76
    [84]杨重愚.氧化铝生产工艺学,北京:冶金工业出版社,1993
    [85]杨志民.我国氧化铝生产的综合回收与利用.世界有色金属,2002,2:35~38
    [86]叶连俊,等.生物成矿作用研究.北京:海洋出版社,1993.1-5:176-184
    [87]尹明,袁玄晖.等离子质谱法测定地质样品中痕量稀土的研究.岩矿测试,1989,8(2):81
    [88]邹维雷.山西省石炭纪铝土矿中鲕特征及成因.世界地质,1998,17(2)
    [89]邹海洋.喀拉通克铜镍硫化物矿床成岩成矿模式及找矿预测.中南大学博土论文,2002
    [90]曾德启.平果铝土矿伴生组分的综合利用前景.轻金属,2000(8):7~9
    [91]曾德启.平果那豆铝土矿矿体产出地质特征及开采技术条件.矿产与地质,2000,14(79):281~284
    [92]张起钻.桂西岩溶堆积型铝土矿床地质特征及成因.有色金属矿产与勘查,1999,8(6):486~489
    [93]张玉学,何其光,邵树勋,张书英.铝土矿钪的地球化学特征.地质地球化学,1999,27~2:55~61
    [94]张培善,陶光捷,杨主明,等.中国稀土矿物学.北京:科学出版社,1998
    [95]张岩主编.岩石矿物分析.北京,地质出版社,1992
    [96]张玉学,何其光等.铝土矿钪的地球化学特征。地质地球化学,1999,27(2):55~61
    [97]赵祖德,姚良均,彭如清等著.世界铝土矿和氧化铝工业.科学出版社,1994(4)
    [98]中国有色金属工业总公司地质局编.有色地质分析规程(内部资料).1992
    [99]钟宁宁,秦勇.碳酸盐岩有机岩石学—显微组分特征、成因、演化及其
    
    与油气关系.北京:科学出版社,1995
    [100] 布申斯基(前苏联)著:王恩孕,张汉英等译.地质出版社.1984
    [101] 丘赫洛夫著,萧序刚等译.胶体矿物学原理.北京:科学出版,1965.
    [102] Bacon, W. G., Hawthorn., G. W. and Poling, GW., Gold analyses-myths.Frauds and truths. Can. lnst. Mining Bull., 1989, 82, 29~36
    [103] Bardossy, G, Karst Bauxite, Bauxite Deposits on Carbonate Rocks. Published by Arademial Kiad'o Budapest, 1982, 108- 164
    [104] Barnes, S. J., Zientek M. L., Severson M. J., Ni, Cu, Au, and Platinum-group element contents of sulphides associated with intraplate magmatism:a synthesis. Can. J. Earth Sci., 1997, 34, 337~351
    [105] Barnes, S., Naldrett, A. J. and Gorton, M. E, The origin of the fractionation of Platinum-group minerals in terrestrial magmas, Chem. Geol. 1985, 53,303~323
    [106] Beauchemin, D., Mclaren, J. w. and Berman, S. S., Study of the effects of concomitant elements in inductively coupled plasma mass spectrometry. Spectrochim Acta., 1987a, 42B, 467~490
    [107] Bond, G, Moyes, R. B., Pollington S. D. and Whan D. A., The Superheating of Liquids by Microwave Radiation, Chem. 1991, 1nd, 686~687
    [108] Cabri, L. J. and Laflamme, J. H. G, The Mineralogy of the platinum group elements from some copper-nickel deposits of the Sudburv area, Ontario. Econ. Geol.,1976, vol. 71, 1159~1195
    [109] Cresser, M. S. and Browner, R. F., Sample Temperature Effects in Analytical Flame Spectrometry, Anal. Chim. Acta., 1980, 113, 33~38
    [110] Crocket J. H., Geochemistry of the platinum-group minerals. In PEG Mineralogy, Geology, Recovery (ed. Cabri LJ.), Can. Inst. Min. Metall., 1981, 23,47~63
    [111] Date. A. R., Cheung, Y. Y. and Stuart, M. E., The influence of polyatomic ion interferences in analysis by inductively coupled plasma mass spectrometry (ICP-MS). Spectrochim. Acta., 1987a, 42B, 3~20
    [112] Date, A. R. and Gray, A. L. (Eds.), The Application of Inductively Coupled Plasma Mass Spectrometry, Chapman & Hall, New York, 1989
    [113] Dominique Michel. Enrichment of Gold in Residual Laterite. Mineraliun Deposit, 1987,22 (3)
    [114] Evans, E. H., Giglio, J. J., Gastillano, T. M. and Caruso, J. A., Inductively Coupled and Microwave Induced Plasma Sources for Mass Spectrometry, Royal Society of Chemistry, Cambridge, 1995, 107 pages
    [115] Falkner, K. K., Klinkhammer G P., Ungerer, C. A. et al. Inductively Coupled Plasma Mass Spectrometry in Geochemistry. Annu. Rev. Earth planet Sci., 1995, 23 (1): 408~409
    [116] Gillson, G R., Douglas, D. J., Fulford, J. E., Halligan, K. W. and Tanner, S. D., Non-spectroscopic interelement interferences in inductively coupled plasma mass spectrometry. Anal.Chem. 60, 1472~1474 (1988)
    
    
    [117] Gray. A. L. and Williams, J. G. System optimization and the effect on polyatomic, oxide and doubly charged ion response of a commercial inductively coupled plasma mass spectrometry instrument. J. Anal. Atom. Spectrom. 1987b, 2, 599~606
    [118] Grady, C.O., Marr, I. L. and Cresser, M. S., Critical Appraisal of Three Methods for Measurement of Nebulizer Suction, Analyst 109, 1085~1089 (1984)
    [119] Gray, L., The origins realization and performance of ICP-MS systems In Applications of Inductively Coupled Plasma Mass Spectrometry. Eds., Date, A. R. and Gray, A. I., Blackie. Glasgow, 1989a, 1-42
    [120] Gustavsson A., A Review of the Theory for, and Practical Aspects on Aerosol Chambers, Spectrochim. Acta., 39B, 85~94 (1984)
    [121] Gustavsson, A., Mathematical Model for Concentric Nebulizer Systems, Anal. Chem., 55, 94~98 (1983)
    [1212] Gustavsson A., Prediction of Nebulizwr Characteristics for Concentric Nebulizwr Systems with a Mathematical Model, Anal. Chem., 56, 815~817 (1984)
    [123] Gustavsson A., Theoretical Considerations on the Measurement of Nebulizer Suction. Analyst., 110, 885~885 (1985)
    [124] Hewitt, A. D. and Reynolds, C. M., Microwave Digestion of Soils and Sediments for Assessing Contamination by Hazardous Waste Metals, U.S. Army Corps of engineers Cold Regions research and Engineering Laboratory, June 1990
    [125] Houk, R. S., Fassel, V. A., Flesch, G. D., et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem., 1980, 52, 2283~2289
    [126] Jackson, S. E., Fryer, B. J., et al. Determination of the precious Metalsin geological Materials by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with Nickel Sulphide fire assay Collection and Tellurium Coprecipitation. Chemical Geology, 1990, 83, 119
    [127] Jarvis, K. E., Gray, A. L. and Houk, R. S., Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, London, 1992
    [128] Jarvis, K. E., Gray, A. L. and McCurdy, E., Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion. J. Anal. Atom. Spectrom., 1989, 4,743~747
    [129] Kingston, H. M., Walter, P. J., Chalk, S. J., Lorentzen, E., and Link, D. "Environmental Microwave Sample Preparation Fundamentals, Methods, and Applications." In Microwave Enhanced Chemistry, H. M. Kinsgton and S. Haswell, Eds., American Chemical Society, Washington, DC, 1997, PP. 223~349
    [130] Maessen, F. J.V.J., Coevert, P. and Balke, J., Comparison of Pneumatic Nebulizers in Current Use for Inductively Coupled Plasma Atomic Emission Spectrometry, Anal. Chern, 56, 899~903 (1984)
    [131] Montaser, A. and Golightly, D. W. Eds., Inductiveljy Coupled Plasmas in Analytical Atomic Spectrometry, 2nd ed., VCH, New York, 1992, 1017
    [132] Naldrett A.J. and Cabri L.J., Ultramafic and related magic rocks: their classification and genesis with specid to the concentration of nickel sulfide and
    
    platinum group elements, Econ. Geol, 1976, Vol. 71 (7): 1131~1158
    [133] Naldrett, A. J., Key factor in the genesis of Noril sk, Sudbury, Jinchuan, Voisey Bayand other World-class Ni-Cu-PEGdeposits: implications for exploration.Australian Journal of Earth Science, 1997, 44, 283~315
    [134] Naldrett, A.J., Nickel sulfide deposits: classification, composition, and genesis, Econ.. Geol. Seventy-fifth anniversary, 1981, Vol. 6, 2885
    [135] Olivares, J. A., and Houk, KS., Suppression of analyte signal by various concomitant salts in inductively coupled plasma mass spectrometry. Anal. Chem., 1986, 58, 20~25
    [136] Radhakrishna, B. P. Gold in Laterite: A Challenge in Metallogeny, Journal of the Geol. Soc. Of India., 1989, 33 (3): 199~200
    [137] Rehkamper, M., Halliday, A. N., Fitton J. and Lee D. C., Ir, Ru, Pt, and Pd in Basalts and Komatiites: new constrains for the geochemical behavior of the platinum-group minerals in the mantle. Geochem. Cosmochim. 1999, 63, 3915~3934
    [138] Stewart, I. I. and Horlick, G., Electrospray Mass Spectra of Lanthanides,Anal. Chem. 66, 3983~3993 (1994)
    [139] Sulcek, Z. and Povondra, P., Methods of Decomposition in Inorganic Analysis, CRC Press, Boca Raton, FL, 1989
    [140] Tardy, Y., Characterization of the principal weathering types by the geochemistry of from some European and African srystalline massifs. Chem. Geol.,1971, 7, 253~271
    [141] Taylor, H. E., Huff, R. A. and Montaser, A., Novel Applications of ICP MS.VCH, New York, 1998, 730~732
    [142] Thompson, J. J. and Houk, R. S. A study of internal standardization in inductively coupled plasma mass spectrometry. Appl. Spectrosc. 1987,11, 801~806
    [143] Thmpson, M. and Walsh, J. N., A Handbook of Inductively Coupled Plasma Spectrometry, 2nd ed., Blackie, Glasgow, 1989
    [144] Williams, J. G and Gray, A. L. (1988) High dissolved solids and ICP-MS:are they compatible? Anal. Proc. 1988.25, 385~388
    [145] Yamasaki, S-I., Inductively Coupled Plasma Mass Spectrometry. In Mass Spectrometry of Soils, Boutton, T. W. and Yamasaki, S-I, Eds., Dekker, New York.,1996
    [146] Yanping, H., Zhanxia, Z. and Jianguo, Z., Simulation of Nebulization Process in Inductively Coupled -laser Atomic Emission Spectrometry with a Modified Model Using The Monte Carlo Technique, J. Anal. At. Spectrom. 1994, 9,701~705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700