用户名: 密码: 验证码:
注塑模优化设计理论的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑成型作为一项速度快、自动化程度高的生产技术,能一次成型形状复杂,尺寸精确的制品,在整个塑料制品生产行业中占有非常重要的地位。
     本文针对注塑成型过程,重点研究了注塑模充填过程的快速模拟理论,注塑模制品和模具优化设计理论。在此基础上,将快速模拟技术、数值模拟技术和优化算法相结合,用于注塑模制品和浇注系统优化设计,并数值和实验分析了成型工艺条件对注塑成型过程熔体充填模式的影响。主要工作包括:
     1.基于对塑料熔体在型腔和浇注系统中流动行为的研究,通过引入等效流长概念,将熔体前峰面的追踪问题转换为带权有限元网格上任意两点间最短路径的求解,建立了注塑模充填过程快速模拟理论,并经过与两个实际产品短射实验的对比分析,表明快速模拟分析不仅可以快速地而且能够准确地得到熔体的充填模式和熔接线气穴位置。
     2.论文提出了带权有限元网格上任意两点的近似最短路径算法。算法将有限元网格表示为带权图结构,利用基于动态优化思想的快速最短路径法动态计算带权图上两点的最短路径,通过不断迭代细分最短路径周围的三角形边,构造每次细分后新的带权图,从而迭代逼近网格模型上的两点间最短路径。算法的时间复杂度为0(|e|),优于现有最好的近似最短路径算法(时间复杂度0(|e|log|e|)),利用该算法实现了熔体前锋面的自动追踪。
     3.在数值模拟的基础上分析了成型工艺条件的变化对单腔注塑模的充填模式影响,并结合实验研究了成型工艺条件变化对多型腔注塑模充填模式的影响。发现对单腔等壁厚制品,熔体温度和注射时间的变化对充填模式基本无影响。对于壁厚变化非常大的单腔制品或一模多腔制品,熔体温度对制品的充填模式影响非常小,而注射时间的变化也只有积累到一定程度引发滞流效应时,才对制品的充填模式有显著影响。这说明本文提出的注塑模充填过程快速模拟理论是有很大的应用范围的。
     4.论文以平衡流动为目标,实现了注塑制品壁厚优化设计。首先利用快速模拟技术和最速下降法思想对制品壁厚进行初步优化,以获得壁厚分布趋势,并以此作为制品区域划分和进一步优化的基础;然后,以制品各区域壁厚为设计变量,将数值模拟技术与修正复形法结合用于壁厚最终优化。该算法可将型腔内的流动不平衡度降到5%以下。
     5.针对精度高、浇口位置可行空间很小的注塑模具,论文将数值模拟技术与改进爬山法相结合,实现了以减少翘曲和提高材料性能为目标的浇口位置优化设
    
    中文摘要
     计,取得了满意的优化效果。
    6.对于浇口位置可行空间较大的注塑模具,论文分别将穷尽法和自适应模拟退火
     遗传算法与快速模拟技术相结合,实现了单浇口位置和多浇口位置优化设计,
     保证熔体能够同时到达型腔末端从而获得平衡的充填模式,这也是首次真正解
     决可行空间大、浇口数目多的复杂模具浇口位置优化设计问题。
    7.建立了一套较为系统的基于数值模拟技术的浇注系统尺寸优化设计理论和方
     法,分别以获得平衡的充填模式和预期熔接线位置为目标,将最速下降法思想
     和数值模拟技术结合用于优化浇注系统流道和浇口尺寸。该方法通过引入浇注
     系统的自动识别技术,解决了包括薄片浇口在内的各种类型浇口的尺寸优化问
     题,并且首次对熔接线的位置进行优化,取得了满意的效果。
    论文得到国家杰出青年科学基金资助项目(10225211)资助。
The injection molding is a popular technique of polymer processing, by which multiple parts with tight tolerances and complex shape can be produced in a single operation. Due to its success in delivering high-value added commercial products with high quality, the global competition in the field is intense, which leads to the requirement of high quality standard, shorter producing time and lower operating cost.
    This dissertation focuses on developing a fast flow simulation methodology and design optimization theory for injection molding. The optimization algorithms, fast flow simulation and numerical simulation technology are integrated to optimize part design and mold design. The relationship between processing condition and filling pattern of single and multiple cavities are studied. The main work are as follow:
    1. Through studying the flow behavior of melt in cavity and runner system, a fast simulation theory is developed based on reasonable assumption and simplification. Equivalent flow length concept is introduced, by which the melt-front tracing can be transferred to the computation of the shortest path on part. Two short shot experiments demonstrated the efficiency and accuracy of the proposed theory in predicting the filling pattern and the location of weld lines and air trap. For a model with 6065 nodes and 11700 elements, it needs only 128s in Pentium IV 450 machine, while MPI (numerical simulation software) needs 1845s.
    2. An O(|e|)-time algorithm is proposed for calculating the approximate shortest path
    on finite element mesh model which can be represented by a weighted graph. This method combines FSPA(Fast Shortest Path Algorithm), used to dynamically calculate shortest path on weighted graph, and edge subdivision technology. By iteratively subdividing relate triangle edges adjoined the shortest path and constructing new subgraph, a shortest path with high approximation accuracy can be achieved. The method is employed successfully to tracing melt front of injection molding. It can also be applied to robotics, GIS, route finding, and so on.
    3. The effect of variation of processing condition to filling pattern for single and multiple cavities is studied by numerical simulation and short shot experiment respectively. It is found that processing condition has little effect on filling pattern for single cavity mold with uniform thickness. For single cavity mold with large thickness difference or multi cavities mold, it may change the entire filling pattern when the variation of processing condition cause flow hesitation.
    4. An optimization model of part thickness in injection molding is introduced, in which the aim is to get balanced filling pattern. The idea of steepest descent method
    
    
    
    integrated with fast simulation is used to minimize the arithmetical average difference between equivalent flow length of boundary nodes and reference value, and an optimal part thickness distribution can be obtained. Based on the result, the number of part regions can be determined. Then modified complex method combined with numerical simulation is applied to further searching optimal part region thickness and achieve uniform filling pattern by minimizing the arithmetical average time difference between the time reaching to boundary nodes and reference time. The examples demonstrate that the proposed method is viable and robust, and the unbalanced percent can be drop to 5%.
    5. For mold with limited gate design space and high quality requirement, a methodology, which combines modified hill-climbing algorithm and numerical simulation, is used to optimize gate location to achieve minimum warpage and improve material performance.
    6. On the basis of fast simulation, a new gate optimization algorithm for mold with multi-gates or big feasible design space is proposed. Exhausted method and adaptive simulated annealing genetic algorithm are used to optimize single gate and multi-gate mold respectively. The models analyzed demonstrate that the proposed method is promising and the computation time is satisfied.
引文
1.[美]Malloy R.A.著,赵树高等译.塑料注塑制件设计.北京:化学工业出版社,2000.4
    2.周永泰.我国塑料模具现状与发展趋势.塑料.2000,29(6):23~27
    3.张克惠.注塑模设计.西安:西北工业大学出版设,1995.1
    4. Moldflow Corporation.C-MOLD2000 Design Guide.
    5.奚东.注塑成型中制品的缺陷原因及其对策.塑料科技.2000,6:34~38
    6. Prabodh C. Bolur. Pitfalls in injection molding of plastics. http://www.balasainet.com/members/pcbolur
    7.申长雨等.注射模充模过程CAE技术Ⅱ——工程应用.模具工业,2001,3:51~56
    8.申长雨,等.注塑成型制品的质量控制[J].工程塑料应用,1999,27(8):33~37
    9.王兴天.注塑成型技术.北京:化学工业出版社,1989
    10. H.L. Toor, R.L. Ballman, and L.Cooper. Prediction mold flow by electronic computer. Mod. Plast.,1960,39(12):117
    11. D.H. Harry and R.G. Parrott. Polym.Eng.Sci.,1970,10(3):209
    12. J. Rothe. Kunstoffe, 1972,62: 142
    13. M.R. Kamal and S. Kenig. Polym. Eng. Sci.,1972,12(4): 294~301
    14. G.Williams and H.A. Lord. Polym. Eng. Sci,1975,15: 553
    15. H.A. Lord and G. Williams. Polym. Eng. Sci.,1975,15: 569
    16. J.F. Stevenson, A. Galskoy, et al. Injection molding in disk-shaped cavities. Polym. Eng. Sci., 1977,17(9): 706~710
    17. C.A. Hieber. Technical manual No. TM-3, Cornell Injection Molding Project, Cornell University(1982)
    18. C.A. Hieber and V.W. Wang. Technical manual No. TM-1, Cornell Injection Molding Project, Comell University(1982)
    19. E. Broyer, C. Gutfinger and Z, Tadmor. A theoretical model for the cavity filling process in injection molding. Transactions of the Society of Rheology. 1975,19(3): 423~444
    20. W.L. Krueger, Z. Tadmor. Injection molding into a rectangular cavity with inserts. Polym. Eng. Sci., 1980,20(6):426~431
    21. C.A. Austin. Computer aided engineering for injection molding. E.C. Bernhardt, ed., Hanser, NY
    22. C.A. Hieber, S.F. Shen. Flow analysis of the non-isothermal two-dimensional filling process in injection molding. Israel Journal of Technology, 1978,16: 248~254
    
    
    23.[德]Georg Menges等著.闫光荣,许鹤峰等译.注射模具制造工程.北京:化学工业出版社,2002.12
    24. C.A. Hieber, S.F. Shen. A finite-element/finite-difference simulation of the injection-molding filling process [J]. J.Non-Newt.Fluid Mech, 1980,7: 1~32.
    25. V.W. Wang, C.A. Hiber, K.K. Wang. Mold-filling simulation in injection molding of three-dimensional thin parts. Journal of Polymer Engineering, 1986,7: 21
    26.耿铁,李德群,周华民.注塑成型流动模拟技术发展的三个阶段.塑料科技,2002(10):1~4
    27. H. Mavridis, A.N. Hrymak, J. Vlachoponlos. Finite element simulation fountain flow in injection molding. Polym. Eng. Sci.,1986,26(7): 449~454
    28. B. Friedrichs, S. I. Guceri. A novel hybrid numerical technique to model 3-D fountain flow in injection molding process. J. Non-Newtonian Fluid Mech., 1993,49: 141~173
    29. Y. Yu, T. Liu. A hybrid 3D/2D finite element technique for polymer processing operations. Polym. Eng. Sci., 1999,39(1): 44~53
    30. V. Rajupalem, K. Talwar, C. Friedl. Three-dimensional simulation of the injection molding process. ANTEC' 1997, p670
    31. H. Lee. Finite element analysis for the flow characteristics along the thickness direction in injection molding. Polym. Eng. Sci.,1997,37(3): 559~567
    32. J.F. Hetu, D.M. Gao, et al. 3D finite element method for the simulation of the filling stage in injection molding. Polym. Eng. Sci.,1998,38(2): 223~236
    33. F. Ilinca, J.F, Hetu. Finite element solution of three-dimensional turbulent flows applied to mold-filling problems. International Journal for Numerical Method in Fluids. 2000,34(8): 729~750
    34.何献忠,李萍.优化技术及其应用(第二版).北京:北京理工大学出版社,1995
    35.邢文训.现代优化计算方法.北京:清华大学出版社,1999
    36.赵凤治,魏继英.约束最优化计算方法.北京:科学出版社,1991
    37.申长雨等.塑料注射模具计算机辅助工程.郑州:河南科技出版社,1997
    38.康立山,谢云,尤矢勇等.非数值并行算法(第一册)-模拟退火算法[M].北京:科学出版社,2000.
    39.周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999
    40.王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2002.1
    41.丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,1998。
    42.阎平凡.人工神经网络与模拟进化计算.北京:清华大学出版社,2000
    43. B.H. Lee, B.H. Kim. Optimization of part wall thickness to reduce warpage of injection-molded
    
    parts based on the modified complex method. Polym. Plast. Technol. Eng.,1995,34(5): 793~811
    44. L.W. Seow, Y. C. Lam. Optimizing flow in plastic injection molding. Journal of Materials Processing Technology. 1997,(72): 333~341.
    45. Y. C. Lam, L.W, Seow. Cavity balance for plastic injection molding. Polym. Eng. Sci.,1999, 39(1): 44~53
    46. R. Sahu, D. Yao, B.H. Kim. Design methodology for minimizing warpage. Plastics Engineering, 1998(5): 31~33
    47. V.W. Wang, K.K. Wang, C.A. Hiber. Interative computer program for runnersystem design in injection molding. ANTEC'83, SPE conference,1983,663~665
    48. W.R. Jone, K.K. Wang. Integrated design system for 3-D runner balancing of injection molding process. ANTEC'94,SPE conference, 1994,749~753
    49.袁中双,李德群,肖景容.塑料注射成型的流动平衡研究.塑料工业,1994,(2):36-51
    50. B.H. Kim, M. Ramesh. Automatic runner balancing of injection molds using flow simulation. J. Engineering for Industry, Transactions of the ASME, 1995, 117: 508~515
    51.林旭东,王鹏驹.基于注塑CAE分析的流道优化设计.塑料工业,1997,4:72~75
    52. B.H. Kim, M. Ramesh. Automated design for the runner system of injection molds based on packing simulation. Polym. Plast. Techno. Eng., 1996,35(1): 147~168
    53. C.C. Lee, J.F. Stevenson. Runner design with minimum volume for multicavity injection molds: Part Ⅰ Runner sizing. Journal of Reinforced Plastics and Composites, 1998, 17(15): 1350~1362
    54. C.C. Lee, J.F. Stevenson. Runner design with minimum volume for multicavity injection molds: PartⅡ Runner layout. Journal of Reinforced Plastics and Composites, 1998, 17(15): 1363~1373
    55. Z. Xia and P.K. Mallick. Control of dimensional variability in injection molded plastics parts. ANTEC'97, p472~479
    56. P.B. John, H.Y. Jack, J.J. Matthew. Mold filling imbalances in geometrically balanced runner systems. ANTEC'98, p599~604
    57. I. Pandelidis, Q. Zhou. Optimization of injection molding design. Part Ⅰ: Gate location optimization. Polym. Eng. Sci. 1990,30(15): 873~882
    58. W.B. Young. Gate location optimization in liquid composite molding using genetic algorithm. J. Composite Materials, 1994,28(12): 1098~1113
    59. B.H. Lee and B.H. Kim. Automated selection of gate location based on desired quality of injection-molded part. Polym. - Plast. Technol. Eng., 1996, 35(2): 253-269
    
    
    60. D. E. Smith, D. A. Tortorelli, G. L. Tucker. Analysis and sensitivity analysis for polymer injection and compression molding. Comput. Methods. Appl, Mech. Engng. 1998,167(3-4):325: 344
    61. D. E. Smith. Optimal edge gate placement for the polymer injection molding process. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Setp.15~18, St. Louis, MO,1998
    62. H. Ye and K.K. Wang. Optimization of injection-molding process with genetic algorithms. ANTEC'99,p594~598
    63. J.C. Lin. Optimum gate design of freeform injection mould using the abductive network. Int. J. Adv. Manuf. Technol., 2001,17:297~304
    64. A. Gokce,K.T. Hsiao, S.G. Advani. Branch and bound search to optimize injection gate locations in liquid composite molding processes. Composites: Part A, 2002,33: 263~272
    65. K.K. Kabanemi, J.F. Hetu. Design sensitivity analysis of applied to injection molding process: injection pressure and multi-gate location optimization. International Polymer Processing, 2002, 17(3): 254
    66. G. Courbebaisse, D. Gercia. Shape analysis and injection molding optimization. Computational Materials Science, 2002, 25: 547~553
    67.翟明.塑料注射成型充填过程的数值模拟、优化与控制.博士学位论文.大连:大连理工大学,2001
    68.翟明,顾元宪,申长雨.注射模浇口数目和位置的优化设计.化工学报,2003,54(8):1141~1145
    69.翟明,顾元宪,申长雨.注射模浇注系统位置优化设计.机械工程学报,2002,38(2):40~43
    70. H.S. Kim, J.S. Son, Y.T. Im, Gate location design in injection molding of an automobile junction box with integral hinges. Journal of Materials Processing Technology 2003,140: 110~115
    71. H. Ye, Y.H. Wu, K.K. Wang. Optimization scheme for part quality in injection molding. ASME, MD, 1997,79,CAE and Intelligent Processing of Polymeric Materials, p 139~149
    72. H. Ye and P.M. Leopold. Minimizing part sink marks using C-MOLD and genetic-optimization algorithm. ANTEC'99, p 589~593
    73. D. Yao,B.H. Kim. Direct-search-based automatic minimization ofweldlines in injection-molded parts. Polym. Plast. Technol. Eng.,1998 37(4): 509~525
    74. S.J. Kim, K. Lee, Y.I. Kim. Optimization of injection-molding conditions using genetic algorithm. Proceedings of SPIE- The International Society for Optical Engineering, 1995,p173~180
    75. R.B. Mathur, K. Fink and S.G. Advani. Use of genetic algorithms to optimize gate and vent
    
    locations for the resin transfer molding process. Polym. Compos. 1999,20: 167~178
    76. B.Y. Kim, G.J. Nam, et al. Optimization of filling process in RTM using genetic algorithm, Korea-Australia Rheology Journal, 2000,12(1): 83~92
    77.郑占明,刘春太,申长雨.基于遗传算法的注塑模注射速率优化.工程塑料应用,2002,30(7):25~28
    78. B.H.M. Sadeghi. BP-neural network predictor model for plastic injection molding process. Journal of Materials Processing Technology,2000, 103(3): 411~416
    79. P.K.D.V. Yarlagadda, C.A.T. Khong. Development of a hybrid neural network system for prediction of process parameters in injection moulding. Journal of Materials Processing Technology,2001,118(1): 110~116
    80. S.H. Dillman, D. Howe, H. Robar. Optimization of the injection molding process. ANTEC'96, SPE conference, 1996,754~758
    81. R.S. Chen, H.H. Lee, C.Y. Yu. Application of Taguchi's method on the optimal process design of an injection molded PC/PBT automobile bumper. Composite Structures,1997,39(3): 209~214
    82. S.Chang, J. Hwang, J. Doong. Manufacturing process optimization of short glass fiber reinforced polycarbonate composites in injection molding. J. Reinforced Plastics and Composites.2000,19(4): 301~321
    83. S.Chang, J. Hwang, J. Doong. Optimization of the injection molding process of short glass fiber reinforced polycarbonate using gray relational analysis. J. Material Processing Technology.2000, 186~193
    84. T.C. Chang, E. Faison. Shrinkage behavior and optimization of injection molded parts studied by the Taguchi method. Polym. Eng. Sci.,2001,41(5): 703~710
    85.刘春太.基于数值模拟的注塑成型工艺优化和制品性能研究.博士学位论文.郑州大学:2003
    86.吴其晔,巫静安.高分子材料流变学导论.北京:化学工业出版社,1994.6
    87.刘春太,申长雨,陈静波,王利霞.注塑模充模过程动态分析的有限元/控制体积法.计算物理,2002,19(4):344-348
    88. C.A. Hieber. Chapter 1 in injection and compression molding fundamental. Edited by A.I. Isayev. New York: Marcel Dekker,1987
    89.吴望一.流体力学(上、下册).北京:北京大学出版社,1983
    90. Ching-Chih Lee, An improved flow analysis network(FAN) method for irregular geometries, Polym. Engrg, Sci. 30(24) (1990) 1607-1614.
    91. Sharir M, Schorr A. On shortest path in polyhedral spaces[J]. SIAM Journal on Computing,
    
    1986, 15(1): 193~215
    92. Chen J, Han Y. Shortest Path on the polyhedron[A]. In: Proceedings of the 6th ACM Symposium on Computer Geometry, Berkley, California, 1990. 360~369
    93. Kanai T, Suzuki H. Approximate shortest path on a polyhedral surface and its applications[J]. Computer-Aided Design, 2001, 33(11): 801~811
    94. Lanthier M, Maheshwari A, Stack J-R. Approximating weighted shortest paths on polyhedral surfaces[A]. In Proceedings of the 13th ACM symposium on Computer Geometry, Nice, France, 1997.272~283
    95.张丽艳,吴熹.三角网格模型上任意两点间的近似最短路径算法研究[J].计算机辅助设计与图形学学报,2003,15(5):592~597
    96.段凡丁.关于最短路径的SPFA快速算法[J].西南交通大学学报,1994,29(2):207~212
    97.袁中双.塑料注射成型流动和保压过程的计算机模拟及实验研究.[博士学位论文].武汉:华中理工大学,1993.
    98. Yang Weimin, Hidetoshi Yokoi, A Study on Filling Balance in Multi-cavity Molds, JSPP'02 Tech. Papers, Tokyo, June 6-8, 2002
    99. G. Steinbichler, Schwertberg. Trands in process optimization. Kunststoffe. German Plastics. 1992,82(10): 902~907
    100.袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,1997
    101. L. S. Turng. C-Mold design guide. AC Technology, Ithaca, N.Y., 1994
    102. R. E. Nunn. In Injection Molding Handbook, Rosato, Dominick and Rosato, Donald, eds., Van Nostrand Reinhold Company Inc., New York(1986)
    103.王雪梅,王义和.模拟退火算法与遗传算法的结合.计算机学报,1997,20(4):381~384
    104.张晖,吴斌,余张国.引入模拟退火机制的新型遗传算法.电子科技大学学报,2003,32(1):39~42
    105.熊范伦,邓超.退火遗传算法及其应用.生物数学学报,2000,15(2):150~154
    106.吴陈.分组选优交配与概率接受差解的两种模拟退火遗传算法.华东船舶工业学院院报,1998,12(4):48~41
    107.《现代模具技术》编委会.注射成型原理与注塑模设计.北京:国防工业出版社,1996.
    108.李海梅,申长雨.注塑成型及模具设计实用技术.北京:化学工业出版社,2002.6
    109.[加]H.Rees著,朱元吉等译.模具工程.北京:化学工业出版社,2000.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700