用户名: 密码: 验证码:
凤凰山铜矿数字矿床模型及其预测系统开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜陵地区是我国铜矿较集中发育的地区之一,位于长江中下游铜铁金多金属成矿带的中部。从该区及其邻区的沉积建造、岩浆建造、变质建造、构造型相及矿床分布的时空规律等分析,其大地构造演化经历了前地槽、地槽、地台、地洼四个阶段,不同的演化阶段其成矿作用不同,其中以地洼阶段的燕山期岩浆活动为主的成矿作用最为强烈,本区大部分矿床在这一时期的岩浆活动中基本定型。
     凤凰山铜矿是铜陵矿集区主要矿床之一,它赋存于新屋里岩体西部的接触带上,矿体的产出受新屋里岩体、三叠系灰岩、构造、特别是与岩体同期形成的脆性扩容断裂构造的复合控制。脆性扩容断裂构造带中普遍发育有角砾岩,包括角砾状花岗闪长岩、角砾状矿石和角砾状大理岩等三种主要类型。经分形研究,它们的形态和大小分维值分别为:1.26,1.14,1.01和1.389,1.526,1.24,说明角砾状花岗闪长岩主要是化学成因形成的,而角砾状矿石和角砾状大理岩主要是由机械作用的水力致裂形成的,形成时的能量角砾状矿石大于角砾状大理岩。
     凤凰山铜矿床南区构造地球化学取样分析中的Cu元素含量具有多重分形的特点,且不同的地质体中其分形特征不同,结合Cu元素在不同地质体中的分布特点,说明本区不同地质体所经历的成矿作用不同,其中以石英二长闪长岩所经历的成矿作用强度较大,较有利于成矿元素的富集。
    
     BP神经网络技术是目前常用的一种非线性拟合方法,它的作用
    在于提供了一种非线性静态映射,能以任意精度逼近任意给定的非线
    性关系,具有学习和推广的功能。它通过各神经元之间的藕合作用关
    系实现从输入到输出的高度非线性映射。矿体的形成与定位也是各种
    控矿因素祸合作用的结果,其祸合机制是线性函数难以拟合的,而
    BP人工神经网络的高度非线性拟合功能恰好能解决这一问题。利用
    凤凰山铜矿床8个已知样本,将其输入网络学习,经过5O0()余次迭
    代,网络收敛,其输出误差满足精度要求。因此,利用BP人工神经
    网络模型来拟合成矿作用过程中各种控矿因素之间的藕合作用、并以
    此建立木区的大比例尺成矿预测模型是可行的。即人工神经网络的
    非线性拟合功能主要是通过网络内部各神经元之间的连接权值实现
    的,因而神经元的连接权值定量地表达了该神经元对下一层神经元的
    影响权重,通过网络运行机理和对神经元之间的连接权值的追踪,可
    计算出输入层神经元对输出层神经元的影响权重,结合地球物理、地
    球化学勘查数据,建立了基于成矿有利度法的凤凰山铜矿床找矿预测
    模型。在组件式GIS软件MapX平台上,利用可视化高级编程语言
    vi Sualc+十将成矿预测模型、找矿预测模型和地学空间数据库集成在
    一起,开发实现了凤凰山铜矿床成矿预测系统,完成本矿床的大比例
    尺数字矿床模型。
The Tongling region is one of the region that copper ore deposits were concentrated developed in our country. It locate in the middle of the Cu-Fe-Au multimetal mineralization belt of middle and lower reaches of Yangtze River. Its geotectonic evolution has gone through four stages: Pre-geosynclinal stage, Geosynclinal stage, Platform stage and Diwa stage by the analyzing of sedimentary formation, magma formation, metamorphic formation, structural styles & tectofacies and space-time orderliness of mineral distribution in this region and its vicinage. Every stage had its different metallogenesis. Among these, the strongest metallogenesis is the one which arose by Yanshanian magmatic processes in Diwa stage. The most ore deposits were formed during this magmatic processes in the region.
    Fenghuangshan copper deposit is one of the mainly deposit in Tongling ore deposits concentrated region. It lodged in the western contact strip of Xinwuli rock body. The occurrence of ore body was controlled by Xinwuli rock body, Triassic limestone, structure, especial the fragile dilatant fault structure which was formed in the same period of time with rock body. In the fragile dilatant fault structure belt, there are breccias generally which mainly include three types: brecciated granodiorite, brecciated ore and brecciated marble. According to the
    
    
    fractal analysis, its' fractal dimension of morphology and size distribution is 1.26,1.14,1.01 and 1.389,1.526,1.24. It indicated that, brecciated granodiorite was foemed mainly by chemical attack, brecciated ore and brecciated marble were hydraulic breccias which were formed mainly by mechanical process, and the energy when brecciated ore was formed is higher than the energy when brecciated marble was formed.
    During the research of tectono-geochemistry in the south part of Fenghuangshan copper deposit, it is discovered that the fractal character of Cu is multifractality, and different from each other according to the geological bodies. Compound with the distribution character of Cu in different geological bodies, it is illustrated that the metallogenesis which different geological bodies had gone through in this area is different, and the intensity of metallogenesis which quartzite monzodiorite had gone through is higher, and in favor of the concentration of metallogenic element.
    BP neural network technique is a in common used non-linear fit method now. Its function is that it provide a non-linear static mapping, and can gain upon a non-linear relation which discretionary imparted with a discretionary precision. It also has the learning and extending function. It can achieve the highly non-linear mapping from input to output by the coupling relations among neural cells. The formation and location of ore body is the output of the coupling of every factor of ore controlling. Its
    
    coupling mechanism is difficult to fit with linear function. The highly non-linear fit function of BP artificial neural network can resolve yhis problem appropriately. Using eight known specimens of Fenhuangshan copper deposit, and putting its itto the network to learn, after more than 5000 iterativenesses, the network constringed and the error of output reached the requiration of precision. There fore, it is feasible that using the model of BP artificial neural network to fit the coupling among the factor of ore controlling during the ore forming process and the model of metallogenic prediction of this area is established by this way. The non-linear fit function of BP artificial neural network is achieved mainly by the connecting weights among the neural cells inside the network. And so, the connecting weight quantificationally show the weight which the neural cell influence next layer's neural cell. The influence weight from input layer's neural cell to output layer's neural cell can calculate by the running mechanism of network and the tracing weight of neural cell. Based on this weights, and compound with the exploring data of geophysics and geochemistry, the model of prospecting prediction of Fenghuang
引文
[1] 翟裕生.金属成矿学的若干进展.地质与勘探,1997,33(1):13~18
    [2] 翟裕生.论成矿系统.地学前缘,1999,6(1):13~27
    [3] 张均.矿体定位预测现状及趋向.地球科学进展,1997,12(6):25~30
    [4] 朱裕生,肖克炎.成矿预测法.北京,地质出版社,1997
    [5] 彭省临,邵拥军.隐伏矿体定位预测研究现状及发展趋势.大地构造与成矿学,2001,25(3):329~334
    [6] 程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列,中国科学院院报(第一号),北京,地质出版社,1979,32~57
    [7] 程裕淇,陈毓川,赵一鸣.再论矿床的成矿系列.中国科学院院报(第六号),北京,地质出版社,1983,1~64
    [8] 陈毓川,裴永富,宋天锐,等.中国矿床成矿系列初论.北京,地质出版社,1998,1~104
    [9] 陈毓川,裴永富,宋天锐,等.中国矿床成矿系列初论.见第五届全国矿床会议论文集
    [10] 翟裕生,彭润民,邓军.成矿系统分析与新类型矿床预测.地学前缘,2000,7(1):123~132
    [11] 翟裕生.成矿系统及其演化-初步实践到理论思考.地球科学,2000,25(4):333~339
    [12] 朱创业.成矿系统研究现状及发展趋势.成都理工学院院报,2000,27(1):50~53
    [13] 裴永富,熊群尧.中国特大型金属矿床成矿偏在性与成矿构造要素聚敛场.矿床地质.1999,18(1):37~46
    [14] 裴永富,叶锦华,梅燕雄.等.特大型矿床研究若干问题探讨.中国地质,2001,28(7):9~15
    [15] 於崇文.成矿动力系统在混沌边缘分形生长—一种新的成矿理论与方法论(上).地学前缘,2001,8(3):10~28
    [16] 於崇文.成矿动力系统在混沌边缘分形生长—一种新的成矿理论与方法论(下).地学前缘,2001,8(4):471~489
    [17] 陈国达.中国地台“活化区”的实列并着重讨论“华夏古陆”问题.地质学报,1956,36(3):239~272
    [18] 陈国达.地壳的第三基本构造单元—地洼区.科学通报,1959(3):94~95
    [19] 陈国达.地壳动“定”转化递进说—论地壳发展的一般规律.地质学报,1959,39(3):279~292
    [20] 陈国达.成矿构造研究法.北京,地质出版社,1978
    [21] 陈国达,黄瑞华.关于构造地球化学的几个问题.大地构造与成矿学,1984,8(1):7~18
    [22] 陈国达.多因复成矿床并从地壳演化规律看其形成机理.大地构造与成矿学,1982,6(1):1~55
    [23] 陈国达.地洼学说新进展.北京,科学出版社,1992
    [24] 陈国达.中国大地构造概要.北京,地震出版社,1977
    [25] 陈国达.造盆作用及成盆的历史—动力综合分类.大地构造与成矿学,1994,
    
    18(1):1~12
    [26] 陈国达.地洼学说—活化构造及成矿理论体系概要.长沙,中南工业大学出版社,1996
    [27] Chen Guoda. Historic dynamic intergrative classification of basinogenesis and metalogenic basins. Geosciences-Journal of China University of Geology, 1993, 4 (1): 1~6
    [28] Chen Guoda. Polygenetic compound ore deposits and superlarge ore deposits. Geotectonica et Metallogenia, 1994, 18 (3, 4): 10~11
    [29] 陈国达.关于多因复成矿床的一些问题.大地构造与成矿学,2000,24(3)199~201
    [30] 周裕潘.地洼学说在国外的运用与发展.大地构造与成矿学,1980,4(2):1~69
    [31] 周裕潘.国际上研究地洼构造和成矿现状.大地构造与成矿学,1995,19(1):83~90
    [32] 陈国达.中国大型三水铝土矿的找矿思路和远景.中国有色金属学报,1991,1(1):2~9
    [33] 陈国达.中国油气田的大地构造类型及找矿方向.大地构造与成矿学,1979,3(1):1~28
    [34] 陈国达,费宝生.中国的地洼型油田.石油与天然气地质,1980,1(3):167~176
    [35] 地洼学说奖金评委会秘书组.湖南花垣县鱼塘铅锌矿区运用地洼学说找到富矿的经过.大地构造与成矿学,1986,10(1):98
    [36] 张湘炳.地洼学说成矿理论的研究与应用.大地构造与成矿学,1989,13(4):326~336
    [37] 彭省临.湘南地洼型铅锌矿形成机理.长沙,中南工业大学出版社,1992
    [38] 戴塔根.澳大利亚维多利亚州的地洼构造及金矿成矿作用.大地构造与成矿学,1989,13(4)
    [39] 赖健清,彭省临.云南铜成矿学(上)—云南富碱斑岩成岩学与成矿学.长沙,中南工业大学出版社,1999
    [40] 赵鹏大,池顺都.初论地质异常.地球科学—中国地质大学学报,1991,(3):241~248
    [41] 赵鹏大,陈永清.地质异常矿体定位的基本途径.地球科学—中国地质大学学报,1998,23(2):111~114.
    [42] 赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践.武汉,中国地质大学出版社,1999:1~138.
    [43] 赵鹏大,陈永清,金友渔.基于地质异常的“5P”找矿地段的定量圈定与评价.地质论评,2000,46(增刊):1~12.
    [44] 陈永清,刘红光.初论地质异常数字找矿模型.地球科学—中国地质大学学报,2001,126(2):129~134
    [45] 赵鹏大,孟宪国.地质异常与矿产预测.地球科学—中国地质大学学报,1993,18(1):39~46.
    [46] 赵鹏大,王京贵,饶明辉.中国地质异常.地球科学—中国地质大学学报1995,20(2):117~127.
    [47] 张均,陈守余,张玉香.隐伏矿体定位预测中的几个关键问题.贵金属地
    
    质,1998,7(4):293~301
    [48] 张均.矿体定位预测的研究现状与趋势.地球科学进展,1997,12(3):242~246
    [49] 张均.隐伏矿体定位预测的方法学基础及方法论.贵金属地质,2000,9(2):101~105
    [50] 王世称,范继璋,杨永华.矿产资源评价.长春,吉林科技出版社,1990
    [51] 王世称,陈永良,夏立显.综合信息矿产预测理论与方法.北京,科学出版社,2000
    [52] Cox D. P., Singer D. A. Mineral Deposit Models. U S Geological Survey Bulletin 1693, 1986, 379, 143~161
    [53] Cox D. P. The Development and Use of Mineral Deposit Models in the United States Geological Survey. Geological Association of Canada Special Pager, 40, 1993, (1995): 15~19
    [54] Drew L. J. Revising U S Geological Survey Mineral-Resource Assessment Method. http://pubs.usgs.gov/info-handout/revision,1998
    [55] Hodgson C. J. Uses(and Abuses) of Ore Deposit Models in Mineral Exploration. Geosciences Canada, 1990, 17
    [56] McCammon. R.B. PROSPECTOR Ⅱ-an expert system for mineral deposit models. Geological Association of Canada Special Pager, 40, 1993, (1995): 679~684.
    [57] Klaus J Schulz, Joseph A Briskey. A cooperative International Project to Assess the World Undiscovered Non-fuel Mineral Resources: Status and Schedule of Activities. Workshop on Assessment Undicovered Mineral Resources, Beijing, China, 2002, 1~6
    [58] Singer D A. Basic concepts in three quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 1993a, 2(2): 69~81
    [59] Singer D A. Development of grade and tonnage models for different deposit types. Geological Association of Canada Special Pager, 40, 1993b, (1995): 21~30
    [60] Singer D A. Some Suggested Future Directions of Quantitative Resource Assessments. Journal of China University of Geosciences, 2001, 40~44
    [61] 翟裕生,彭润民,邓军,等.区域成矿学与找矿新思路.现代地质,2001,15(2):151~156
    [62] 翟裕生.走向21世纪矿床学.矿床地质,2001,20(1):10~14
    [63] Western Minerals Team. U S Department of the Interior, USGS, Advanced Resource Assessment Methods. http://minerals.usgs.gov/west/prosjects/aramdel.shtml,2002
    [64] 王勇毅,肖克炎,朱裕生,等.初论中国铜矿数字矿床模型.地质与勘探,2003,39(3):20~24
    [65] National Research Council. Solid-earth Sciences and society, National Academy Press, 1993.6~21
    [66] Iswrence S. R, Parnell J, Groves D. I, et al. Geofluid's23, Contributions to an International conference on fluid evolution migration and interaction inrocks. J struct Geol 1993, 15 (13): 1439~1499
    
    
    [67] Hedenqulst J W. Kerrlch R Graw D, et al. Geology, geochemistry and orlglon of hlghsulfldlzatlon Cu-Au mineralization in the Nansatsu District. Japan Econ Geol 1994, 89 (2) 1~30
    [68] Baker. Locallsatlon of sulfides by a hornblende-biotite alteration system at the Eloise Cu-Au deposit, Cloncurry District, NW Queensland. Val D'or, May, 1994, 32~56
    [69] 亚当斯S.S 美国西邵大盆地卡林四金矿的资料-过程-准则模型.地质科技参考资料,1993,(17):12~15
    [70] Castaing C.流变不均一性在脉状矿床定位中的作用.地质科学译丛,1994,(4):62~67
    [71] 奥斯特洛犬斯基.目的预测.地质科技参考资料,1993,(17):21~27
    [72] 李德仁,龚健雅,边馥苓.地理信息系统导论.测绘出版社,1993
    [73] 边馥苓.地理信息系统原理与方法.测绘出版社,1996
    [74] Maguire D J, Goodchild M F. Geographic Information System: Principle and Application. Longman, London, 1991
    [75] Paul R Blackwell. GIS Concepts-A Hands-on Approach to Understanding Geographic Information System. 1995
    [76] 陈述彭,鲁学军,周成虎.地理信息系统导论.科学出版社,1999
    [77] 吴信才.地理信息系统的基本技术与发展动态.地球科学,1998,23(4):329~333
    [78] 郭秋英.当前GIS发展的几个特点.测绘通报,1998(5):43~48
    [79] 朱光,季晓燕,戌只.地理信息系统基本原理及应用.北京,测绘出版社,1997
    [80] 陈军,杜道先.试论地理信息产业的发展方向与性的对策.测绘通报,1994(6):13~17
    [81] 徐翠生.地理信息系统应用现状及相应技术发展趋势.中国地质,1998
    [82] Graem F, Bonham-Carter. Geographic Information System for Geo-Scientist Modeling with GIS. 1994
    [83] 朱思才,吴家齐,刘和发.GIS技术在区域矿产资源勘查评价中的应用.有色金属矿产与勘查,1999,8(6):615~618
    [84] 方维萱,刘方杰,程顺有.初论信息技术有我国有色金属矿产勘查与开发.岩土工程界,1999,8(6):627~632
    [85] 李裕伟.空间信息技术的发展及其在地球科学中的应用.地学前缘,1998,5(1—2):335~347
    [86] 宋国耀,张晓华,肖克炎,等.矿产资源潜力评价的理论和GIS技术.物化探计算技术,1999,21(3):199~205
    [87] 郭文魁.论安徽铜官山铜矿成因.地质学报,1957,37(3):317~322
    [88] 常印佛等.关于层控矽卡岩型矿床.矿床地质,1983,2(1):11~20
    [89] 黄华盛,师其政,崔彬,等.铜官山铜矿床组合特征及成因.矿床地质,1985,4(2):13~22
    [90] 常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带.北京:地质出版社,1991:1—25
    [91] 彭省临,邵拥军,刘亮明.安徽铜陵凤凰山铜矿矿床成因新认识.矿床地质,2002,21(增刊):443~446
    
    
    [92] 唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998
    [93] 富士谷,阎学义,袁成祥.长江中下游成矿带石炭纪海底火山喷发沉积黄铁矿型矿床的地质特征.南京大学学报(自然科学版),1977,(4):43—67
    [94] 顾连兴,富士谷.下扬子威宁期断裂凹陷、火山活动及块状硫化物成矿作用.高校地质学报,1999,5(2):228—231
    [95] 曾普胜,裴荣富,侯增谦,等.安徽铜陵地块沉积—喷流块状硫化物矿床.矿床地质.2002,21(增刊):532—535
    [96] 肖新建,顾连兴,倪培,等.铜陵地区海底喷流沉积(SEDEX)块状硫化物矿床成矿流体研究.矿床地质,2002,21(增刊):491~494
    [97] 杨竹森,侯增谦,蒙义峰,等.安徽铜陵矿集区流体系统与成矿.矿床地质,2002,21(增刊):1080~1082
    [98] 王训诚,姜章平,蒙义峰,等.铜陵地区构造流体体系初探.矿床地质,2002,21(增刊):1045~1047
    [99] Aharonov E, Spiegelman M. Three dimensional flow and reaction in porous media: Implications for the earth's mantle and sedimentary basins. J Geophy. Res.,1997, 102, B7, 14821~14833
    [100] Gu L X, Hu W X, He J X, et al. Regional variations in ore composition and fluid features of massive sulphide deposits in South China: Implications for genetic modeling. Episodes, 2000, 23(2): 110~118
    [101] Xiao Xinjian, Gu Lianxing and Ni Pei. Multi-episode boiling in the Shizishan copper-gold deposit at Tongling, Anhui Province: its bearing on ore formation. Science in China(Series D), 2002, 45(1): 34~44
    [102] 安徽省地质矿产局.安徽省区域地质志.北京,地质出版社,1987
    [103] 陈国达.历史—因果论大地构造学刍议.大地构造与成矿学,1992,16(1):1~21
    [104] 陈国达.亚洲陆海壳体大地构造图(1:800万,中文版).北京,科学出版社,1994
    [105] 陈国达.中国成矿大地构造图(1:400万).长沙,中南工业大学出版社,1999
    [106] 陈国达.亚洲陆海壳体大地构造.长沙,湖南科技出版社,1998
    [107] 陈国达,杨新宜,梁新权.中国华南活化区历史—动力学初步研究.大地构造与成矿学,2001,25(3):228~238
    [108] 翟裕生,姚书振,林新多,等.长江中下游地区铜(金)成矿规律.北京,地质出版社,1992
    [109] 黄崇轲,白冶,朱裕生,等.中国铜矿床(上册)[M].北京,地质出版社,2001
    [110] 刘文灿,高德臻,储国正.安徽铜陵地区构造变形分析及成矿预测.1996,北京,地质出版社
    [111] Jebrak M. Hydrothermal breccias in vein-typeore deposits: A review ofmechanisms, morphology and size distritution. Ore Geology Revies, 1997, 12: 111~134
    [112] Thompson T. B, Tripple A. D, Owelley P.C. Mineralized vein and breccias of the Cripple Creek Direct Colorado. Econ. Geol., 1985, 80(6): 1669~1688
    
    
    [113] Henly R.W, Epithermal gold deposits in the volcanic terranes. Forster R.P. Gold Metallogeny and Exploration[C]. Blackie Glasgow and London, 1991, 137~142
    [114] 卿敏,韩先菊.隐爆角砾岩型金矿研究述评.黄金地质,2002,8(2):1~7
    [115] Sibson R.H. Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure Appl Geophys, 1986,124,159~174.
    [116] 肖龙,王方正.新疆伊犁京希-伊尔曼德金矿区角砾岩特征及成因.矿物岩石,2002,22(2):9~12
    [117] Orford J.D, Whalley W.B. The quantitative description of highly irregular sedimentary particles: the use of the fractal dimension. In: Marshall JR(Eds): Clastic Particles Van Norstrand Reinhold Co. New York, 1987: 267~280
    [118] Mandelbrot B.B. Self-affine fractal sets. In: Fractals in Physics North-Holland, Amsterdram, 1986, 3~28
    [119] Mandelbort B B. The fractal geometry of nature New York: W H Feemanm, 1982
    [120] Power W L, Tullis T E, Weeks JD. Roughness and wear during. Geophys Res, 1988, 93: 15268~15278
    [121] Berube D, Jebrak M. Fractal descriptors for the classification of Sudbury breccias: Geological Association of Canada-Mineralogical Association of Canada. In: Annual Meeting Abstract Winnipeg. 1996, 21, A-8
    [122] Russ J C. The image processing handbook. 2 nd ed CRC Press, 1995, 674
    [123] 闻广等.安徽铜陵凤凰山岩体若干特征及成矿关系.中国地质科学院院报,1983(7)
    [124] Brown G C. Thorpe R.S. Webb P. C. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources 1984 J.Geo. Soc. London. 141:413~426
    [125] 张达,李东旭.铜陵凤凰山矿田成矿构造应力场模拟研究.地质力学学报,1998,4(2):91~96
    [126] 张达,吴淦国,李东旭.铜陵凤凰山岩体接触带构造变形特征地学前缘,2001,8(3):223~229
    [127] 陈国达,黄瑞华.关于构造地球化学的几个问题.大地构造与成矿学,1984,8(1):7~18
    [128] Cheng Q. Multifractality and spatial statistics. Computer & Geoscience, 1999b, 25 (9): 949~962
    [129] Cheng Q. Gliding box method and multifractal modeling. Computer & Geoscience, 1999c, 25 (9): 1073~1080
    [130] 成秋明.多维分形理论和地球化学元素分布规律.地球科学—中国地质大学学报,2000,25(3):311~318
    [131] Cheng Q. Spatial and scaling modeling for Geochemical anomaly separation. Explor Geochemistry, 1999d, 65: 175~194
    [132] Cheng Q, Bonbam-Carter G F, Hall G E M, et al. Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial
    
    sediments, Sudbury basin: l.Multivariable and Spatial analysis Explore Geochem 1997, 59: 27~46
    [133] Cheng Qiuming. Fractal and Multifractal Modeling of Hydrothemal Mineral Deposit Spectrum: Application to Gold Deposits in Abitibi Area, Ontario, Canada, Journal of China University of Geosciences. 2003, 14(3): 199-206
    [134] 李长江,麻士华,朱兴盛,等.矿产勘查中的分形、混沌和ANN.北京,地质出版社,1999,26~30
    [135] 毛华海.分形理论和成矿作用.地学前缘,2000,7(1):195~204
    [136] Sanderson D J, Roberts S A. Fractal relationship between vein thickness and gold grade in drill ore from La Codosera, Spain. Economic Geology, 1994, 89: 168~173
    [137] 张艳宜,吴泳生,赵云江,等.江西省小龙钨矿深部地球化学找矿远景预测.地质与勘探,1998,34(3):34~37
    [138] 李惠,郑涛,汤磊,等.山东招远大尹格庄金矿床隐伏矿定位预测的叠加晕模式.有色金属矿产与勘查,1998,7(3):178~182
    [139] 陈国华,刘连登,仲崇学.胶东金矿的矿石地球化学研究,世界地质,1998,17(2):19~26
    [140] 代西武,杨建民,张成玉,等.利用矿床原生晕进行深部隐伏矿体预测.矿床地质,2000,19(3):245~256
    [141] 李惠,郑涛,汤磊,等.陕西双王金矿床的原生叠加晕模式.桂林工学院学报,2000,20(4):327~333
    [142] 周斌,仲崇学.山东临朐铁寨金矿区地球化学特征.世界地质,2000,19(2):160~166
    [143] 陶琰,马德云,高振敏.个旧锡矿成矿热液活动的微量元素地球化学指示,地质地球化学,2002,30(2):34~39
    [144] 孙国胜,李绪俊,姚凤良,等.玲珑金矿田矿物组合与地球化学分带及矿体定位预测意义,地质与勘探,2002,38(4):28~32
    [145] 李惠,王支农,张文华.大型金矿盲矿的原生叠加晕预测准则.黄金科学技术,2001,9(3—4):1~4
    [146] 李惠,王支农,上官义宁,等金矿床(体)深部盲矿预测的构造叠加晕前尾晕共存准则,地质找矿论丛,2002,17(3):195~197
    [147] 罗四维.人工神经网络建造.北京,中国铁道出版社,1998
    [148] 包约翰.自适应模式识别与神经网络.北京,科学出版社,1992
    [149] 王志民,侯景儒,童光煦.BP神经网络在储量计算中的应用.地质与勘探,1999,35(4):22~24
    [150] 李超岭,邱丽华.人工神经网络在区域地质调查中的应用—反向传播模型(BP网)建立与应用.中国区域地质,1999,12(4):436~443
    [151] 王炜,蒋春曦,张军.BP神经网络在地震综合预报中的应用.地震,1999,2
    [152] 张玉池,张兆京,温佩琳.人工神经网络在地球物理勘探中的应用概论.矿产与地质,1999,13(6):321~323
    [153] 何玉彬,李新忠.神经网络控制技术及其应用.北京,科学出版社,2000
    [154] 袁曾任.人工神经网络及其应用.北京,清华大学出版社,1999
    [155] 焦李成.神经网络的应用与实现.西安,西安电子科技大学出版社,1996
    
    
    [156] Rumelhart D E, Hinto G E, Williams R J. Learning internal representations by error propagation in Parallel Distributed Processing. Rumelhart D E, Mcclell, J L Eds. Cambridge, MA: MIT Press 1986
    [157] G Cybenko. Approximation by Superpositions of A Sigmoidan Function. Math. Contr. Signal Sys. 1989, 2(4): 303~314
    [158] K I Funahashi. On the Approximate Realization of Continuous Mapping by Neural Networks,Intel Conf, NN. 1989
    [159] K Hornik. Approximation Capabilities of Multilayer Feedforward Network. Neural Networks. 1991, 4 (2): 251~257
    [160] 邬伦,刘瑜,韦中亚,等.地理信息系统—原理方法和应用.北京,科学出版社,2001
    [161] 曹瑜,胡光道.地理信息系统在国内外应用现状.计算机与现代化,1999,(3):1~4
    [162] C.Dercole, D.I.Groves, C.M.Knox-Robinson. Using fussy logic in a Geographic Information System environment to enhance conceptually based prospective analysis of Mississippi Valley-type mineralization. Australian Journal of Earth Sciences, 2000, 47: 913~927
    [163] H. H. Asadia, B.M.Haled. Apredictive GIS model for mapping potential gold and base metal mineralization in Takabarea, Iran. Computers & Geosciences, 2001, 27: 901~912
    [164] J.R. Harris, L. Wilkison, K. Heather, et al. Application of GIS processing techniques for producing mineral prospectivety map-acase study: Mesothermal Au in the Swayshe Greenstone Belt. Ontaril, Canada
    [165] R. Freij-Ayoub, J. L. Walshe, H-B. Muhlhaus. Prediction of rock alteration patterns: a potential tool in mineral exploration. Australian Journal of Earth Sciences. 2000, 47: 885~894
    [166] S.J.Gardoll, D. I. Groves, C. M. Knox-Robinson, et al. Developing the tools for geological shape analysis, with regional-to local scale examplees from the Kalgoorlie Terrane of Western Australia. Australian Journal of Earth Sciences. 2000, 47: 943~935
    [167] 黄新武,龚姚进,刘纯高.柴达木盆地油泉子油田储层构造裂隙定量预测.地质与勘探,2002,25(5):89~94
    [168] 黄海峰.GIS在成矿预测中的应用.甘肃地质学报,2002,11(1):89~96
    [169] Zhang Zhenfei, Hu Guangdao, Yang Mingguo, et al. Genetic modeling of GIS-based cell clusters and its application in mineral resources prediction. Joural of China University of Geosciences, 2003, 14 (1): 85~89
    [170] F. AI.Bassam. GIS predictive model for producing hydrothermal gold potential map using weights of evidence approach in Genma region, Sanjiang district, China. Joural of China University of Geosciences, 2003, 14 (3): 283~292
    [171] Ye Shuisheng, Wang Shicheng, Li Deqiong. Application of GIS in mineral resource pridiction of synthetic information. Joural of China University of Geosciences, 2003, 14 (3): 234~241
    [172] 张守林,傅水兴,李春霞.BIGM多源地学信息系统的结构与功能,地质
    
    与勘探,2003,39(3):63~66
    [173] 闻建光,许惠平,欧少佳.金矿地理信息系统的设计与初步实现.世界地质,2003,22(2):196~200
    [174] 张玉杰,路彦明,向永生,等.基于GIS技术的区域金矿资源定位预测流程—以藏北班公湖—怒江成矿带中段为例.黄金,2003,24(10):14~19
    [175] 廖耀武,吴晓芳,祝国瑞.VC++环境下基于MapX控件的GIS应用软件的开发.昆明理工大学学报,2001,26(6):12~17
    [176] 宋关福,钟耳顺.组件式地理信息系统研究与开发.中国图象图形学报,1998,5:313~317
    [177] 钟耳顺,王康弘,宋关福.GIS多源空间数据无缝集成(SIMS)技术研究.99’中国GIS年会论文集
    [178] 汤国安,赵牡丹.地理信息系统.北京,科学出版社,2000
    [179] 田增平,周傲英,施伯乐.地理信息系统中的数据库技术.计算机科学,1995,22(6):34~38
    [180] 曾广鸿,杨兴旺.GIS软件和数据库的设计及发展.测绘信息与工程,1999,3:16~19
    [181] 张超,陈丙咸,邬伦.地理信息系统.北京,高等教育出版社,1995
    [182] 罗晓沛.数据库技术.北京,清华大学出版社,1999
    [183] 陈俊,宫鹏.实用地理信息系统.北京,科学出版社,1998
    [184] 刘光.地理信息系统二次开发教程(组件篇).北京,清华大学出版社,2003
    [185] 史杏荣,孙贞寿,何振峰.地球物理勘查地图数据库GEMDB的设计与实现.计算机工程与应用,1999,4:74~78
    [186] 齐清文,张安定.关于多比例尺GIS数据库多重表达的几个问题研究.地理研究,1999,18(2):161~170
    [187] 毋河海,龚健雅.地理信息系统(GIS)空间数据结构与处理技术,北京,测绘出版社,1997
    [188] Thomas Devogele. On spatiall database. Geographic Information Science, 1998, 12 (4)
    [189] Martinez J., Molenaar A. Aggregation hierarchies for multiple scale representations of hydrographic networks. Proceeding of 17th ICA Conferences Barcerona, 1995
    [190] Rongxing Li. Data structure and application issues in 3-Dgeographical information system Geomatics, 1994, 48(3): 209~224
    [191] 黄文斌,肖克炎,宋国耀,等.地学空间数据模型的研究.物探化探计算技术,2001,23(1):55~61
    [192] 马洪超,胡光道.地学数据融合技术综述.地质科技情报.1999,18(1):97~101
    [193] 高翔,王勇.数据融合技术综述.计算机测量与控制,2002,10(11):706~709
    [194] 曲晓慧,安钢.数据融合方法综述及展望.舰船电子工程,2003年第2期:2~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700