用户名: 密码: 验证码:
超临界CO_2萃馏浓缩天然V_E的相平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然VE具有许多对人体非常有益的生理功能,同时又是一种天然抗氧化剂,附加值高,国内外市场前景看好,因此提取浓缩天然VE就成为广大科技工作者和众多企业研究开发的热点。我国是一个油脂生产和油脂消费大国,可用于提取天然VE的脱臭馏出物原料逐年增加。从植物油脂脱臭馏出物中提取浓缩天然VE这种高附加值的产品,不仅会带来较高的经济效益,而且还可解决由于馏出物的排放所造成的环境污染。
    利用超临界CO2技术从油脂脱臭馏出物中提取浓缩天然VE已有不少的报道,基于前人研究的成果和研究过程中存在的诸如相平衡数据等的不足,本文在相平衡测定与溶解度计算和关联等方面作了较为全面深入的基础研究,最后还比较了超临界CO2萃馏浓缩天然VE的三种工艺方案,并对双柱逆流萃取浓缩天然VE工艺进行了初步探讨。
    全文主要研究内容和结果如下:
    利用气液交替循环装置耦合重量法,在313.15K~343.15K、10MPa~20MPa范围内分别测定了生育酚、油酸甲酯在超临界CO2中的气液相平衡,根据气相中CO2的P-V-T关系计算了生育酚和油酸甲酯在超临界CO2中的溶解度和分配系数,并将溶解度实验值与相同条件下文献报道值进行了比较。结果表明:油酸甲酯与CO2的互溶程度比生育酚与CO2的互溶程度高,生育酚在超临界CO2中的溶解度比油酸甲酯低。从测定的溶解度数据中可以看出,在温度为313.15K、压力低于10MPa以及323.15K和343.15K、压力低于15MPa下,生育酚在超临界CO2中的溶解度很低,此时用重量法几乎检测不到生育酚的存在。随着温度的提高,油酸甲酯在超临界CO2中的会溶压力也升高。313.15K、323.15K、343.15K条件下,油酸甲酯在超临界CO2中的会溶压力分别为13MPa、15MPa、20MPa。从生育酚和油酸甲酯二者在超临界CO2中溶解度与分配系数大小可知,用超临界CO2分离生育酚和油酸甲酯是可行的。
    通过对不同类型植物油脂在超临界CO2中的溶解度比较得出,大豆油脱臭馏出物经甲酯化处理后,其在超临界CO2中的溶解度增加;如再经甲醇解处理后,溶解度将进一步加大。因此利用超临界CO2萃馏技术从大豆油脱臭馏出物中浓缩天然VE时,甲酯化和甲醇解等预处理步骤相当重要。文中指出,del Valle and Aguilera模型不适合于用来关联大豆油脱臭馏出物预处理产物在超临界CO2中的溶解度。
    利用气液交替循环装置耦合GC分析法,在313.15K~333.15K、9MPa~17MPa范围内等温、等压和等密度条件下分别测定了大豆油脱臭馏出物预处理产物中主要脂肪酸甲酯在超临界CO2中的气液相平衡,根据P-V-T关系分别计算了主要脂肪酸甲酯在超临界CO2中的溶解度、分配系数和相对分离因子。结果表明:大豆油脱臭馏出物预处理产物中油酸甲酯在超临界CO2中的溶解度与油酸甲酯/CO2二元系相比较变化不大,说明了混合物中有比油酸甲酯更难溶性成分的增加,并不能明显地影响易溶性成分油酸甲酯在超临界CO2中的溶解度。预处理产物中主要脂肪酸甲酯在气液两相中的分配系数在同温度下,棕榈酸甲酯的分配系数随压力的升高而增大,其他主要脂肪酸甲酯的分配系数则随压力的升高而减少;在同密度下,所有七种主要脂肪酸甲酯的分配系数则随温度的升高而增大。总体而言,碳链越短的脂肪酸甲酯对超临界CO2的气相亲和力越强;相同碳链的脂
    
    
    肪酸甲酯如C18,双键数目越多其与超临界CO2气相亲和力越差。
    利用气液交替循环装置耦合HPLC分析法,在313.15K~333.15K、9MPa~17MPa范围内等温、等压和等密度条件下分别测定了大豆油脱臭馏出物预处理产物中天然VE各异构体在超临界CO2中的高压相行为。结果表明:大豆油脱臭馏出物预处理产物中天然VE在超临界CO2中的溶解度比生育酚/CO2二元系中生育酚的溶解度要高11倍多,这说明了在超临界CO2萃馏技术的实践应用中,溶质间的协同作用不容忽视。由此可见,用生育酚/CO2二元体系的相平衡数据来指导工业生产实践,将会产生工艺操作参数选取的偏差。天然VE各异构体在气液两相中的分配系数以α-VE的分配系数最大,约为0.75~0.9;δ-VE的分配系数次之,约为0.6~0.8;γ-和β-VE最小,约为0.5~0.65,且这两种异构体的分配系数相当接近。从天然VE各异构体的相对分离因子来看,α-VE相对于β-、γ-、δ-VE的分离因子在1.09~1.51之间。因此,只利用超临界CO2萃馏技术,在现有的设备上从大豆油脱臭馏出物中萃取浓缩高d-α-VE是很困难的。如果把脱臭馏出物预处理产物人为地分为三类,即易挥发性的脂肪酯甲酯、中等挥发性的天然VE和难溶性油渣。通过计算可以得到脂肪酸甲酯与天然VE、脂肪酸甲酯与油渣、天然VE与油渣的相对分离因子,它们分别在2.1、10和2.5以上。因此用超临界CO2双柱萃馏技术分离脂肪酸甲酯、天然VE和油渣是完全可行的。由于脂肪酸甲酯和天然VE在超临界CO2中的溶解行为与它们的质量含量有关系,所以连续稳态操作方式尤为重要。
    利用改进型BP人工神经网络(BPANN)模型分别计算了二元系、多元系中溶质在超临界CO2中溶解度和相平衡数据,并对模型中影响计算误差的各参数进行了较详细的讨论。所有溶解度和相平衡计算值与实验值之间的平均相对误差在4%以内,结果是令人满意的。从而说明改进型BP神经网络模型是一种简便有效的关联与预测天然VE在超临界CO2中的溶解度模型。
    以大豆油脱臭馏出物甲酯化产物为原?
Having many benefits, being a very strong antioxidant, and being a high-value natural product, extracting and concentrating natural vitamin E becomes a hotspot research for many scientists and industrial technologists. In our country, there are lots of oil deodorizer distillates (in short as ‘DOD’) from which concentrating this high-value material---- natural vitamin E can not only bring higher economical benefits, but also decrease the environment pollution causing by deserting oil DOD.
    Although the technology of supercritical carbon dioxide (in short as ‘SC-CO2’) has been widely applied to extract and concentrate natural vitamin E from DOD, and many achievements have also been reported, there are some drawbacks such as the absence of phase equilibrium for pretreatment of DOD/CO2 system. Therefore, this paper comprehensively investigates the determination of phase equilibrium including binary and multi-compound systems; the calculation and correlation of solubilities of vitamin E are also discussed; finally three different extraction technologies are compared using SC-CO2, and the two-column countercurrent extraction and fractionation (in short as ‘TCCCEF’) technology is primarily studied in this paper. Main research contents and results are as follows:
    Gas-liquid equilibrium data are reported for tocopherol/CO2 and methyl oleate/CO2 two binary systems at 313.15K, 323.15K and 343.15K, respectively. A new gas and liquid phase circulation apparatus coupled with gravimetric method is employed for solubility measurement. The quantity of dissolved solute per 100 gram CO2 and distribution coefficients of solutes are calculated from the P-V-T relationship for CO2 in gas phase. All experimental results are compared with values reported in the literatures under the similar conditions. The results show that the solubility of methyl oleate is much higher than that of tocopherol. From the data of solubilities, there is too little tocopherol in SC-CO2 to be determined by gravimetric method under the conditions of 313.15K, below 10MPa, 323.15K and 343.15K below 15MPa. Critical pressure of methyl oleate in SC-CO2 increases with pressure, for example 313.15K-13MPa, 323.15K-15MPa, and 343.15K-20MPa respectively. Based on the solubilities and distribution coefficients between tocopherol and methyl oleate in SC-CO2, It is feasible to isolate and separate tocopherol from these two compounds mixture.
    It is concluded that the solubility of DOD alcoholysate in SC-CO2 is much higher than these of DOD esterification, DOD, and plant oil, therefore, it is very
    
    
    important to esterify and alcoholism DOD from which concentrating natural vitamin E by SC-CO2 fractionation method. This paper presents that del valle and Aguilera model is not suitable to correlate the solubility of soybean oil DOD alcoholysate in SC-CO2.
    Gas-liquid equilibrium data are determined for SC-CO2 and fatty acid methyl ester (FAME) in soybean oil DOD pretreatment under isothermal, isobaric and isochoric conditions of pressure ranging from 9MPa~17MPa and temperature from 313.15K~333.15K. Gas Chromatography (GC) analyzes samples from liquid and gas phases. The solubilities, distribution coefficients and relative separation factors for seven main FAME are calculated. The results show that the solubilities of methyl oleate are no influential variance between in pretreatment of DOD/CO2 and in methyl oleate/CO2 systems, which testifies that the solubilities of more soluble components in mixture are not obviously affected by the presence of less soluble components. At isotherm, the distribution coefficient of palmitic acid methyl ester increases with pressure, but others decrease with pressure. At isochoric, the distribution coefficients of all seven main fatty acid methyl esters increase with temperature. All in all, for a family of linear long-chain saturated methyl esters, the smaller chain length, the higher the solubility of the methyl ester in the gas phase; for the equal-chain methyl esters (here, C18), the larger the unsaturation, the lower the solubili
引文
[1] Sherman H. C., Smitg S.,. The Vitamins, 2nd ED. New York: The Chemical Catalog Company, 1931.
    [2] Rosenberg H. R.,. Chemisr and Physiology of the Vitamins. Washington D.C.: Amirican Chemistry Society, 1949.
    [3] Eichholzer M., Stahelin H.B., Gey K.F., etal. Prediction of Male Cancer Mortality by Plasma Levels of Interacting Vitamins: 17-Year Follow-Up of the Prospective Basel Study. Int.J.Cancer, 1996,66:145-150.
    [4] Meydani S.N., Meydani M., Blumberg J.B., etal. Vitamin E Suupplementation and in Vivo Immune Response in Healthy Elderly Subjects. J.A.M.A., 1997,277:1380-1386.
    [5] Combs G.F.Jr.,. The Vitamins: Fundamental Aspects in Nutrition and Health, 2nd Edition. Sandiego, California, USA: Academic Press, 1998.
    [6] Andre Theriault, Jun-TZU Chao, Qi Wang, Abdul Gapor, and Khosrow Adeli.Tocotrienol: A Review of its Therapeutic Potential.Clinical Biochemistry, 1999,32(5): 309-319.
    [7] GB/T 17812-1999,中华人民共和国国家标准:饲料中维生素E的测定----高效液相色谱法.
    [8] GB/T 12388-1990,中华人民共和国国家标准:食物中维生素A和维生素E的测定方法.
    [9] Sebrell W. H. Jr., Harris R. S.,. The Vitamins Vol.Ⅲ: Chemistry, Physiology, and Pathology. New York: Academic Press, 1954.
    [10] 吴时敏主编. 功能性油脂.北京:中国轻工业出版社,2001:138.
    [11] 邵斌.天然D-α-维生素E.中国食品添加剂,2000,2:78-83.
    [12] 赵国志,陈燕,董剑林等.油脂脱臭馏出物的回收和利用.中国油脂,1997,22(2):51-53.
    [13] Aurelia M., Livingston N.J.,. Process for Separating Mixed Fatty acid from Deodorizer Distillate Using Urea. US: 5 078 920,1992-1-7.
    [14] Rindone R.R.,Der-Sking Huang,Folsom. Recovery of Tocopherols from Plant and Animal Oils.US: 5 371 245,1994-12-6.
    [15] Barnicki S.D.,Sumner C.E.Jr.,. Process for Production of Tocopherol concentrates. US: 5 512 691,1996-4-30.
    [16] 伊东,信平,牧之段,武彦.トコァェロ-ルの制造方法.JP: 8-59647,1996-3-5
    [17] Sumner C. E. Jr., Barnicki S. D., Dolfi M. D.,. Process for Production of Sterol and Tocopherol Concentrate. US: 5 424 457,1995-6-13.
    [18] Baird J.L., Concord M.,. Method for the Purification of Vitamin E. US: 5 582 692,1996-12-10.
    [19] HOFFMANN-LA FOCHE AG. F.,. Verfahren zur Gewinnung von Tocoherolen und Sterolen aus natürlichen Qrellen. EP:0 610 742A1, 94-1-28.
    [20] 孙登文,曲德林,刘福桢等.从植物油精炼副产物中提取维生素E和甾醇的新工艺.CN: 1074217A, 1993-7-14.
    [21] 王先宝,耿建国,刘长华等.超临界C02分级萃取天然维生素E的工艺.CN: 136948,2002-9-18.
    [22] 肯尼斯.W.贝克尔,丹.迈克尔.韦尔斯. 稳定和回收生育三烯酚和生育酚产物的方法.CN: 1059522A, 1992-3-18.
    [23] 孙云鹏,孙明华,孙传经.超临界CO2从大豆脱臭物中萃取分离天然维生素E的方法.CN:
    
    
    1228427A, 1999-9-15.
    [24] 恽勤,阎作琨,兰淑琴.从葵花籽油富集天然维生素E的方法.CN: 1257868A, 2000-6-28.
    [25] 赵亚平,王大璞.超临界流体提取浓缩天然维生素E的新工艺.CN: 1253951,2000-5-24.
    [26] 马海乐,吴守一,李国文.超临界流体萃取与精馏相结合分离小麦胚芽油的方法. CN: 1242416,2000-1-26.
    [27] 胡小泓,刘文涛,刘昌伟等.大豆油脱臭馏出物中提取维生素E研究探讨.粮食与油脂,2002,(2):2-3.
    [28] Woerfel J. B.,. Practical Handbook of Soybean Processing and Utilization. New York: Macmillan Publishing Company, 1987.
    [29] 曾哲灵,陈力.天然维生素E提取工艺研究.中国畜产与食品,1997,4(1):27-29.
    [30] 毛正伦,曾浩洋. 利用黄豆油脱臭产物精制高纯度VE条件之探讨. 中国农业化学会志(台北), 1995,33(6):686-697.
    [31] Lee H., Chung B., Park H.,. Concentration of Tocopherols from Soybean Sludge by Supercritical Carbon Dioxide. JAOCS,1991,68(8):571-579.
    [32] 钱国平.酯化---离子交换法提取天然VE工艺研究.杭州:浙江大学硕士学位论文,2001.
    [33] 朱世永.维生素E新分离法. 粮食与油脂,1999,(1)1:56.
    [34] 赵亚平.植物精炼脱臭馏出物中生育酚和植物甾醇的超临界CO2提取与纯化.无锡:无锡轻大学博士后研究工作报告,1999.
    [35] 朱世东,吴迎.我国天然维生素E的生产与开发进展.化工进展,2001,11:35-38.
    [36] 周丛.色谱法精制高α型生育酚的研究.杭州:浙江大学硕士学位论文,2001.
    [37] 雷炳福.非α生育酚甲基化的研究.北京:清华大学出版社,1996.
    [38] Food Chemical Codex, Fourth Edition, National Academy Press, Washington, D.C., 1996.
    [39] Ogata, Kazume, Nakao, Hidetoshi, CubeTsukaguchi.Tocopherol Derivatives. EP:0 683
    164B1, 1995-5-18.
    [40] Walter J.Krasavage and Clarence J. Terhaar. D-α-Tocopheryl Poly(ethylene Glycol) 1000 Succinate .Acute Toxocity, Subchronic Feeding, Reproduction, and Teratolobic Studied in the Rat. J. Agric. Food Chem., 1977,25(2): 273-278.
    [41] “Eastman Vitamin E TPGS, d-alpha-Tocopheryl Polyethyle Glycol 1000 Succinate, A Water Soluble Vitamin E for Oral Use”, Eastman Products for Food, Pharmaceutical and Agricultural Industries Publication: No.ZFD-38B, June, 1973.
    [42] Dohrn R., Brunner G.,. High-Pressure Fluid Phase Equilibria: Experimental Methods and Systems Investigated (1988-1993). Fluid Phase Equilibria, 1995,106(1): 213-282.
    [43] Christov M., Dohrn R.,. High- Pressure Fluid Phase Equilibria Experimental Methods and Systems Investigated (1994-1999). Fluid Phase Equilibria, 2002,202:153-218.
    [44] 朱自强,姚善烃,金彰礼.流体相平衡原理及其应用. 杭州:浙江大学出版社,1990.
    [45] Mchugh M.A., Krukonic V.,. Journal of Supercritical Fluid Extraction: Principle and Practice.Boston: Butcrworths, 1986.
    [46] 陈维祖.超临界流体萃取的原理和应用. 北京:化学工业出版社,1998.
    [47] 张定安,陆志禹,时钧.超临界流体及超临界萃取(Ⅵ).南京化工学院学报 ,1993,15(2):80-93.
    [48] 陈华.超临界C02萃取液体及液体混合物的相平衡研究. 上海:华东理工大学博士学位论文,1991.
    [49] 李军,冯耀声.缔合模型用于超临界萃取溶解度计算.高等学校化学工程学报,1998,12(3):
    
    
    213-218.
    [50] Tomberli B., Goldman S., Gray C.G.,. Predicting solubility in supercritical solvents using estimated virial coefficients and fluctuation theory. Fluid Phase Equilibria, 2001,187-188:111-130.
    [51] Von Zidad Alwani. Loslichkeitsverhalten von schwefluchtigen biochemischen Stoffen in komprimiertim Kohlendioxid. Angew. Chem., 1980,92(8): 633-634.
    [52] Chrastil J.,. Solubility of solids and liquids in supercritical gases. Phys.Chem., 1982,86:3016-3021.
    [53] 大垣一成.西川,亮.古市,正.片山. 高密度CO2にょゐα-トコァェロ-ルの抽出に对すゐエタ-ノルのぉょびH2Oのェントレナ效果.化学工学论文集,1988,14(33):342-346.
    [54] Ohgaki K. T., sukahara I., Semba K., Katayama T.,. A fundamental study of extraction with a supercritical fluid: Solubilities of α-tocopherol, palmitic acid and tripalmitin in compressed carbon dioxide at 25℃ and 40℃. Int. Chem. Eng., 1989,29(2): 302-308.
    [55] Brunner G., Malchow Th., Sturken K., Gottschau Th.,. Separation of Tocopherols from Deodorizer Condensates by Countercurrent Extraction with Carbon Dioxide. J. of Supercritical Fluids, 1991,4:72-80.
    [56] Zehnder B.H.,. Determination of mass transfer coefficients and equilibrium solubilities in fluid-fluid systems at supercritical conditions by means os NIR spectroscopy. Schweiz:PH.D Dissertation ETH Zurich, 1992.
    [57] Meier U.,. Supercritical fluid chromatography as a rapid and exact method for the determination of high-pressure phase qeuilibria of mixtures containing supercritical components. Schweiz :PH.D Dissertation ETH Zurich, 1992.
    [58] Meier U., Gross F., Trepp C.,. High-pressure phase equilibrium studies for the carbon dioxide/α-tocopherol (Vitamin E) system. J.Fluid Phase Equilib., 1994,92:289-302.
    [59] Pereira P. J., Goncalves M., Coto B., Gomes de Azevedo E., Nunes da Ponte M.,. Phase equilibria of CO2+DL-α-tocopherol at temperatures from 292K to 333K and pressures up to 26MPa. Fluid Phase Equilib., 1993,91:133-143.
    [60] Pereira P.J., Ferreira L.E., Nunes da Ponte M.,. Phase equilibria for systems with CO2 and tocopherol containing mixtures. Proceedings of the 3rd International Symposium on Supercritical Fluids, Strasbourg 17-19,October 1994;Institut National Polytechnique de Lorraine (INPL), Vandoeuvre-Les-Nancy Cedex, France, 1994,P89-94.
    [61] Pereira P.J.,. Phase Equilibria with Supercritical Fluids: Experimental Results and Modeling. Portugal: PH.D Dissertation Universidade Nova de Lisboa, 1995.
    [62] Birtigh A., Johannsen M., Brunner G., Nair N.,. Supercritical fluid extraction of oil-palm components.J.Supercrit.Fluids, 1995,8:46-50.
    [63] Schaffner D., Trepp C.,. Improved Mass Transfer for Supercritical Fluid Extraction-A New Mixer-Settler System. J.Supercrit.Fluids, 1995,109:131-138
    [64] Monika Johannsen and Gerd Brunner. Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide. J. Chem. Eng. Data, 1997,42:106-111.
    [65] Stoldt J., Brunner G.,. Phase equilibria in complex systems of palm oil deodorizer condensates and supercritical carbon dioxide; experiments and correlation. J.Supercrit. Fluids, 1999,14:181-195.
    
    [66] 姚忠.超临界CO2提取天然维生素E和二十八碳醇.镇江:江苏理工大学博士学位论文,1999.
    [67] 方涛.超临界C02萃馏浓缩天然生育酚的研究.无锡:江南大学博士学位论文,2001.
    [68] 马海乐.小麦胚芽有效成分的超临界CO2提取与利用.镇江:江苏理工大学博士学位论文,1996.
    [69] Francisco J.Senoans, Alejandro Ruiz-Rodriguez, Sofia Cavero, Alejandro Cifuentes, etal. Isolation of Antioxidant Compounds from Orange Juice by Using Countercurrent Supercritical Fluid Extraction (CC-SFE). J.Agric.Food Chem., 2001,49:6039-6044.
    [70] Riha V., Brunner G.,. Separation of Fish Oil Ethyl Esters with Supercritical CO2. J.of Supercrit.Fluids, 2000,17:55-64.
    [71] Eisenbach W.,. Supercritical Fluid Extraction: A Film Demonstration. Ber.Bunsenges
    Phys. Chem., 1984,88:882-887.
    [72] Nilsson W.B., Gauglitz E.J., Hudson J.K.,. Supercritical Fluid Fraction of Fish Oil Esters Using Incremental Pressure Programming and a Temperature Gradient. JAOCS, 1989 66(11): 1596-1600.
    [73] Nilsson W.B., Gauglitz E.J., Hudson Jr.K., etal. Fractionation of Menhaden Oil Ethyl Esters Using Supercritical Fluid CO2. JAOCS, 1988,65(1): 109-117.
    [74] 铃木康夫,今野政宪,新井邦夫,斋藤正三郎.温度勾配を付した超临界流体抽出塔を用ぃた鱼油脂肪酸モノェステルの浓缩.(日)化学工学论文集,1989,15(3):439-445.
    [75] Kim J.D., Lim J.S., Lee Y.Y., etal. Concentration of EPA from Fish Oil by Supercritical CO2 Proceeding.95’China-Korea Conference on Separation Science and Technology, Tianjing, China, 1995,8:128.
    [76] Krukonis V.J.,. Supercritical Fluid Extraction and Chromatography.ACS Symposium Siries 366. American Chemical Society Washington, D.C.: B.A.Charentier and M.R.Sevenants, 1988:90.
    [77] King J.W., Favati F., Taylor S.,. Production of Tocopherol Concentrates by Supercritical Fluid Exaction and Chromatography. Separation Science and Technology, 1996,31(13): 1843-1857.
    [78] List G. R., King W., Johnson J. H., et al. Supercritical CO2 Degumming and Physical Refining of Soybean Oil. JAOCS, 1993,70(5): 473-477.
    [79] Illes V., Daood H.G., Biacs P.A., et al. Supercritical CO2 and Sub-critical Propane Extraction of Spice Red Pepper Oil with Special Regard to Carotenoid and Tocopherol Content. J. chromat. Sci., 1999,37(9): 345-352.
    [80] Akihiro Shishikura, Kenshiro Fujimoto, Takashi Kaneda et al. Concentration of Tocopherols from Soybean Sludge by Supercritical Fluid Extraction. J.Jpn. Oil Chem. Soc. (YUKAGAKU), 1988,37(1): 8-12.
    [81] Saito Muneo and Yamauchi Yoshio. Enrichment of Tocopherols in Wheat Germ by Directly Coupled Supercritical Fluid Extraction with Semi-preparative Supercritical Fluid Chromatography. J. Chromat. Sci., 1989,27(2): 79-85.
    [82] Lucas A. De., Martinez E., Ossa De La, Rincon J., etal. Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. J. Supercrit. Fluids, 2002,22:221-228.
    [83] Chang Y. F., Chang C.M., Lee H. Z., Lin J. Q., Yang P. W.,. Supercritical Carbon
    Dioxide Extraction of High-value Substances form Soybean Oil Deodorizer Distillate.
    
    
    Presentation on the 5th International Symposium on Supercritical Fluids, Atlanta USA, April, 2000.
    [84] 葛发欢.菜籽油脚中天然维生素E和脂肪油的超临界CO2萃取分离及GC-MS分析.中药材,1997,4:189-191.
    [85] 梁诚.天然维生素E生产现状与应用前景.四川化工与腐蚀控制,2002,5(5):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700