用户名: 密码: 验证码:
聚合物梯度材料的制备及材料结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梯度功能材料(Functionally gradient materials,简称FGM)是将两种或两种以上具有不同性质的原料组分,通过采用不同以往的复合技术使材料内部的微观要素在某特定方向呈连续的梯度变化,从而使材料的物性参数也呈连续梯度变化的一类新型复合材料。由于FGM的概念最初是应宇航技术对超耐热材料的要求而产生的,所以在过去十几年里,其研究和应用主要集中在金属/陶瓷等无机小分子复合材料领域,相比之下,有关聚合物材料梯度功能化的研究开展得较少,而应用传统的聚合物加工方法和设备直接进行聚合物梯度功能材料的研究还未见报道。本论文融合了梯度功能材料的思想与聚合物共混和填充改性原理,将聚合物的一次成型和二次成型有机地结合起来,提出了一种以聚合物挤出技术为主的利用传统的聚合物加工方法和设备制备聚合物基梯度材料的新方法,并用此方法试制了不同组合、不同形状的共混型和填充型聚合物梯度材料。
    圆筒状梯度材料的实验结果表明,材料的组成、结构和性能在径向上实现了梯度化。在圆筒状PP/PA6梯度材料中,随着半径的增加,PA6的含量逐步增加而PP的含量逐步降低。在有限的径向尺度范围内,PP和PA6分别发生了从连续相到分散相和从分散相到连续相的转变。就梯度材料某一局部的形态而言,其结构符合聚合物共混物形态形成机制的一般规律,即在组分含量高度不对称的时候形成“海-岛”结构,而在组分含量接近的时候形成共连续结构。然而,从梯度材料整体来看,其形态结构明显不同于传统的聚合物共混材料。因形态结构在梯度材料中的分布是多样
    
    
    化的,并且这些不同形态间的过渡是连续且渐变的。伴随着组分含量和形态结构的变化,材料的性能也呈现出不同的变化。力学性能测试结果表明,材料的拉伸模量随其中PA6含量的增加而上升,而拉伸强度和断裂伸长率却表现出不同的变化形式。在圆筒状PP/talc梯度材料中,随着滑石粉含量在半径方向的不断增加,材料的拉伸模量逐渐上升而断裂伸长率逐渐下降,低含量的滑石粉对PP显示了明显的增强增韧作用,高含量滑石粉的改性效果并不理想。
    本论文还以PP为主料分别制备了PA6和滑石粉(talc)组分含量由一侧向另一侧逐步增加、由中间向两侧逐步减少和由中间向两侧逐步增加各三种模式的板状PP/PA6、PP/talc梯度材料。实验结果显示,材料的组成、形态和性能在厚度方向上均实现了梯度化。对材料进行力学性能和热膨胀性能的测试结果表明,同一体系不同模式梯度材料的性能之间存在差异,而组成和结构在厚度方向上呈单调梯度变化的不对称材料的两侧也会表现出明显不同的性能。
    挤出过程中加料量与加工时间呈函数关系变化是本加工方法的最大特点。所以用该方法制备聚合物梯度材料时,材料的组成和形态可以通过加料量、加料方式以及加料速度的改变来得到有效控制。
    研究结果表明,本论文所提出的经优化组合和精心设计的以聚合物挤出技术为主的制备方法是制备共混或复合型聚合物梯度材料的一条新途径。
Functionally gradient materials (FGM) are composites in which the material composition is varied spatially to optimize the property of material for a specific application. The concept originated with Japanese scientists in the 1980s and has been successfully implemented in a new-type ceramic/metal composite to prepare super heat-resistant materials for aerospace applications. In contrast to the ceramic/metal system and other inorganic materials, however, there have been relatively fewer experimental studies of polymeric gradient materials (PGM), especially in preparing PGM by use of traditional polymer material processing facilities. The aim of this study, therefore, is trying to combine the conception of functionally gradient material, and creating a processing method to prepare PGM by use of conventional facilities.
    In this dissertation, a novel method for preparing PGM is studied. PP/PA6, PP/talc columnar and flat PGM are prepared successfully by using the modified extruding technique. Structure and property of these columnar or flat PGM are investigated through measurements of WAXD, TG, SEM, elemental analysis and mechanical tests. Experimental results indicate that the composition, morphology and property varied gradually in both columnar and flat PGM.
    In PP/PA6 columnar PGM, the content of PA6 increased gradually while PP decreased along the radius direction. A phenomenon of phase inversion is observed when the percentage of PA6 is higher than that of PP. The morphological feature of respectively sliced specimen from the PGM is similar to the traditional blend in which the difference between any two domains could be neglected. The whole structure of the PGM prepared in this study, however, is very different from the traditional blend because the morphology of each sliced specimen varies gradually along the radius direction of the PGM sample. The Young’s modulus increases with the increased PA6 content while the tensile strength and breaking elongation depend strongly on the morphological structure and show diverse variation.
    
    In PP/talc columnar PGM, the percentage of talc gradually increased with increasing radius, and a gradually increased stacking density of talc in PP matrix is observed. Tensile tests indicate that Young’s modulus increases while breaking elongation decreases with increased talc content. Lower talc content shows good modified effect, which makes tensile strength improved, but higher talc content shows poor effect.
    Three modes of PP/PA6 (signed with A1, A2, A3) and PP/talc (signed with T1, T2, T3) flat PGM are prepared, respectively. In mode A1, the content of PA6 increases gradually from one side to another side along its thickness direction. In mode A2 and A3, the content of PA6 decreases or increases gradually from central part to the outside of flat PGM, respectively. Phase reversion also observed among all modes of the PP/PA6 flat PGM. In addition, A1 shows obviously different mechanical properties on its two sides due to the difference of composition distribution.
    For samples T1, T2 and T3, the gradient variation in both structure and physical property are also examined through measurements of WARD, TG, SEM and mechanical and thermal expansion determination. A fine dispersion of talc with a lower stacking density was observed when the filler content is lower than 40%, and a discontinuous PP matrix was found when the content of talc is higher than 60%. For mode T1, the content of talc changes monotonously from 0% to 62% along the thickness direction. As a result of such variations in component and structure, the physical property on both sides of the flat sample exhibits a significant difference. Young’s modulus increases from 380 to 930 MPa, while the corresponding elongations decreases from 1300% to 4%, respectively. Besides, the disparity of thermal expansion property on its two sides was observed.
    All experimental facts show that polymeric gradient materials have been prepared successfully by use of this modified extruding technique.
引文
[1] 新野正之、平井敏雄和渡边龙三,宇宙機用超耐熱材料を目指して,傾斜機能材料-日本复合材料学会誌,1987,13(6):257-264
    [2] 袁润章,金宗哲,张联盟,梯度功能材料,见《高技术新材料要览》,国家高技术新材料专家委员会主编,北京,中国科学技术出版社,1993:579-580
    [3] 由井浩,傾斜機能材料,プラスチックスエ-ジ,2000,May:143-149
    [4] Markworth, A.J., Ramesh, K.S., Parksjr, W.P. Modeling studies applied functionally graded materials, J Mater Sci., 1995, 30:2183-2193
    [5] 朱信华,孟中岩,梯度功能材料的研究现状与展望,功能材料,1998,29(2):121-127
    [6] 贡长生,张克力主编,新型功能材料,北京,化学工业出版社,200:45-49
    [7] 由井浩,機能性複合材料の展開,プラスチックスエ-ジ,2001,Jan.:149-157
    [8] 由井浩,自然界の複合材料,(その1)プラスチックスエ-ジ,1999,April:152-158
    [9] 由井浩,自然界の複合材料(その2),プラスチックスエ-ジ,1999,May:148-153
    [10] 松村和明,玄丞休,岡正典,犬膝關節軟骨ぉょびポリビニルコ-ルヒドロゲル人工關節軟骨の走查型電子顯微鏡ぉょび原子間力顯微鏡觀察,高分子論文集,1998,55(12):786-790
    [11] 由井浩,高分子にぉける階層構造,プラスチックスエ-ジ,2000,April:157-165
    [12] Shigeyasu A., Tamotsu M., Yukito N., The mechanical structure of bamboos in viewpoint of functionally gradient and composite materials, J. Compos. Mater.,1996,30 (7) :800-819
    [13] 李守新等译,功能梯度材料基础,北京:国防工业出版社,2000:4-48
    [14] Bever M.B., Duwez, P.E., Mater.Sci. & Eng., 1972, 10:1-8
    [15] 傅正义, 袁润章,赵修建,梯度功能材料的研究,复合材料学报,1992,9 (1):23 -28
    [16] 张联盟,唐新峰,陈福义,MgO/Ni系梯度功能材料的设计与制备,硅酸盐学报,1993,21:406-413
    [17] 王继辉,张清杰,吴代华,金属-陶瓷梯度材料的热弹塑性分析,复合材料学报,1996,13(2):89-93
    [18] Loy C. T., Lam K. Y., Reddy J. N., Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences, 1999, 41(3):309-324
    [19] Liu G.R., Han X., Lam K.Y., Material characterization of FGM plates using elastic waves and an inverse procedure, J. Compos. Mater.,2001,35(11):954-971
    [20] Cockeram B.V., Development of wear-resistant coatings for cobalt-base alloys, Surface and
    
    
    Coatings Technology, 1999,120-121:509-518
    [21] Jackson T.R., Liu H., Patrikalakis N.M., Sachs E.M., Cima M.J., Modeling and designing functionally graded material components for fabrication with local composition control, Materials and Design, 1999, 20 (2-3) :63-75
    [22] Stroud D., Zhang X., Markworth A.J., Hui P.M., Thermal conductivity of graded composites:numerical simulations and an effective medium approximation, J Mater.Sci., 1999, 34(22):5497-5503
    [23] Zimmermann G., Schievenbusch A., Materials with an acoustic impedance gradient, Materials Science Forum, 1999, 308-311:533-538
    [24] Kaysser W.A, Functionally Graded Materials 1998, Materials Science Forum, 1999, 308-311:1068
    [25] Rassbach S., Lehnert W., Modelling of the deformation behaviour of FGM by fuzzy-logic, Computational Materials Science, 1999, 16(1-4):167-175
    [26] Sampath S., Jewett T.J., Kim H., Smith W.C., Synthesis and characterization of grading profiles in plasma sprayed NiCrAlY-zirconia FGMs, Materials Science Forum, 1999, 308-311:383-388
    [27] Delfosse D, Characterization of graded coatings using GD-OES, Materials Science Forum, 1999, 308-311:879-883
    [28] 张幸红,韩杰才,董世运,杜善义,梯度功能材料制备技术及其发展趋势,宇航材料工艺,1999(2):1-5
    [29] 赵伟彪,龚家聪,陶正英,梯度功能材料,功能材料,1993,24(3):277-281
    [30] 夏军,梯度功能材料的制备技术及应用前景,化工新型材料,2001,29(6):20-22
    [31] 徐智谋,郑家焱,张联盟,新型梯度功能材料研究现状及发展方向,材料导报,2000,14(4):13-15
    [32] 崔教林,周帮昌,赵新兵,梯度结构热电材料的设计与研究进展,材料科学与工程,2001,19(3):122-126
    [33] 葛炳恒,周馨我,梯度折射率高分子材料,高分子材料科学与工程,1991,(4):1-6
    [34] 刘泽,李永祥,吴冲若,采用溶胶-凝胶法制备梯度光学功能材料,东南大学学报,1998,28(2):21-25
    [35] 温变英,塑料光导纤维,现代化工,1997(9):45-46
    
    [36] Ho B.C., Chen J.H., Chen W.C.,Chang Y.H., Yang S.Y., Chen J.J., Seng T.W., Gradient-index polymer fibers prepared by extrusion, Polym. J,1995, 27:310-313
    [37] 张帆,张其锦,梯度折射率塑料光纤的研究进展,高分子通报,2000(1):33-38
    [38] Murayama, S.; Kuroda, S.; Osawa, Z.; Hydrophobic and hydrophilic interpenetrating polymer network (IPNs) composed of polystyrene and poly(2-hydroxyethyl methacrylate):2.Gradient composition in the IPNs synthesized by photopolymerization, Polymer, 1993, 34:3893-3898
    [39] Jasso C. F., Martinez J.J., Mendizabal E., Laguna O., Mechanical and rheological properties of styrene/acrylic gradient polymers, J. Appl. Polym. Sci., 1995, 58:2207 -2212
    [40] Chekanov Y.A., Pojman J.A., Preparation of functionally gradient materials via frontal polymerization,J. Appl. Polym. Sci., 2000,78:2398-2404
    [41] 张晓玲等,有机梯度功能材料的研究,功能材料,1994,25(6):511-514
    [42] 辻田義治,傾斜高分子膜の調製と透過·分離特性,日本ゴム協会誌,1999,72(10):586-592
    [43] Bielinski D.M., Slusarski L., Affrossman S., Oneill S.A., Pethrick R.A., Influence of lodination on tribological properties of acrylonitrile-butadiene rubber, J. Appl. Polym. Sci., 1997, 64:1927-1936
    [44] 加納義久,秋山三郎,佐野博成,由井浩,ァクリルコポリマ-/フッ素コポリマ-ブレンドに發現する傾斜構造の断面モルフォロジ-,高分子論文集,1997,54(5):325 –332
    [45] Kano Y., Akiyama S., Sano H., Yui H., Controlling gradient domai morphology in blend of poly (2-ethylhexyl acrylate-co-acrylic acid-co-vinyl acetate) / poly (vinylidene fluoride-co- hexafluoracetone) by adding micrograin silica, Polymer J., 1997, 29 (2) :158-164
    [46] Agari Y., Shimada M., Ueda A., Nagai S., Preparation, characterization and properties of gradient polymer blends: discussion of poly(vinyl chloride)/poly(methyl methacrylate) blend films containing a wide compositional gradient phase, Macro. Chem. Phys., 1996, 197:2017-2033
    [47] Okubo M., He Y., Preparation of asymmetric film by blending two kinds of polymer emulsion having greatly different storage stabilities, J. Appl. Polym. Sci., 1991, 42:2205-2208
    [48] 加納義久,秋山三郎,赤外分光法にょるポリマ-アロィの表面·界面分析,機能材料,1995,15(11):33-44
    [49] 加納義久,秋山三郎,フッ素コポリマ-/ァクリルコポリマ-ブレソドに發現する偏析现象,高分子,1992,41(11):774-775
    
    [50] 加納義久,秋山三郎,ポリアクリル酸ェステル/フッ素コポリマ-ブレソドの構造制御と機能發現-傾斜ドメィソ構造フィルムの創制と粘着性制御-,高分子加工,1998,47(2):24-32
    [51] 秋山三郎,加納義久,高分子傾斜構造材料,高分子,49,2000(1):32-37
    [52] 上利泰幸,高分子系傾斜機能材料の開発,化学工業,1999(8):54-63
    [53] 上利泰幸,傾斜機能高分子材料の開発,高分子加工,1997,46(6):11-18
    [54] 佐野博成,高山森,透過型電子顯微鏡にょる高分子材料の新しぃ觀察法と應用,高分子論文集,1999,56(10):684-691
    [55] 佐野博成,倉尺義博,西田耕治,ポリ(2,6-ジメチル-1,4-フュニレン)エ-テルとポリエチレンのブレソド系の射出成型品中にぉける相反轉特殊傾斜構造の形成,高分子論文集,1997,54(4):244-254
    [56] Ulcer Y., Cakmak M., Miao J., Hsiung C.M., Structural gradient developed in injiection-molded syndiotactic polystyrene (sPS), J. Appl. Polym. Sci., 1996, 60:669-691
    [57] Hsiung C.M., Cakmak M., Effect of processing conditions on the structural gradients developed in injection-molded poly(aryl ether ketone)(PAEK) parts.1. Characterization by microbeam X-ray diffraction technique, J. Appl. Polym. Sci, 1993, 47:12-147
    [58] Lee J. K., Han C.D., Evolution of a dispersed morphlogy from a co-continuons morphology in immiscrible polymer blends, Polymer, 1999, 40:2521-2536
    [59] Xie X.M., Matsuoka M., Takemura K., Formation of gradient phase structure during annealing of a polymer blend, Polymer, 1992, 33(9) :1996-1998
    [60] 肖天晶,谢续明,界面张力对高分子共混物梯度相形态形成的影响研究,功能高分子学报,1996(4):501-506
    [61] 孙佳宁,谢续明,黄鹏程,聚砜改性环氧树脂共混体系相结构的控制,材料研究学报,1998,12(3):272-276
    [62] 孙佳宁,谢续明,环氧树脂共混物相结构的调控方法研究,高等学校化学学报,1998,19(11):1857-1860
    [63] 孔祥明,谢续明,肖天晶,段建华,张增民,聚烯烃共混物分散相尺寸梯度分布形态形成速度影响因素的研究,高分子学报,1998(6):686-691
    [64] 俞炜,周持兴,温度梯度引起的聚合物共混物梯度相形态的研究,高等学校化学学报,2001,22(2):321-324
    
    [65] 徐坚,马军,罗善国,陈强,张小莉,一种有机硅、陶瓷梯度材料及其制备方法,中华人民共和国发明专利,申请号,00123711.X
    [66]鞠谷雄士,高速紡絲過程の解析と纖維構造制御,纤维と工业,1999,55(11):391-366
    [67] Jang J., Han S., Mechanical properties of glass-fibre mat/PMMA functionally gradient composite, Composites: Part A. 1999, 30:1045-1053
    [68] Huang Z.M., Wang Q.A., Ramakrishna S., Tensile behaviour of functionally graded braided carbon fibre/epoxy composite material, Polym & Polym Compos., 2002, 10:307-317
    [69] 孔祥明,李治,谢续明,一种利用电场制备聚合物梯度材料的方法,中华人民共和国发明专利,申请号,01136038.0
    [70] Yang Y.Y., Stress analysis in a joint with functionally draded materials considering material creep behavior, Materials Science Forum, 1999, 308-311:948-954
    [71] 高橋秀明,橋田俊之,傾斜機能材料の破壞強度評價,材料科学,1990,27(2):68-71 [72] Hui P.M., Zhang X., Markworth A.J., Stroud D., Thermal conductivity of graded composites: numerical simulations and an effective medium approximation, J. Mater. Sci., 1999, 34:5497-5503
    [73] Laux T., Killinger A., Auweter-Kurtz M., Gadow R., Wilhelmi H., Functionally graded ceramic materials for high temperature applications for space planes, Materials Science Forum, 1999, 308-311:428-433
    [74] Dantz D., Genzel Ch. Reimers W., Analysis of macro and micro residual stresses in functionally draded materials by diffraction methods, Materials Science Forum, 1999, 308-311:829-836
    [75] Chin E.S.C., Army focused research team on functionally graded armor composites, Mater. Sci. Eng., 1999, A259:155-161
    [76] 寺木潤一,傾斜構造熱電材料の最適設計,材料科学,1996 ,33(2):47-53
    [77 ]福田隆三,特集[倾斜机能熱電子發電技術の研究开发]に寄せて,材料科学,1998,35(1):1-2
    [78] Mueller K., Real condition test of graded thermoelectric elements, Materials Science Forum, 1999, 308-311:754-759
    [79] Hashimoto M., Thermoelectric Properties of Pb1-xSnx Te FGM by liquid diffusion bonding, Materials Science Forum, 1999, 308-31:699-703
    [80] Helmers L., Graded and stacked thermoelectric generators-numerical description and
    
    
    maximization of output power, Mater. Sci. Eng., 1998, B56 (1) :60-68
    [81] Iwama A., Kohri Y., Shiota I., Effect of FGMs on thermoelectric cooling properties of bismuth telluride, Materials Science Forum, 2003, 423-425:377-380
    [82] 秋山三郎,机能性の发现と物性,プラスチックス,48(9):30-36
    [83] Kyeck S., Remer P., Realisation of graded coating for biomedical use, Materials Science Forum, 1999, 308-311:368-373
    [84] 高长有,促进组织生长的聚合物骨架工程材料,功能高分子学报,1998,(3):408-412
    [85] 胡显文等,组织工程的一般考虑,生物技术学报,2000,(4):15-21
    [86] Watari F., Kondo H., Matsuo S., Development of functionally graded implant and dental post for bio-medical application, Materials Science Forum, 2003, 423-425:321-326
    [87] Wang X.H., Wang W.J., Li D.P., Feng Q.L., Cui F.Z., Surface modification of biodegradable PLGA scaffold chitosan for cell culture, Materials Science Forum, 2003, 423-425:341-346
    [88] Wang X.H., Feng Q.L., Cui F.Z., Preparation and biological evaluations of heparinized PLLA film, Materials Science Forum, 2003, 423-425:351-354
    [89] Verhelst V., Vandereechen P., aAnalysis of organosilicone copolymers by gradient polymer elution chromatography with evaporative light scattering detection, Journal of chromatography, 2000, A871:269-277
    [90] Philipsen H.J.A., Claessens H.A., Jandera P., Bosman M., Klumperman B., Chromatographic behaviour of low molar-mass polyesters in normal-phase high-performance liquid chromatography, chromatographia, 2000, 52(5/6) :325-333
    [91] Wan Y.Z., Wang Y.L., Cheng G.X., Yao K.D., Preparation and characterization of gelatin gel with a gradient structure, polym. In.., 2000, 49:1600-1603
    [92] 新野正之,新エネルギ-創制材料を目指して,材料科学,1996,33(2):41
    [93] 唐新峰,张联盟,袁润章,PSZ/Mo系梯度功能材料的热应力缓和设计与制备,硅酸盐学报,1994,22:44-49
    [94] 杨云志,类金刚石/不锈钢梯度薄膜材料的设计和研制,博士论文,四川联合大学,1997
    [95] 徐智谋,电镀ZrO2/Ni功能梯度材料的工艺、组织与热疲劳性能,硕士论文,哈尔滨工业大学,1996
    [96] 徐千军,余寿文,梯度功能涂层的剥落现象分析与梯度分布的优化,复合材料学报,1998,15(4):113-118
    
    [97] 冉均国,杨云志,郑昌琼,梯度薄膜材料设计原则,材料研究学报,1999,13(3):309-312
    [98] 张联盟,李俊国,平井敏雄, TiC的高温塑性变形及其对TiC/Ni3Al梯度材料循环耐热冲击损伤的影响,复合材料学报,1999,16(4):8-12
    [99] 张联盟,大森守,TiC-Ni3Al系复合材料の致密化ぉょびその热的性质,粉体及粉末冶金,1996,43:278-282
    [100] Zhang L.M., Liu.J.,Yuan R.Z., Properties of TiC-Ni3Al composite sand structural optimization of TiC/ Ni3Al FGM. Mater.Sci.Eng.,1995,A203:272-277
    [101] 涂溶, 欧阳美环,张联盟,TiC/Ni3Al复合材料的低温致密化,科学通报,1997,42:549-553
    [102] Zhang L.M., Hirai T., Kumakawa A., Cyclic thermal shock resistance of TiC/Ni3Al FGMs,Comp.,1997,28B:21-27
    [103] 徐雪艳,穆志纯,汪朝霞,郭丽斌, 神经网络在梯度功能材料制备中的应用,北京科技大学学报.,1994,16 (5):464-468
    [104] 刘文川,邓景屹, 碳纤维增强C-SiC梯度基复合材料研究,高技术通讯, 1997, 7(4):1-6
    [105] Jasso C.F., Martinez J.J., Mendizabal E., Laguna O., Mechanical and rheological properties of styrene/acrylic gradient polymers, J. Appl. Polym. Sci,1995,58:2207-2212
    [106] 朱一玉,方华, 梯度聚合物乳液聚合技术及HR-2建筑用有光乳胶涂料性能,涂料技术, 1991,(3):26-30
    [107] 孔祥明,谢续明,通过自组织方法在高分子合金中形成特殊结构的研究,材料导报,2000, 14(1):55-57
    [108] 赵军,艾兴,梯度功能陶瓷刀具材料的残余应力设计及制备,硅酸盐学报, 1998, 26(3):292-299
    [109] 於伟峰,张伟,PECVD方法用于梯度薄膜材料的研究,功能材料, 1996, 27(6):1-6
    [110] 柳襄怀,杨根庆,离子束增强沉积形成梯度薄膜,材料研究学报, 1994, 8( 1):61-66
    [111] Ogumi Z., Nakamura S., Inaba M., Abe T., Functionally gradient polymer electrolyte prepared by plasma polymerization, Solid State Ionics, 1999, 121(1):289-293
    [112] Yan X., Zhang H.P., Zhang M.L., The study for the reinforced composites of textile gradient Sstructure, Journal of China Textile University, 1999, 16(1) :39-42
    [113] Zitha P.L.J., Leger L., Chauveteau G., Unsteady-state flow of flexible polymers in porous media, Journal of Colloid and Interface Science, 2001, 234(2):269-283
    
    [114] Mitsuhiro H., Shingo M., Hiroki I., Compact permanent magnetic circuit with periodic magnetic field designed for studies of liquid crystals, Molecular Crystals and Liquid Crystals, 2001, 367:641-650
    [115] Krumova M., Klingshirn C., Haupert F., Microhardness studies on functionally graded polymer composites, Composites Science and Technology, 2001, 61(4) :557-563
    [116] 岡崎贵彦,古川睦久,横山哲夫,ポリゥレタンの構造と摩擦·磨耗特性への成型溫度の影響,高分子論文集,1996,53(3):184-192
    [117] 高野直樹,座古勝,中川雅也,傾斜ミクロ構造設計にょる機能化,日本複合材料会誌,2000,26(1):9-16
    [118] Uemura S., The activities of FGM on new application, Materials Science Forum, 2003,423-425:1-10
    [119] Ge C.C., Zhou Z. J., Ling Y.H., New progress of metal-based functionally graded plasma-facing materials in China, Materials Science Forum, 2003, 423-425:11-16
    [120] Gasik M.M., Industrial applications of FGM solutions, Materials Science Forum, 2003, 423-425:17-22
    [121] Wang C.B., Zhang L.M., Shen Q., Tan H., Hua J.S., Preparation of flier-plate materials with graded impedance used for hypervelocity launching, Materials Science Forum, 2003, 423-425:77-80
    [122] Miyazaki E., Watanabe Y., Development of shape memory alloy fibre reinforced smart FGMs, Materials Science Forum, 2003, 423-425:107-112
    [123] Tang J., Wang D., Zou Z., Ye J., Modification of photophysical properties of WO3 by doping different metals, Materials Science Forum, 2003, 423-425:163-166
    [124] 罗祖道,李思简编著,各向异性材料力学,上海,上海交通大学出版社,1994,3-4
    [125] 国家自然基金委员会,自然科学学科战略调研报告——高分子材料科学,北京,科学出版社,1994:25-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700