用户名: 密码: 验证码:
电性距离矢量用于药物定量构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定量构效关系(QSAR)是重要的现代药学与化学基础理论研究与开发应用领域,其核心内容是考察和分析基本分子结构特征与物化性质或生物活性之间的定量相关关系。分子结构参数化是进行定量构效关系研究的重要组成部分和关键前提所在。随着化学拓扑图论的发展和应用,分子拓扑指数方法不断丰富和迅速发展。由于拓扑指数毋需实验测定,可以直接从分子结构获得,因此是一种简便而直接的分子结构参数化方法。
    本实验室提出的分子电性距离矢量(MEDV)是一种描述分子二维结构的拓扑描述子,其中引入了原子属性和原子类型的概念,适用于含多个杂原子、饱和键与不饱和键、环和非环等结构特征,可适用于药物与生物及有机与无机等多种类型的分子。本文在进一步探讨MEDV-4的适用性的基础上,分别从分子微环境对电性的影响、相对距离和电性效应等方面对原有的MEDV-4进行了改进和扩展。
    本文开展的工作有以下几个方面:
    考虑分子中杂化对原子轨道电负性的影响,建立了新的分子电距矢量MEDVh。分别采用MEDV-4和MEDVh对几组雌激素的分子结构进行了表征。MEDV-4与两组雌二醇化合物和一组2-苯基吲哚化合物生物活性的定量相关模型的复相关系数R均达到0.92以上,留一法交互检验RCV均在0.85以上。MEDVh与黄体酮化合物生物活性的定量相关模型的复相关系数R=0.9546,交互检验RCV=0.8826。
    按连接氢原子数目划分原子类型的H-MEDV比MEDV-4能更好地表征两组抗艾滋病药物HEPT和一组二氢叶酸还原酶抑制剂的分子结构,与HEPT生物活性建立的定量相关模型复相关系数均在0.90以上,留一法交互检验预测值与实验值的相关系数也都在0.85以上,与二氢叶酸还原酶生物活性建立的模型,R和RCV在0.80以上。
    进一步探讨MEDV-4的适用性。将MEDV-4应用到对醇、醛酮化合物和多氯二苯醚的多种理化性质的QSPR研究中,应用多元线性回归技术,建立了MEDV-4与这些化合物的多种理化性质的定量相关模型,以模型估计值与实验值之间的复相关系数R和标准偏差SD评价模型对内部样本的估计能力,留一法交互检验预测的外部样本的性质与实验值之间的相关系数RCV和标准偏差SDCV评价模型的稳定性和对外部样本的预测能力,并采用逐步多元回归方法筛选变量。对醇的沸点、水溶性、醇/水分配系数、摩尔体积、摩尔折光率、分子(摩尔)表面积等6种理化性质所建立的模型,其R值均在0.99以上,留一法交互检验RCV都在0.98
    
    
    以上;对醛酮化合物沸点建立的模型结果为R=0.9911和RCV=0.9881;对多氯二苯醚的蒸气压(P)、水溶性(SW)和醇/水分配系数的模型的R达到了0.98以上,RCV则都在0.97以上。表明MEDV-4能够良好表征这些化合物的分子结构,具有优良的估计与预测能力。
    将原子电距矢量AEDV对88个芳香醛酮化合物中羰基碳原子的13C NMR化学位移相关联,建立的定量相关模型具有良好的对内部样本的估计能力和对外部样本的预测能力,复相关系数R和留一法交互检验RCV均在0.90以上。而对原子局部微环境较复杂的体系,确定了划分5种原子类型的新型原子电性距离矢量AEDV-5,并将其应用于对一组雄甾酮分子中所有碳原子的13C NMR化学位移的定量相关研究中,模型估计值与实验值的相关系数R和交互检验RCV都达到了0.99以上。与AEDV相比,AEDV-5能更好地表征较为复杂的原子局部微环境。
    对存在多路径的含环化合物,建立了等效电阻法、类效电阻法,以改进多路径下相对距离的计算方法。含环分子中两原子之间存在有多条路径,常规MEDV-4中以最短路径计算相对距离,这种简化可能带来的某些信息漏失可以采用等效电阻法或类效电阻法加以修正。通过对两组烷烃化合物的QSPR研究,得出的初步结论是:与常规MEDV-4相比,等效电阻法和类效电阻法计算的相对距离包含的信息量更全面,由此计算出的分子电距矢量与两组化合物沸点建立的定量相关模型具有至少相当甚至更好的估计能力和预测能力。而类效电阻法较之等效电阻法具有更好的应用前景。
    引入电负性效应的概念,建立了能反映电负性随化学键传递而逐渐衰减这一特点的新型分子电距矢量——衰减电距矢量(AMEDV-4)。对两组烷烃的沸点的QSPR研究表明,AMEDV-4能良好表征这两组分子的结构特征,并且通过调整衰减指数,可以使模型的效果得到一定程度的改善。与采用常规MEDV-4建立的模型相比,对两组烷烃化合物建立的与最佳衰减指数对应的定量相关模型,R值有明显的提高,分别达到了0.9946和0.9966,表明含衰减指数的AMEDV-4具有比常规MEDV-4更为优越的性能。这种新型的描述子可望得到进一步完善和应用。
Quantitative Structure-Activity Relationship (QSAR), which investigates the quantitative relationship between the molecular structural parameters and biological activities or dependent functions, is one of the most important fundamental fields in pure and applied chemistry and pharmacy. Molecular structural characterization is an important technique in QSAR studies. With development and application of graphic theory, more and more topological indices have been developed rapidly and widely. One of merits for topological indices is that they can be derived directly from molecular structure without experiments, and so they have been applied in QSAR as simple, direct and effective molecular structure parameterization methods.
    Both molecular and atomic electronegativity distance vector (MEDV/AEDV), which have been developed in our laboratory to describe two-dimensional (2D) molecular topology and local microenvironment around various chemically equivalent carbon atoms, are applicable to various molecular global and local structures which contain the multiple bonds and/or heteroatoms by introducing the concepts of relative electronegative (REN) and relative bond length (RBL). In this dissertation, investigation on applicability of MEDV-4/AEDV as the extended and improved 2D descriptors are performed as viewed from the molecular microenvironment, relative distance and electronegativity effect.
    The main contents are as follows:
    Taking the effects of various hybridization on atomic electronegativities into account, a set of novel structural descriptors, called molecular electronegativity- distance vector with hybridization (MEDVh), has been developed. MEDV-4 and MEDVh have been used to express the structures of several groups of estrogens. The correlation coefficients R of the QSAR models that related MEDV-4 to biological activities of two sets of estradiols and a set of 2-phenylindoles are higher than 0.92, and the RCV are higher than 0.85. The QSAR models related MEDVh to 21 progesterones has R=0.9546 and RCV=0.8826.
    Hydrogen-association classified molecular electronegativity-distance vector (H-MEDV) can be used express molecular structures of two sets of anti-HIV HEPT agents and one set of dihydrofolate reductase inhibitors and the results are better than that of MEDV-4. The R and RCV for QSAR models for HEPT are higher than 0.90 and
    
    
    0.85, respectively. Both the R and RCV of the QSAR models for activities of dihydrofolate reductase inhibitors are higher than 0.80.
    The applicable fields of MEDV-4 are extended. MEDV-4 has been related to various of physicochemical properties of alcohols, aldehydes, ketones and polychlorinated diphenyl ethers, and the quantitative relationship models have been constructed by using multiple linear regression technique. The correlation coefficient R and standard deviation SD between the estimated properties and observed experimentally properties have been used to evaluate the estimation abilities for internal samples. The correlation coefficient RCV and standard deviation SDCV between the properties observed experimentally and the properties predicted by leave-one-out crossvalidation technique have been used to evaluate the predictive abilities of models. The R of the models for boiling points, water solubility, octane/water partition, molecular total surface area, molecular volumes and molecular refractions are higher than 0.99, and RCV are higher than 0.98. The models which related MEDV-4 to boiling point of aldehydes and ketones has R=0.9911 and RCV=0.9881. The R and RCV of models for liquid vapor pressures, n-octanol/water partition coefficients and liquid water solubilities of polychlorinated diphenyl ethers are higher than 0.98 and 0.97, respectively. The results show that MEDV-4 can be used to well express the structures of these organic compounds.
    The descriptors, AEDV, are used to express the local microenvironment of various chemically equivalent carbon atoms in 88 aromatic aldehydes and ketones and the quantitative relationship model exhibits good estimation ability fo
引文
[美]马丁原著, 王尔华编译. 定量药物设计. 人民卫生出版社. 北京, 1983: 1-39.
    Katritzky, A. R.; Maran, U.; Lobanov, V. S.; Karelson, M. Perspective: Structurally diverse Quantitative Structure-property Relationship Correlations of Technologically Relevant Physical Properties. J. Chem. Inf. Comput. Sci. 2000, 40 (1): 1-18.
    李志良. 定量构效关系研究进展. 化学通报. 1995, (9): 5-10.
    王连生, 韩朔睽等, 分子结构、性质与活性. 北京: 化学工业出版社, 1997: 177-178.
    Hansch, C.; Fujita, T. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficient. Nature, 1962, 194: 178.
    Kubinyi, H. and Kehrhahn, O. H. Quantitative Structure-activity Relationships. The Modified Free-Wilson Approach. J. Med. Chem. 1976, 19(5): 578-586.
    Kubinyi, H. and Kehrhahn, O. H. Quantitative Structure-activity Relationships. 3. A Comparison of Different Free-Wilson Models. J. Med. Chem. 1976, 19 (8), 1040-1049.
    陈芬儿, 张珩, 万江陵, 管春生, 杨建设. 基础药物设计学. 华中理工大学出版社, 武汉, 1995: 234-235.
    Ghuloum, A. M.; Sage, C. R.; Jain, A. N. Molecular Hashkeys: A Novel Method for Molecular Characterization and Its Application for Predicting Important Pharmaceutical Properties of Molecules. J. Med. Chem. 1999, 42(10): 1739-1748.
    朱杰, 季海涛, 张万年. 进化算法在定量构效关系研究中的应用. 中国药物化学杂志.1999, 9 (2): 151-156.
    王连生, 韩朔睽, 支正良, 赵元慧, 黄庆国. 有机物定量结构-活性相关. 中国环境科学出版社. 北京, 1997: 11-12.
    Hansch, C.; Muir, M.; Fujita, T.; Peyton, P. M.; Fred, G.; Margaret, S. The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. J. Am.Chem. Soc., 1963, 85 (18): 2817-2824.
    Hansch, C. and Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86 (8), 1616-1626.
    李仁利. 定量构效关系研究的现况与展望. 国外医学药学分册. 1992, 19(6): 321-326.
    Free, S. M., Jr and Wilson, J. W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 1964, 7 (4), 395-399.
    Randic, M. On Characterization of Molecular Branching. J. Am. Chem. Soc. 1975, 97 (23), 6609-6615.
    
    Kier, L. B.; Hall, L. H.; Murray, W. J.; Randic, M. Molecular Connectivity 1: Relationship to Nonspecific Local Anesthesia. J. Pharm. Sci. 1975, 64, 1974-1977.
    Kier, L. B; Murray, W. J.; Hall, L. H. Molecular Connectivity 4: Relationship to Biological Activity. J. Med. Chem. 1975, 18 (12), 1272-1274.
    Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York, 1976.
    Zheng, W.; Cho, S. J.; Tropsha, A. Rational combinatorial library design. 1. Focus-2D: A New Approach to The Design of Targeted Combinatorial Chemical Llibraries. J. Chem. Inf. Comput. Sci. 1998, 38 (2), 251-258.
    Cho, S. J.; Zheng, W.; Tropsha, A.; Rational Combinatorial Library Design. 2. Rational Design of Targeted Combinatorial Peptide Libraries Using Chemical Similarity and the Inverse QSAR Approaches. J. Chem. Inf. Comput. Sci. 1998, 38 (2), 259-268.
    Linusson, A.; Gottfries, J.; Lindgren, F.; Wold, S. Statistical Molecular Design of Building Blocks for Combinatorial Chemistry. J. Med. Chem. 2000, 43 (7), 1320-1328.
    Galvez, J.; Garcia-Domenech, R.; De Julian-Ortiz, J. V.; Soler, R. Topological Approach to Drug Design. J. Chem. Inf. Comput. Sci. 1995, 35 (2): 272-284.
    Grassy, G.; Calas, B.; Yasri, A.; Lana, R.; Woo, J.; Iyer, S.; Kaczorek, M.; Floc, R.; Buelow, R. Computer-assisted Rational Design of Inmunosuppressive Compounds. Nature Biotech. 1998, 16, 748-752.
    Kier, L. B.; Hall, L. H.; Murray, W. J.; Randic, M. Molecular Connectivity 1: Relationship to Nonspecific Local Anestheesia. J. Pharm. Sci. 1975, 64, 1971-1974.
    Hall, L.H.; Kier, L. B.; Murray, W. J. Molecular Connectivity 2: Relationship to Water Solubility and Boiling Points. J. Pharm. Sci. 1975, 64, 1974-1977.
    Murray, W. J.; Hall, L. H.; Kier, L. B. Molecular Connectivity 3: Partition Coefficients. J. Pharm. Sci. 1975, 64, 1978-1981.
    Hall, L. H.; Kier, L. B. The relation of Molecular Connectivity to Molecular Volume and Biological Activity. Eur. J. Med. Chem. 1981, 16, 399-407.
    Kier, L. B.; Hall, L. H. Derivation and Significance of Valence Molecular Connectivity. J. Pharm. Sci. 1981, 70, 583-589.
    Galvez, J. On a Topological Interpretation of Electronic and Vibrational Molecular Energies. J. Mol. Struc. (Theochem) 1998, 429, 255-264.
    Pogliani, L. From Molecular Connectivity Indices to Semiempirical Connectivity Terms: Recent Trends in Graph Theoretical Descriptors. Chem. ReV. 2000, 100, 3827-3858.
    Estrada, E. Connectivity Polynomial and Long-range Contributions in the Molecular
    
    
    Connectivity Model. Chem. Phys. Lett. 1999, 312, 556- 560.
    Kier, L. B.; Hall, L. H. Intermolecular Accessibility: the Meaning of Molecular Connectivity. J. Chem. Inf. Comput. Sci. 2000, 40 (3), 784-791.
    Kier, L. B.; Hall, L. H. Molecular ConnectiVity in Chemistry and Drug Research; Academic Press: New York, 1976.
    Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-ActiVity Analysis; Research Studies Press: Letchworth, 1986.
    Randi?, M.; Trinajsti?, N. Viewpoint 4-Comparative Structureproperty Studies: the Connectivity Basis. J. Mol. Struct. (Theochem) 1993, 284, 209-221.
    Petitjean, M. Applications of the Radius-diameter Diagram to the Classification of Topological and Geometric Shapes of Chemical Compounds. J. Chem. Inf. Comput. Sci. 1992, 32 (4), 331-337.
    Randi?, M. On Characterization of Three-dimensional Structures. Int. J. Quantum Chem.: Quantum Biol. Symp. 1988, 15, 201-208.
    Randi?, M.; Jerman-Blazi?, B.; Trinajsti?, N. Development of 3-Dimensional Molecular Descriptors. Comput. Chem. 1990, 14, 237- 246.
    Estrada, E.; Montero, L. A. Bond Order Weighted Graphs in Molecules as Structure-Property Indices. Mol. Eng. 1993, 2, 363-373.
    Estrada, E.; Ramirez, A. Edge Adjacency Relationships and Molecular Topographic Descriptors. Definition and QSAR applications. J. Chem. Inf. Comput. Sci. 1997, 37, 837-843.
    Estrada, E. Three-dimensional Molecular Descriptors Based on Electron Ccharge Density Weighted Graphs. J. Chem. Inf. Comput. Sci. 1995, 35 (4), 708-713.
    Kier, L. B.; Hall, L. H. An Electrotopological State for Atoms in Molecules. Pharm. Res. 1990, 7, 801-807
    Kier, L. B.; Hall, L. H. An Atom-Centered Index for Drug QSAR Models. In Advances in Drug Design; Testa, B., Ed.; Academic Press: 1992; Vol. 22.
    Kier, L. B.; Hall, L. H. An Index of Electrotopological State for Atoms in Molecules. J. Math. Chem. 1991, 7, 229-241.
    Hall, L. H.; Kier, L. B. The Electrotopological State: Structure Information at the Atomic Level for Molecular Graph. J. Chem. Inf. Comput. Sci. 1991, 31 (1), 76-83.
    Kier, L. B.; Hall, L. H. Inhibition of Salicylamide Binding: a Electrotopological State Analysis. Med. Chem. Res. 1992, 2, 497-502.
    Hall, L. H.; Kier, L. B. Electrotopological State Indices for Atom Types: A Novel
    
    
    Combination of Electronic, Topological and Valence State Information. J. Chem. Inf. Comput. Sci. 1995, 35 (6): 1039-1045.
    侯廷军, 徐筱杰. 比较分子场分析方法研究的最新进展.化学进展. 2001, 13 (6): 436-440.
    Cramer, R. D., Ⅲ; Milne, M. Abstracts of the ACS Meeting, April 1979, COMP 44.
    Cramer, R. D., Ⅲ; Patterson, D. E.; Bunce, J. Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc. 1988, 110 (18): 5959-5967.
    Muresan, S.; Sulea, T.; Ciubotariu, D.; Kurunczi, L.; Simon, Z. Van der Waals Intersection Envelope Volumes as a Possible Basis for Steric Interactions in CoMFA. Quant.Struc-Act.Relat.1995,15: 31.
    Gaillard, P.; Carrupt, P. A.; Testa, B.; Schambel, P. Binding of Arylpiperazines, Aryloxypropanolamines and Tetrahydropyridyl-indoles to the 5-HT1A Receptor: Contribution of the Molecular Lipophilicity Potential (MLP) to 3D-QSAR Models. J. Med. Chem. 1996, 39 (1): 126-134.
    Kneubuhler, S.; Thull, U.; Altomare, C.; Carta, V.; Gaillard, P.; Carrupt, P. A.; Carotti, A.; Testa, B. Inhibition of Monoamine Oxidase-B by 5H-indeno[1,2-c]pyridazines: Biological Activities, Quantitative Structure-Activity Relationships (QSARs) and 3D-QSARs. J. Med. Chem. 1995, 38 (19): 3874-3883.
    Thull, U.; Kneubuhler, S.; Gaillard, P.; Carrupt, P.; Testa, B.; Altomare, C.; Carotti, A.; Jenner, P.; McNaught., K. St. P. Inhibition of Monoamine Oxidase by Isoquinoline Derivatives. Qualitative and 3D-quantitative Structure-Activity Relationships. Biochemical Pharmacology. 1995, 50: 869 – 877.
    Kellogg, G. E.; Semus, S. F.; Abraham, D. J. HINT - A New Method of Empirical Hydrophobic Field Calculation for CoMFA. J. Computer Aided Mol. Design 1991, 5, 545-552.
    Collantes, E. R.; Tong, W. D.; Welsh, W. J.; Zielinski. W. L Use of Moment of Inertia in Comparative Molecular Field Analysis To Model Chromatographic Retention of Nonpolar Solutes. 2038 – 2043.
    Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem. 1994, 37 (24), 4130-4146.
    Hou, T. J.; Li, Z. M.; Li, Z.; Liu, J.; Xu, X. J. Three-Dimensional Quantitative Structure-Activity Relationship Analysis of the New Potent Sulfonylureas Using Comparative Molecular Similarity Indices Analysis. J. Chem. Inf. Comput. Sci., 2000, 40 (4): 1002-1009.
    
    Klebe, G.; Abraham, U. Comparative Molecular Similarity Index Analysis (CoMSIA) to Study Hydrogen-bonding Properties and to Score Combinatorial Libraries. J. Comput.- Aides Mol. Des. 1999, 13, 1-10.
    Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc., 1997, 119: 10509-10524.
    Albuquerque, M. G.; Hopfinger, A. J.; Barreiro, E. J.; de Alencastro, R. B. Four-Dimensional Quantitative Structure-Activity Relationship Analysis of a Series of Interphenylene 7-Oxabicycloheptane Oxazole Thromboxane A2 Receptor Antagonists J. Chem. Inf. Comput. Sci., 1998, 38: 925-938.
    Lipkowitz, K.B.; Boyd, D.B.; (Eds) Reviews in Computational Chemistry, Vol. 2. VCH, N. Y., 1991, 81-97.
    李志良, 曾鸽鸣, 胡芳, 梁本熹, 村松Y, 松本S, 李梦龙. 多维定量构效关系及药物分子设计研究进展. 化学研究与应用, 1997, 9 (1): 7-14.
    胡芳, 曹晨忠, 彭升阳, 莫立宇, 曹晨忠, 村松由起, 李志良. 神经网络用于核磁共振碳谱的研究: 烷烃的化学位移和CSS与分子距边矢量λ, 波谱学杂志, 1997, 14(5): 403-409.
    Liu, S. S.; Cao, C. Z.; Li, Z. L. Approach to estimation and prediction for normal boiling point(NBP) of alkanes based on a novel molecular distance-edge(MDE) vector ( , J. Chem. Inf. Comput. Sci., 1998, 38 (3): 387.
    刘树深, 杨万平, 曹晨忠, 李志良, 改良人工神经网络方法预测烷烃物理性质, 化工学报, 1998, 49 (2):245-250.
    李志良, 余般梅, 刘树深, 刘海玲, 曹晨忠等, 核磁共振碳谱的研究—烷烃化学位移和CSS与分子距边矢量(, 波谱学杂志, 1997, 14(3):245-251.
    Liu, S. S.; Cao, C. Z.; Li, Z. L. A Novel Molecular Distance-edge (MDE, () Vector and the Normal Boiling Point of Alkanes, J.Chem.Inf.Comput.Sci. 1998, 38(3): 387-392.
    Liu, S. S.; Cao, C. Z.; Li, Z. L. A Novel Molecular Distance-edge (MDE, () Vector and Thermodynamical Properties of Alkanes. Chem.in Hong Kong, 1998, (2): 113-123.
    Liu, S. S.; Liu, H. L.; Yu, B. M.; Cao, C. Z.; Li, Z. L. Investigation on Quantitative Relationship between Chemical Shift of Carbon-13 Nuclear Magnetic Resonance Spectra and Molecular Topological Structure Based on a Novel Atomic Distance-Edge Vector (ADEV). J. Chemom. 2001, 15 (5), 427(438.
    林治华, 刘树深, 李志良. 寡肽结构参数化及定量构效关系研究. 化学学报, 2001, 59(7): 1001-1008.
    刘树深, 刘堰, 李志良, 蔡绍皙. 一个新的分子电性距离矢量(MEDV). 化学学报, 2000,
    
    
    58 (1): 1353-1357.
    Liu, S. S.; Cai, S. X.; Cao, C. Z.; Li, Z. L. Molecular Electronegative Distance Vector (MEDV) Relating to 15 Properties of Alkanes. J. Chem. Inf. Comput. Sci. 2001, 40 (6): 1337-1348.
    周丽平, 周永华, 刘树深, 李志良, 抗艾滋病药物环尿素类化合物的结构表征及其生物活性的定量预测. 化学学报, 2002, 60 (9), 1688-1693.
    刘树深, 药物分子电性距离矢量表征及应用, 博士学位论文, 重庆大学, 2001年4月.
    刘树深, 夏之宁, 余般梅, 李志良. 无环醇原子电距矢量及核磁共振碳谱化学位移模拟. 波谱学杂志, 1999, 16(5): 429-439.
    Liu, S. S.; Xia, Z. N.; Li, Z. L. An Atomic Electronegative Distance Vector and Carbon-13 Nuclear Magnetic Resonance Chemical Shifts of Alcohols and Aalkanes. J. Chin. Chem. 2000, 18 (2): 165-174.
    张梦军, 廖春阳, 周丽平, 吴世容, 李声时. 黄酮类化合物的原子电距矢量表达及核磁共振碳谱. 波谱学杂志, 2002, 19 (3): 293-300.
    苏越, 郭寅龙. 偏最小二乘法中主成分数确定的新方法. 计算机与应用化学. 2001, 18 (3): 237-240.
    顾立群, 王磊光, 黄五群. 神经网络对硫代磷酰胺酯类化合物的QSAR研究. 1994, 39 (10): 913-916.
    唐桂刚, 白乃彬. 遗传神经网络在QSAR中的应用研究. 计算机与应用化学. 1999, 19(6): 435-440.
    胡守仁, 余少波, 戴葵. 神经网络导论. 长沙: 国防科技大学出版社, 1993: 243- 248.
    原子及轨道电亲性: 新能量标度及其相关分析. 重庆大学学报, 2003, 26 (5), 147-150.
    白文佩,郑淑蓉,陈淑玲.激素替代治疗对妇女糖代谢的影响.中国临床药理学杂志,1999,15 (1),14-17.
    孙哲, 吕秋军, 温利青, 郭绍明, 陈媛媛, 刘卫京. 药学学报,2000,35 (10),747-751.
    Gambacciani, M.; Ciaponi, M.; Cappapli, B.; Monteleone, P; Benussi, C.; Bevilacqua, G., Genazzani, A. R. Effects of Low-dose, Continuous Combined Estradiol and Noretisterone Acetate on Menopausal Quality of Life in Early Postmenopausal Women. Maturitas 2003, 44, 157-163.
    Grease, T. A.; Cho, S.; Finley, D. R.; Godfrey, A. G.; Jones, C. D.; Lugar, C. W.; Martin, M. J.; Matsumoto, K.; Pennington, L. D.; Winter, M. A.; Adrian, M. D.; Cole, H. W.; Magee, D. L.; Phillips, L.D.; Rowley, E. R.; Short, L. L.; Glasebrook, A. L.; Bryant, H. U. Structure-Activity Relationships of Selective Estrogen Receptor Modulators: Modifications to the 2-Arylbenzothiophene Core of Raloxifene. J. Med. Chem. 1997, 40, 146-167.
    Green, S.; Chambon, P. Nuclearreceptors Enhance Our Understanding of Transcriptional
    
    
    Regulation. Trends Genet, 1988, 4 (11): 309-314.
    Evans R. M. The Steroid and Thyroid Hormone Receptor Superfamily. Science, 1988, 240 (4854): 889-895.
    Lohmann, M. L.; Steinmuller, C.; Franke, U. Pulmonary Macrophage. Eurp Respir J, 1994; 7:1678- 1689.
    吕秋军, 温利青. 雌激素受体配体组织选择性作用机制的研究. 中国药学杂志, 2000,35 (1), 1-3.
    Wan1i, M. C.; Rector, D.H.; Christensen, H. D.; Kimmel, G. L.; Cook, C. E. Flavonoids 8. Synthesis and Antifertility and Estrogen Receptor Binding Activities of Cowmarins and .δ- 3-isoflavenes. J. Med. Chem. 1975, 18, 982.
    Von Angerer, E.; Prekajac, J.; Strohmeier, J. 2-phenylindoles, Relationship Between Strueture, Estrogen Receptor Affinity, and Mammary Tumor Inhibiting Activity in the Rat. J. Med. Chem.1984, 27, 1439.
    Mirocha, C. J.; Christensen C. M.; Nelson, G. H. Physiologic activity of some fungal estrogens produced by Fusarium. Cancer Res. 1968, 28 (11), 2319-2322.
    Gauthier, S.; Caron, B.; Cloutier, J.; Dory, Y. L.; Favre, A.; Larouche, D.; Mailhot, J.; Ouellet, C.; Schwerdtfeger, A.; Leblanc, G.; Martel, C.; Simard, J.; Merand, Y.; Belanger, A.; Labrie, C.; Labrie, F. (S)-(+)-4-[7-(2,2-Dimethyl-1- oxopropoxy)-4-methyl- 2-[4-[2-(1-piperidinyl)- ethoxy] phenyl]-2H-1-benzopyran-3-yl] phenyl 2,2-Dimethylpropanoate (EM-800): A Highly Potent, Specific, and Orally Active Nonsteroidal Antiestrogen. J. Med. Chem. 1997, 40 (14), 2117-2122.
    Harris, C. A.; Henttu, P.; Parker, M. G.; Sumpter, J. P. The Estrogenic Activity of Phthalate Esters in Vitro. Environ. Health Perspect. 1997, 105 (8), 802-811.
    Gao, H; Katzenellenbogen, J. A.; Garg, R.; Hansch, C. Comparative QSAR Analysis of Estrogen Receptor Ligands. Chem. Rev. 1999, 99, 723-744.
    Samaan, S. A.; Crawford, M. H. Estrogen and Cardiovascular Function After Menopause. J.A.C.C., 1995; 26, 1432-1440.
    St?rk, S.; Von Schacky, C.; Angerer, P. The Effect of 17β-estradiol On Endothelial and Inflammatory Markers in Ppostmenopausal Women: a Randomized, Controlled Trial. Atherosclerosis. 2002, 165, 301.
    Franke, H. R.; Kole, S.; Ciftci, Z.; Haanen, C.; Vermes, I. In Vitro Effects of Estradiol, Dydrogesterone, Tamoxifen and Cyclophosphamide on Proliferation vs. Death in Human Breast Cancer Cells. Cancer Letters. 2003, 190, 113–118.
    Smith, E. P.; Boyd, J.; Frank, G. R.; Takahashi, H.; Cohen, R. M.; Specker, B.; Williams, T. C.;
    
    
    Lubahn, D. B.; Korach, K. S. Estrogen Resistance Caused by a Mutation in the Etrogen-receptor Gene in a Man. N. Engl. J. Med. 1994, 331, 1056-1061.
    Ciocca, D. R.; Vargas Roig, L. M. Estrogen Receptors in Human Nontarget Tissues: Biological and Clinical Implications. Endocrinol Rev. 1995, 16, 35-62.
    Fevig, T. L.; Mao, M. K.; Katzenellenbogen, J. A. Estrogen Receptor Binding Tolerance of 16α-substituted Estradiol derivatives. Steroids, 1988, 51, 471-496.
    温险峰. 乳腺癌中ERα和ERβ研究进展. 国外医学肿瘤学分册, 2001, 28(1), 60-62.
    Toniolo, P. G.; Levitz, M.; Zeleniuch-Jacquotte, A.; Banerjee, S.; Koenig, K. L.; Shore R. E.; Strax P.; Pasternack B. S. A Prospecitive Sstudy of Endogenous Estrogens and Breast Cancer in Postmenopausal Women. J Natl. Cancer Inst, 1 995, 87 (3): 190 -197.
    Honig, S. Treatment of metastatic disease. In: Harris, J.; Lippman, M.; Mellman, S. eds. Diseases of the Breast. Philadelphia: Lippincott Raven Publishers, 1996, 669-734.
    Waller, C. L.; Oprea, T. I.; Chae, K.; Park, H. K.; Korach, K. S.; Laws, S. C.; Wiese, T. E.; Kelce, W. R.; Gray, L. E.; Jr. Ligand-Based Indentification of Environmental Estrogens. Chem. Res. Toxicol. 1996, 9, 1240-1248.
    Wiese, T. E.; Polin, L. A.; Palomino, E.; Brooks, S. C. Induction of the Estrogen Specific Mitogenic Response of MCF-7 Cells by Selected Analogues of Estradiol-17β:A 3D QSAR Study. J. Med. Chem. 1997, 40, 3659-3669.
    Berger, R. D.; Freeman, J. P.; Lay, J. O.; Jr.; Wilkes, J. G.; Miller, D. W. Use of 13C NMR Spectrometric Data to Produce a Predictive Model of Estrogen Receptor Binding Activity. J. Chem. Inf. Comput. Sci. 2001, 219-224.
    Vendrame, R.; Takahata, Y. Structure-Activity Relationship (SARS) of Substituted 17α-Acetoxyprogesterones Studied with Principal Component Analysis and Neural Networks Using Calculated Physicochemical Parameters. J. Mol. Struct. (THEOCHEM) 1999, 489, 55-66.
    Braga, R. S.; Vendrame, R.; Galv?o, D. S. Structure-Activity Relationship Studies of Substituted 17α-Acetoxyprogesterone Hormones. J. Chem. Inf. Comput. Sci. 2000, 40, 1377-1385.
    Fauci, A. S. The Human Immunodeficiency Virus Infectivity and Mechanisms of Pathothesis. Science, 1988, 239 (4840): 617-622.
    瞿虹. 艾滋病治疗药物及研究进展.天津药学, 2003, 15(4): 57-59.
    徐玉文, 赵桂森. 抗艾滋病药物研究进展.中国药物化学杂志, 2002,12 (2): 119-124.
    孟歌, 何严萍, 陈芬儿. HEPT类逆转录酶抑制剂的三维定量构效关系.高等学校化学学报, 2002, 23 (7): 1304-1308.
    
    沈以凤, 徐虹. 艾滋病治疗药物应用.中国药学杂志, 2000, 35 (9):631-632.
    李英富. 非核苷类HIV-1反转录酶抑制剂: 一类新的抗爱滋病药物.国外医学·药学分册,1994, 21(4): 207.
    Garg, R.; Gupta, S. P.; Gao, H.; Babu, M. S.; Debnath, A. K.; Hansch, C. Comparative Quantitative Structure-Acitivity Relationship Studies on Anti-HIV Drugs. Chem. Rev. 1999, 99, 3525-3601.
    Gilbert, I. H. Inhibitors of Dihydrofolate Rreductase in Leishmania and Trypanosomes. Biochimica et Biophysica Acta, 2002, 1587: 249– 257.
    徐林, 俞雄, 杭轶萍, 徐懋丽, 张秀平. 溴莫普林的合成. 中国医药工业杂志, 2001,32 (10): 437-439.
    孙铁民, 杨海权, 李铣, 李英. 二氢叶酸还原酶抑制剂溴莫普林的合成. 中国医药工业杂志, 2000, 31 (4): 147-149.
    Ivanciuc, O.; Ivanciuc, T.; Carbrol-Bass, D. QSAR for Dihydrofolate Reductase Inhibitors with Molecular Graph Structural Descriptors. Journal of Molecular Structure (Theochem), 2002, 582: 39-51.
    Egolf, L. M.; Jurs, P. C. Prediction of Boiling Points of Organic Heterocyclic Compounds Using Regression and Neural Network Techniques. J. Chem. Inf. Comput. Sci. 1993, 33, 616-625.
    Wessel, M. D.; Jurs, P. C. Prediction of Normal Boiling Points of Hydrocarbons from Molecular Structure. J. Chem. Inf. Comput. Sci. 1995, 35, 68-76.
    Stanton, D. T.; Egolf, L. M.; Jurs, P. C.; Hicks, M. G. Computer-assisted Prediction of Normao Boiling Points of Pyrans and Pyrroles. J. Chem. Inf. Comput. Sci. 1992, 32, 306-306.
    Basak, S. C.; Grunwald, G. D. Molecular Similarity and Estimation of Molecular Properties. J. Chem. Inf. Comput. Sci. 1995, 35, 366-372.
    Zefirov, N. S.; Palyulin, V. A. QSAR for Boiling Points of “Small” Sulfides. Are the “High-Quality Structure-Property-Activity Regressions” the Real High Quality QSAR Models? J. Chem. Inf. Comput. Sci. 2001, 41, 1022-1027.
    Tomovi?, ?.; Gutman, I. Modeling Boiling Points of Cycloalkanes by Means of Iterated Line Graph Sequences. J. Chem. Inf. Comput. Sci. 2001, 41, 1041-1045.
    Ren, B. Y. Novel Atom-type AI Indices for QSPR Studies of Alcohols. Computer & Chemistry. 2002, 26, 223-235.
    Weast, R. 1989-1990. CRC Handbook of Chemistry and Physics, 70th ed., CRC Press, Boca Raton, FL.
    Lide, D. R.; Milne, G. W. A., 1992. Handbook of Data on Common Organic Compounds. CRC
    
    
    Press, Boca Raton, FL.
    Huang, F.; Liu, X., 1991. Alcohols. In: Encyclopedia of Chemical Industry (in Chinese), Vol. 2. Chemical Industry Press, Beijing.
    Dean, J. A., 1999. Lange’s Handbook of Chemistry, 15th ed. Beijing World Publishing Corporation/McGraw-Hill, Beijing.
    李志良, 曹晨忠. 有效碳链长度与脂肪醇的沸点. 有机化学, 1998, 18, 360-364.
    Nelson, T. M.; Jurs, P. C. Prediction of Aqueous Solubility of Organic Compounds. J. Chem. Inf. Comput. Sci. 1994, 34, 601-609
    Ren, B. Y. Novel Atomic-Level-Based AI Topological Descriptors: Application to QSPR/QSAR Modeling. J. Chem. Inf. Comput. Sci. 2002, 42, 858-868.
    Xu, L.; Hu, C. Applied Chemical Graph Theory; Scientific Press: Beijing, 2000.
    Klopman, G.; Li, J.-Y.; Wang, S.; Dimayuga, M. Computer Automated logP Calculations Based on an Extended Group Contribution Approach. J. Chem. Inf. Comput. Sci. 1994, 34, 752-781.
    Ren, B. Y. Atom-Type-Based AI Topological Descriptors: Application in Structure-Boiling Point Correlations of Oxo Organic Compounds. J. Chem. Inf. Comput. Sci. 2003, 43, 1121-1131.
    Nevalainen, T.; Koistinen, J.; Nurmela, P. Synthesis, Structure Verification, and Chromatographic Relative Retention Times for Polychlorinated Diphenyl Ethers.Environ Sci Technol. 1994, 28:1341 –1347.
    Williams, D. T.; Kennedy, B.; LeBel, G. L.Chlorinated Diphenyl Ethers in Human Adipose Tissue. Part 2. Chemosphere. 1991, 23: 601 –608.
    Koistinen, J.; Paasivirta, J.; Lahtipera, M. Bioaccumulation of Dioxins, Coplanar PCBs, PCDEs, HxCNs, R-PCNs, RPCPHs and R-PCBBs in Fish from a Pulp-mill Recipient Watercourse.Chemosphere. 1993a, 27:149 –156.
    Kurz, J.; Ballschmiter, K. Vapour Pressures, Aqueous Solubilities, Henry’s Law Constants, Partition Coefficients Between Gas/water (Kgw), N-octanol/water (Kow) and Gas/n-octanol (KGo) of 106 Polychlorinated Diphenyl Ethers (PCDE). Chemophere 1999, 38:573–586.
    Lake, J. L.; Rogerson, P. F.; Norwood, C. B. A Polychlorinated Dibenzofuran and Related Compounds in an Estuarine Ecosystem. Envir on Sci Technol 1981, 15: 549 –553.
    Newsome, W. H.; Shields, J. B. Method for the Determination of Higher Chlorinated Diphenyl Ethers in Chicken Tissue. J Chromatogr. 1982, 247:171 –175.
    Lindahl, R.; Pappe, C.; Buser, H. R. Formation of Polychlorinated Dibenzofurans (PCDFs) and Polychlorinated Dibenzo-pdioxins (PCDDs) from the Pyrolysis of Polychlorinated
    
    
    Diphenyl Ethers.Chemosphere. 1980, 9: 351 –361.
    Kurz, J.; Ballschmiter, K. Relationship between Structure and Retention of Polychlorinated Diphenyl Ethers (PCDE) in HRGC in Comparison with Other Groups of Halogenated Aromatic Compounds. Fresenius J. Anal. Chem. 1994, 349: 533 –537.
    Koistinen, J.; Koivusaari, J.; Nuuja, I.; Paasivirta, J. PCDEs, PCBs, PCDDs and PCDFs in Black Guillemots and White-tailed Sea Eagles from the Baltic Sea. Chemosphere 1995a, 30: 1671 – 1684.
    Huestis, S. Y.; Sergeant, D. B. Removal of Chlorinated Diphenyl Ether Interferences for Analyses of PCDDs and PCDFs in Fish.Chemosphere, 1992, 24: 537 –545.
    Koistinen, J.; Vuorinen, P. J.; Passivirta, J. Contents and Origin of Polychlorinated Diphenyl Ethers (PCDE) in Salmon from the Baltic Sea, Lake Saimaa and the Tenojoki Reiver in Finland. Chemosphere. 1993b, 27: 2365 –2380.
    Paasivirta, J.; Tarhanen, J.; Soikkeli, J. Occurrence and Fated of Polychlorinated Aromatic Ethers (PCDE, PCA, PCV, PCPA and PCBA) in the Environments.Chemosphere 1986, 15: 1429 –1433.
    Koistinen, J.; Stenman, O.; Haahti, H; Suonpera, M.; Paasivira, J. Polychlorinated Diphenyl Ethers, Dibenzo-p-dioxins, Dibenzofurans and Biphenyls in Seals and Sediment from the Gulf of Finland.Chemosphere. 1997, 35: 1249 –1269.
    Stanley, J. S.; Cramer, P. H; Ayling, R. E.; Thornburg, K. R; Remmers, J. C; Breen, J. J; Schwemberger, J. Determination of the Prevalence of Polychlorinated Diphenyl Ethers (PCDPEs) in Human Adipose Tissue Sample.Chemosphere. 1990, 20: 981 – 985.
    Koistinen, J.; Mussalo-Rauhamaa, H.; Passivirta, J. Polychlorinated Diphenyl Ethers, Dibenzo-p-dioxins and Dibenzofurans in Finnish Human Tissues Compared to Environmental Samples. Chemosphere. 1995b, 31: 4259 –4271.
    Becker, M.; Phillips, T.; Safe, S. Polychlorinated Diphenyl Ethers—a Review.Toxicol Environ. Chem. 1991, 33: 189 –200.
    Kurz, J.; Ballschmiter, K. Isomer -specific Determination of 79 Polychlorinated Diphenyl Ehers (PCDE) in Cod Liveroils, Chlorophenols and in a Fly Ash. Fresenius J. Anal. Chem. 1995, 351: 98 –109.
    Krop, H. B.; Van Velzen; Martin J. M.; Parsons. J. R. Govers HAJ.N-octanol-water Partition Coefficients, Aqueous Solubilities and Henry’s Law Constants of Fatty Acid Esters.Chemosphere. 1997, 34: 107 –119.
    Basak, S. C.; Mills, D. Quantitative Structure-property Relationships (QSPRs) for the Estimation of Vapor Pressure: a Hierarchical Approach Using Mathematical Structural
    
    
    Descriptors. J. Chem. Inf. Comput. Sci. 2001, 41: 692 -701.
    Delgado, E. J. Predicting Aqueous Solubility of Chlorinated Hydrocarbons from Molecular Structure. Fluid Phase Equilibria. 2002, 199: 101 -107.
    Ferreira, Marcia M. C. Polycyclic Aromatic Hydrocarbons: a QSPR Study. Chemosphere 2001, 44: 125 -146.
    Jorgensen, W. L.; Duffy, E. M. Prediction of Drug Solubility from Structure. Adv. Drug Deliv. Rev. 2002, 54: 355 -366.
    Yang, P.; Chen, J. W.; Chen, S.; Yuan, X.; Schramm, K. W.; Kettrup A. QSPR Models for Physicochemical Properties of Polychlorinated Diphenyl Ethers. The Science of the Total Environment. 2003, 305: 65-76.
    Beger, R. D.; Freeman, J. P.; Lay, Jr., J. O.; Wilkes, J. G.; Miller, D. W. Use of 13C NMR Spectrometric Data to Produce a Predictive Model of Estrogen Receptor Binding Activity. J. Chem. Inf. Comput. Sci. 2001, 41 (1): 219-224.
    Beger, R. D.; Bolton, P. H. Protein φand ψ Dihedrals Restraints Determined from Multidimensional Hypersurface Correlations of Backbone Chemical Shifts and Their Use in the Determination of Protein Tertiary Structures. J. Biomol. NMR. 1997, 10, 129-142.
    Wishart, D. S.; Sykes, B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994, 239, 363-392.
    Kvasnicka, V. An Application of Neural Networks in Chemistry. Prediction of 13C NMR Chemical Shifts. J. Math. Chem. 1991, 6, 63-76.
    Bremser, W. H. A Novel Substructure Code. Anal. Chim. Acta. 1978, 103, 355-365.
    Crandell, C. W.; Gray, N. A. B.; Smith, D. H. Structure Evaluation Using Predicted 13C Spectra. J. Chem. Inf. Comput. Sci. 1982, 22, 48-57.
    Bremser, W. Expectation Ranges of 13C NMR Chemical Shifts. Magn. Reson. Chem. 1985, 23, 271-275.
    Chen, L.; Robien, W. The CSEARCH-NMR Data Base Approach to Solve Frequent Questions Concerning Substituent Effects on Carbon-13 NMR Chemical Shifts. Chemom. Intell. Lab. Syst. 1993, 19, 217-223.
    Cheng, H. N.; Kasehagen, L. J. Integrated Approach for 13C Nuclear Magnetic Resonance Shift Prediction, Spectral Simulation and LibrarySearch. Anal. Chim. Acta 1994, 285, 223-235.
    Von der Lieth, C. W.; Seil, J.; Ko¨hler, I.; Opferkuch, H. J. 13C NMR Data Bank Techniques as Analytical Tools. Magn. Reson. Chem.1985, 23, 1048-1055.
    Chen, L.; Robien, W. OPSI: A Universal Method for Prediction of Carbon-13 NMR Spectra
    
    
    Based on Optimized Additivity Models. Anal. Chem. 1993, 65, 2282-2287.
    Clerc, J. T.; Sommerauer, H. A Minicomputer Program Based on Additivity Rules for the Estimation of 13C-NMR Chemical Shifts. Anal. Chim. Acta 1977, 95, 33-40.
    Jensen, K. L.; Barber, A. S.; Small, G. W. Simulation of Carbon-13 Nuclear Magnetic Resonance Spectra of Polycyclic Aromatic Compounds. Anal. Chem. 1991, 63, 1082-1090.
    Clouser, D. L.; Jurs, P. C. Simulation of 13C Nuclear Magnetic Resonance Spectra of Tetrahydropyrans Using Regression Analysis and Neural Networks. Anal. Chim. Acta 1994, 295, 221-231.
    Jurs, P. C.; Ball, J. W.; Anker, L. S.; Friedman, T. L. Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation. J. Chem. Inf. Comput. Sci. 1992, 32, 272-278.
    Jurs, P. C.; Anker, L. S.; Ball, J. W. In Computer-Enhanced Analytical Spectroscopy, Vol. 4; Wilkins, C. L., Ed.; Plenum Press: New York, 1993; Chapter 1.
    Grant, D. M.; Paul, E. G. Carbon-13 Magnetic Resonance Ⅱ. Chemical Shift Data for the Alkanes. J. Am. Chem. Soc. 1964, 86: 2984-2990.
    Lindeman, L. P.; Adams, J. Q. Carbon-13 Nuclear Magnetic Shifts for the Resonance Spectrometry. Chemical Shifts for the Paraffins through C9. Anal. Chem. 1971, 43: 1245-1252.
    Schweitzer, R. C.; Small, G. W. Automated Spectrum Simulation Methods for Carbon-13 Nuclear Magnetic Resonance Spectroscopy Based on Database Retrieval and Model-Building Strategies. J. Chem. Inf. Comput. Sci. 1997, 37: 249-257.
    Jurs, P. C.; Bll, J. W.; Anker, L. S.; Friedman, T. L. Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation. J. Chem. Inf. Comput. Sci. 1992, 32: 272-278.
    Svozil, D.; Pospichal, J.; Kvasnicka, V. Neural Network Prediction of Carbon-13 NMR Chemical Shifts of Alkanes. J. Chem. Inf. Comput. Sci. 1995, 35: 924-928.
    Liu, S. S.; Liu, H. L.; Yu, B. M.; Cao, C. Z.; Li, Z. L. Investigation on Quantitative Relationship between Chemical Shift of Carbon-13 Nuclear Magnetic Resonance Spectra and Molecular Topological Structure Based on a Novel Atomic Distance-Edge Vector (ADEV). J. Chemom. 2001, 15 (5), 427(438.
    刘树深, 曹晨忠, 余般梅, 宫下芳胜, 李志良. 核磁共振碳谱的研究: 烷烃分子的化学位移δ与原子距边矢量μ. 原子与分子物理学报. 1997, 56-61.
    刘树深, 夏之宁, 余般梅, 李志良. 无环醇原子电距矢量及核磁共振碳谱化学位移模拟.波谱学杂志,1999,16(5):429-439.
    E. 布里特梅尔, W. 沃尔特著, 刘立新, 田雅珍译. 碳-13核磁共振波谱学. 大连:大连工学院出版社,1986:136-138.
    
    乔洁, 李美萍, 芦飞, 张生万. 烷基极化效应与羰基13C 化学位移. 波谱学杂志, 2002,19 (4): 1-4.
    Liu, S. S.; Xia, Z. N.; Liu, Y.; Cai, S. X.; Li, Z. L. An Atomic Distance-Edge Vector and Carbon-13 Nuclear Magnetic Resornance Chemical Shifts of Alcohols and Alkanes. Chin. J. Chem. 2000,18 (2): 165-174
    于德泉, 杨峻山, 谢晶曦.分析化学手册第五分册, 北京: 化学工业出版社,1989: 806.
    Tomovi?, ?.; Gutman, Ivan. Modeling Boiling Points of Cycloalkanes by Means of Iterated Line Graph Sequences. J. Chem. Inf. Comput. Sci. 2001, 41: 1041-1045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700