用户名: 密码: 验证码:
难动用储层影响因素及分类标准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以大庆长垣萨尔图油田北二西区为对象,研究了萨尔图、葡萄花、高台子三套油层砂岩储层水/聚驱开发过程中出现的难动用储层特点,分析了形成难动用储层的因素,探讨了难动用储层划分标准以及单井剖面上的分类方法,分析了其分布特征和动用条件。取得了以下主要成果:
    1、在各油层砂岩储层基本特征分析基础上,研究了区内砂岩储层层间、平面和层内非均质特性,以及它们与油层水驱油效率的关系。
    2、利用数字显微图象分析系统测定了 92 个岩心塞样品的 33 种微观二维孔隙结构参数,结果表明这些孔隙结构参数与岩心塞样品测定的渗透率和水驱油效率参数之间有很高的相关性。
    3、水驱油效率模拟实验显示 10 种图象分析孔隙结构参数与水驱油效率的关系密切。从中确定出孔隙形态指数作为储层类型划分的重要依据。
    4、从宏观到微观综合分析了形成难动用储层的影响因素。分析了砂体成因类型、沉积旋回特征、开发层系、井网类型及注水井距和砂层微观非均质性等因素,确定了控制水/聚驱开发效果的主要因素。
    5、利用孔隙形态指数在岩心样品中划分砂岩储层类型。分析各类砂岩储层的岩石类型和孔隙结构参数特征,寻找各类难、易动用储层孔隙结构分布的规律。进而将该方法应用到单井岩心剖面中,按表外厚度和有效厚度分别划分各类难、易动用储层类型。通过 Delphi5.0 语言将难动用储层分类与划分标准编写成计算机操作解释程序,实现人机联动。
    6、利用划分标准和分类方法计算机操作解释程序,分析了区内 49 口三次加密井难动用储层分布特征。有效厚度中,难动用储层占整个储层层数的 43.4%,其中Ⅰ、Ⅱ类占 44.6%,Ⅲ、Ⅳ类占 55.4%。独立表外厚度中,难动用储层占储层层数的 49.8%,其中Ⅰ、Ⅱ类占 71.1%,Ⅲ、Ⅳ类占 28.9%。研究认为有效厚度中难动用储层的动用潜力相对较大。
    7、从三个方面分析了难动用储层的动用条件:(1)适当调整井网类型;(2) 改变注入流体的物理化学性质,注聚合物是目前首选的方法;(3) 薄差层和表外难动用储层应尽可能地使用限流法压裂完井,改善井口附近储层的流动性质。
Based on the data of Sartu, Putaohua and Gaotaizhi oil bearing groups, this paper studies the characteristics of the sandstone reservoirs with low water/polymer recovery efficiency in each oil bearing group, criterion of classification, type-recognition in the well logging profile and their formative effects. Then, it discusses the potential and methods for the low recovery reservoirs.
    First of all, the paper studies the basic characteristics of the reservoir in each oil-bearing groups including the distribution, genetic types, diageneses, pore types and textures, porosity, permeability, original and current oil saturation of the sands in the study area. Based on the permeability data interpreted from well loggings, the macro-heterogeneities of the sands have been studied, such as the heterogeneity between the layers, the heterogeneity within the layer and the horizontal heterogeneity for each layer of the sands in the area as well as the correlation between the macro-heterogeneities and water/polymer flooding recovery efficiency. With the micro-pore textures of sandstone being studied, petrographic image analysis system has been used to measure 33 types of pore-textural parameters in 2-dimentions from 92 core plug samples. These parameters have a very high correlation coefficient with the permeability and recovery efficiency data measured from the core plugs. To zero in on the parameters mainly influencing the water recovery efficiency, 6 core plugs with different pore textures have been chosen to perform a water-flooding simulation test. Under different injecting conditions, 10 parameters have been chosen because they have closer correlation with the oil recovery efficiency during the test. Two parameters are distinguished from the 10 and their difference is taken as the pore shape index, which is especially important for the reservoir classification.
    To make the classification of reservoir accurate and objective, each formative effect of the reservoirs with low recovery efficiency has been examined thoroughly from the macro scale to the micro one. While the genetic types of sands, the patterns of sand vertical sequences, the developing sand complex, the developing well patterns and distances between the injection and production wells have been analyzed to find the effects which mainly control the water flooding recovery efficiency of the sands in the area. The pore textural parameters from 1597 core-plug conventional petrophysical data in two cored wells are inversed, grouped and calculated to form the
    
    heterogeneous parameters according to sand layers to make the heterogeneous parameters full of pore textural characteristics. Through analyzing, a conclusion has been reached that the pore shape heterogeneity is the main formative effect of the reservoirs with low recovery efficiency in the area because compared with the heterogeneous parameters of core-plug permeability, the heterogeneous parameters of inversed from image analysis pore textural data have a very closer correlation with water/polymer flooding recovery efficiency data. The classification of reservoirs with low recovery efficiency is made in a way from microscopic scale to macroscopic one. First, the pore shape index is used in classification among the 92 core-plug samples. Second, the characteristics of petrography and pore textures in each type of sand are studied to recognize the regular pattern of pore textures among different types of sands. Third, the classification method is used in cored wells to separate the low recovery reservoirs from the higher ones according to their marginal sand thickness and oil sand thickness. Finally, the method is expanded to the well logging profile. In order to apply the classification system in the oilfield, Delphi5.0 is used for developing a computer program to operate the whole classification system in a PC with windows 98 and upper version. With the computer program, 49 infilling well data in the area have been processed and each sand with low recovery efficiency in a well profile is recognized and classifi
引文
[1]刘永春,李晓平等。卫 81 块沙四段储层沉积微相及剩余油分布研究。断块油气田 2001.9. 8(5):42~46。
    [2]魏斌,陈建文。应用储层流动单元研究高含水油田剩余油分布。地学前缘,2000.10. 7(4):403~410。
    [3]刘建民,李阳等。应用驱油微观模拟实验技术研究储层剩余油微观分布特征。中国海上油气(地质),2000. 14(1):51~54。
    [4]黄思静,杨永林等。注水开发对砂岩储层孔隙结构的影响。中国海上油气(地质),2000. 14(2):122~128。
    [5]熊敏,王勤田。盘河断块区孔隙结构与驱油效率。石油与天然气地质,2003.3. 24(1):42~44。
    [6]张铭,樊孝峰等。濮城油田东区沙二段下亚段沉积微相与储层非均质性及剩余油分布的关系。中国海上油气(地质),2003. 17(3): 176-180。
    [7]刘中云。临南油田储集层孔隙结构模型与剩余油分布研究。石油勘探与开发(油田开发),2000. 12. 27(6): 47-49。
    [8]陈志香。高集油田高 7 区阜宁组储层非均质性及剩余油分布。海洋石油,2003.2. 23(2):51~54。
    [9]窦之林,董春梅等。孤东油田七区中馆 4—馆 6 砂层组储层非均质性及其对剩余油分布的控制作用。石油大学学报,2002.2. 26(1):8~15。
    [10]章志英,严学范等。江苏油田真 12 断块 E2s16 储层特征及剩余油分布。海洋地质与第四纪地质,2001.8.21(3):87-92。
    [11]徐守余,李红南。储集层孔喉网络场演化规律和剩余油分布。石油学报,2003.7. 24(4):48~53。
    [12]王尤富,凌建军。低渗透砂岩储层岩石孔隙结构特征参数研究。特种油气藏,1999,6(4):25-28。
    [13]蔡忠。储集层孔隙结构与驱油效率关系研究。石油勘探与开发,2000. 12. 27(6): 45-49。
    [14]马新仿,张士诚等。储层岩石孔隙结构的分形研究。中国矿业,2003,12 (9):46-48。
    
    [15]朱玉双,曲志浩等。安塞油田坪桥区、王窑区长 6 油层储层特征及驱油效率分析。沉积学报 2000. 6. 18(2): 278-283。
    [16]李胜利,于兴河,等。剩余油分布研究新方法——灰色关联法。石油与天然气地质,2003.6. 24(2):175~178。
    [17]刘建民,徐守余。河流相储层沉积模式对剩余油分布的控制。石油学报,2003.1. 24(1):58~62。
    [18]薛家锋,王家华,等。多次储层随机建模与砂体预测符合率。石油学报,2003.9. 24(5):79~83。
    [19]吕晓光,潘懋,等。指示主成分模拟建立分流河道砂体相模型及意义。石油学报,2003.1. 24(1):53~57。
    [20]计秉玉,李彦兴。喇萨杏油田高含水期提高采收率的主要技术对策。大庆石油地质与开发,2004.10. 23(5):47~53。
    [21]郭万奎。大庆油田地质开发技术的进步与展望。大庆石油地质与开发,2004.10. 23(5):54~59。
    [22]袁庆峰。认识油田开发规律,科学合理开发油田。大庆石油地质与开发,2004.10. 23(5):60~66。
    [23]石成方,程保庆。大庆喇萨杏油田三次加密调整的实践与认识。大庆石油地质与开发,2004.10. 23(5):71~73。
    [24]赵翰卿,付志国,吕晓光。储层层次分析和模式预测描述法。大庆石油地质与开发,2004.10. 23(5):74~77。
    [25]赵国忠,王曙光,等。大庆长垣多学科油藏研究技术与应用。大庆石油地质与开发,2004.10. 23(5):78~81。
    [26]吴国平,等。用灰色关联法计算储层孔隙度。石油大学学报,2000,24(1):107-108。
    [27]徐安娜,等。我国不同沉积类型储层中的储量和可动剩余油分布规律。石油勘探与开发,1998,25(5):41~44。
    [28]侯加根,等。河道砂储集层随机模拟方法分析。石油勘探与开发,1998,25(4):62~64。
    
    [29]裘怿南。石油开发地质方法论(一)。石油勘探与开发,1997,23(2):43~47。
    [30]吕晓光等。储层地质模型及随机建模技术。大庆石油地质与开发,2000.19(1):10~13。
    [31]张团锋,王家华,等。储层评价中基于变异函数的模拟方法。中国数学地质。地质出版社,1995,156-162。
    [32]纪发华,等。序惯指示模拟方法在枣南油田储层非均质性建模中的应用。石油学报,1994,15(增刊):179-186。
    [33]赵翰卿,付志国,吕晓光,等。大型河流—三角洲沉积储层精细描述方法。石油学报,2000,21(4):109-113。
    [34]吕晓光,等。高含水后期油田细分单砂层的地质研究。新疆石油地质,1993,14(4):345-349。
    [35]张一伟,等。陆相油藏描述。北京:石油工业出版社,1997,4-40。
    [36]Busch, J.M. et al. 1978, “Determination of Lithology from Well Logs by Statistical Analysis,”SPEFE: 412-418.
    [37]D.K. Davies, et al. 1999, “Improved Prediction of Reservoir Behavior Through Integration of Quantitative Geological and Petrophysical Data” SPE Reservoir Eval. & Eng. 2(2).
    [38]Douglas S. Hamilton, et al. 1998, Approaches to identifying reservoir heterogeneity and reserve growth opportunities in a continental-scale bed-load fluvial system: Hutton sandstone, Jackson field, Australia. AAPG, 82(12): 2192-2219.
    [39]Flavio S. Anselmetti, Stefan Luthi and Gregor P. Eberli, 1998, Quantitative Characterization of Carbonate Pore systems by digital Image Analysis: AAPG Bulletin, V.82, P.1815-1836.
    [40]Frits Van Poelgeest, et al. 1991, “Comparison of Laboratory and In-Situ Measurements of Waterflood Residual Oil Saturations For the Cormorant Field” SPE Formation Evaluation.
    [41]Hearn, C.L. et al. 1984, “Geological Factors Influencing Reservoir Performance of the Hartzog Draw Field, Wyoming,” JPT: 1335-1344.
    
    [42]Jian, F.X. et al. 1994, “A Genetic Approach to the Prediction of Petrophysical Properties,” J. Pet. Geology Vol. 17, 1, pp71-88.
    [43]J. K. Caers, SPE, S. Srinivasan, SPE, and A. G. Journel, SPE, 2000, Geostatistical Quantification of Geological Information for a Fluvial-Type North Sea Reservoir: SPE Reservoir Eval. & Eng. 3(5), P.457-467.
    [44]J. W. Jennings Jr. et al. 1999, “How Much Core-Sample Variance Should a Well-Log Model Reproduce?” SPE Reservoir Eval. & Eng. 2(5).
    [45]K. Ruzyla, 1986, Characterization of Pore Space by Quantitative Image Analysis: SPE Formation Evaluation, P. 389-398.
    [46]L.H. Fl?lo, et al. 2000, “Revealing the Petrophysical Properties of a Thin-Bedded Rock in a Norwegian Sea Reservoir With Logs, Core, and Miniperm Data” SPE Reservoir Eval. & Eng. 3(3).
    [47]Lucia, F.J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, P1275-1300.
    [48]L. Yuan, 1989, Image Analysis of Pore Size Distribution and its Application, Statistical Applications in the Earth Sciences: Geological Survey of Canada, Paper 89-9, P. 99-107.
    [49]Maghsood Abbaszadeh, et al. 1996, “Permeability Prediction by Hydraulic Flow Units—Theory and Applications” SPE Formation Evaluation.
    [50]N. C. Wardlaw and R. P. Taylor, 1976, Mercury Capillary Pressure Curves and the Interpretation of Pore Structure and Capillary Behaviour in Reservoir Rocks: Bulletin of Canadian Petroleum Geology Vol. 24, P. 225-262.
    [51]N. J. Fortey, 1995, Image Analysis in Mineralogy and Petrology: Mineralogical Magazine, Vol.59, P. 177-178.
    [52]Norland, Ulf. 1996, “Formalizing geological Knowledge-With an Example of Modeling Stratigraphy using Fuzzy Logic,” J. of Sedimentary REs. 66, No. 4.
    [53]Paul Edwin Potter, et al. September, 1967, “Generation of a Synthetic Vertical Profile of a Fluvial Sandstone Body” SPE, 243-251.
    [54]Philippe M. Doyen, 1988, Permeability, Conductivity, and Pore Geometry of Sandstone: Journal of Geophysical Research, Vol.93, P. 7729-7740.
    
    [55]Pittman, E.D., 1971, “Microporosity in carbonate rocks,” AAPG Bulletin, v, 55, p1873-1881.
    [56]Pittman, E.D., 1992, “Relationship of porosity and permeability to various parameters derived form mercury injection-capillary pressure cures for sandstone,” AAPG Bulletin, v, 76, p191-198.
    [57]Robert Ehrlich, Stephen K. Kennedy, Sterling J. Crabtree and Robert L. Cannon, 1984, Petrographic Image Analysis, I. Analysis of Reservoir Pore Complexes: Journal of Sedimentary Petrology, Vol. 54, P. 1365-1378.
    [58]S.J.Cuddy, 2000, “Litho-Facies and Permeability Prediction From Electrical Logs Using Fuzzy Logic” SPE Reservoir Eval. & Eng. 3(4).
    [59]Steven E. Franklin and Derek R. Peddle, 1987, Texture Analysis of Digital Image Data Using Apatial Cooccurrence: Computers & Geosciences Vol.13, P. 293-311.
    [60]Stiles, J.H. et al. 1992, “The Use of Routine and Special Core Analysis in Characterizing Brent Groug Reservoirs, UK North Sea,” JPT.
    [61]Theodore T. Mowers and David A. Budd, 1996, Quantification of Porosity and Permeability Reduction Due to Calcite Cementation Using Computer-Assisted Petrographic Image Analysis Techniques: AAPG Bulletin, V.80, P. 309-322.
    [62]Yujin zhang, et al. 1997, “Determination of Permeability Transforms from Geophysical Logs Using Statistical Pattern Recognition: the Mardie Greensand,” Exploration Geophysics, 28, 181-184.
    [63]Yujin zhang, et al. 1999, “Application of neural networks to identify lithofacies from well logs,” Exploration Geophysics, 30, 45-49.
    [64]Yujin zhang, et al. 1997, “Improved Log Evaluation in a Lithologically complex, Glauconitic Reservoir—A Case Study,” APPEA, Journal, 786-796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700