用户名: 密码: 验证码:
杉科植物的表皮结构及其气孔参数分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究杉科植物的表皮结构,建立杉科化石植物分类鉴定的表皮结构参照系;分析红杉属、水杉属、水松属和落羽杉属植物的气孔参数,根据统计学的结果定量分析在指示大气CO_2浓度的研究工作中,气孔密度和气孔指数哪个更可靠;利用标本的枝叶和表皮结构的特征,确定采自中国黑龙江依兰始新世和云南吕合中新世地层杉科化石植物标本的分类地位。
     杉科常绿植物的叶片通常为革质,落叶植物的叶片为纸质,落叶植物的叶片角质层比常绿植物的叶片角质层薄。非气孔区的表皮细胞排成规则的纵向行列,细胞长方形,细胞长轴与叶片长轴一致。水杉属的多数表皮细胞垂周壁明显弯曲,落羽杉属和杉木属有时微呈波状,其他属的表皮细胞垂周壁直。气孔区的表皮细胞形状有时为多边形,细胞长轴多数也与叶片长轴平行。叶片为双面气孔型或单面气孔型,多数植物的叶片近轴面和远轴面的气孔数量和分布不同。一般来说,条形叶和披针形叶的远轴面气孔分布状况和气孔数量稳定,远轴面的中部最稳定。条形叶远轴面的气孔分布于中脉两侧,形成纵向的气孔带。条形叶近轴面气孔分布状况和气孔数量变化大,近轴面的气孔数量有时与远轴面近似,但多数情况下比远轴面少,有时整个叶片的近轴面仅少数几个气孔或没有气孔分布。钻形叶的近轴面和远轴面的气孔数量近似,或叶片近轴面的气孔数量比远轴面的气孔数量多,气孔分布范围也比远轴面气孔分布范围广。气孔椭圆形,落羽杉属植物的气孔长轴方向与叶片长轴垂直或斜向排列,柳杉属植物的气孔多斜向排列。落羽杉属和柳杉属以外的杉科植物的气孔长轴多数与叶片长轴平行。保卫细胞下陷,细胞垂周壁加厚明显。保卫细胞的极端联合,细胞垂周壁向极部延长并向2侧弯曲。气孔的副卫细胞通常为4-7个。
     根据对广州和杭州2个采集地水松标本气孔参数的t-检验结果,条形叶的气孔参数的变化比条状钻形叶气孔参数的变化小。条状钻形叶远轴面气孔指数的变化比近轴面气孔指数的变化小,也比近轴面和远轴面气孔密度的变化小。因此在指示大气CO_2浓度的工作中,用水松的条形叶比条状钻形叶可靠,用气孔指数比用气孔密度可靠,用条状钻形叶的远轴面气孔指数比近轴面的气孔指数可靠。许多植物的叶内不同部位气孔参数也不同,分析从相同部位获取的北美红杉、水杉、水松和落羽杉的气孔参数发现,气孔指数的变异系数小于气孔密度的变异系数,气孔指数的稳定性比气孔密度的稳定性高。不论是定性分析还是t-检验和变异系数分析等定量研究的结果都表明,在利用气孔参数指示大气CO_2浓度的工作中,用气孔指数指示大气CO_2浓度比用气孔密度指示更为准确。
     中国黑龙江依兰始新世和云南吕合中新世地层发现的标本的叶片形态和排列与杉科的红杉属、水杉属、水松属和落羽杉属植物相似。水松属和落羽杉属植物条形叶的质地为纸质,叶尖比较尖锐,基部下延部分不明显,平行沿小枝轴延伸等特征
The objective of the present work is to establish a frame of reference in epidermal structures of Taxodiaceae, and to determine quantitatively the reliable stomatal parameter (density or index) as a CO_2 indicator in genera Sequoia, Metasequoa, Taxodium and Glyptostrobus based on statistical analysis, and to reveal the affinity of speciemen from the Eocene of Yilan, Heilongjiang Province, NE China and from the Miocene of Luhe, Yunnan Province, South China.The deciduous genera in Taxodiaceae commonly have papyraceous cuticle which is easily distinguished from coriaceous cuticle of evergreen leaves. Epidermal cells of stomata-free area are oblong and parallel to the long axis of leaves. The anticlinal walls of epidermal cells are mostly straight in most genera, sometimes slightly undulate in Taxodium and Cunninghamia, and obviously undulate in Metasequoia. Epidermal cells on stomatal areas are sometimes polygonous. Pits can be clearly seen in the walls of epidermal cells. Leaves are amphistomatic or hypostomatic. Stomata are located on each side of the mid-vein. The numbers of stomata on the abaxial surfaces are generally more than or sometimes the same as those on the adaxial surfaces in linear and lanceolate leaves. The distribution of stomata is generally more uniform on the abaxial surface of linear and lanceolate leaves, and the mid-part of the abaxial surface yields the least variation in stomatal distribution. The numbers of stomata on the adaxial surfaces are more than or sometimes the same as those on the abaxial surfaces in subulate leaves of Taxodiaceae. Stomatal apparatus are oval, and the long axes of stomata are perpendicular or oblique to the midvein of the leaves in Taxodium, and oblique to the midvein of the leaves in Cryptomeria, mostly parallel to the midvein of the leaves in other genera of Taxodiaceae. Guard cells have thickened walls, especially on outer margins. The thickened walls of guard cells form polar lamellae that produce protruding and curved ends at the two poles of the stomata. Commonly the stomata have 4 to 7 subsidiary cells.The Mest of stomatal parameters of Glyptostrobus pensilis from Guangzhou and Hangzhou indicate the variation of stomatal parameters of linear leaves is smaller than that of linear-subulate leaves. The variation of stomatal index of the abaxial surfaces is smaller than that of the index of the adaxial surface, and also is smaller than that of the density of the abaxial and adaxial surfaces in linear-subulate leaves according to the Mest. When studying the correlation between stomatal parameters of Glyptostrobus and atmospheric CO_2 concentrations, the stomatal parameters of linear leaves are firstly chosen, and the stomatal index is more useful than stomatal density. The intra-individual variation of stomatal index is smaller than that of the density by comparing the coefficient of variability
    
    (CV) of stomatal density with the CV of index in genera Sequoia, Metasequoa, Taxodium and Glyptostrobus. Thus, even if stomatal density and stomatal index show similar responses for a given species, stomatal index should yield more accurate CO_2 estimates in genera of Sequoia, Taxodium, Metasequoia and Glyptostrobus.Foliage shoots of Sequoia are reported form the Eocene of Yilan, Heilongjiang Province, NE China and from the Miocene of Liihe, Yunnan Province, South China. The leaves from both Yilan and Liihe are linear in shape, coriaceous in texture and the leaf base is decurrent and attached obliquely to the axis of shoots. The walls of epidermal cells are straight, and the long axis of stomata is mostly parallel to mid-vein in present specimens. It suggests that the new specimens are assigned to Sequoia rather than to similar genera of Metasequoia, Taxodium and Glyptostrobus. The presence of Sequoia during the Eocene in Yilan and Miocene in Luhe shows the detailed cuticle, which may provides valuable information on cellular structures and on the palaeoclimate.
引文
1.陈芬,邓胜徽.1990.早白垩世松柏植物似密叶杉Athrotaxites的三个种.现代地质,4(3):27-36.
    2.陈芬,孟祥营,任守勤,吴冲龙.1988.辽宁阜新和铁法盆地早白垩世植物群及含煤地层.北京:地质出版社.75-80.
    3.代莉,谢双喜,杨荣和.2003.水分胁迫对日本柳杉种子萌芽的影响.贵州林业科技,31(4):15-19.
    4.邓胜徽.1998.内蒙古平庄—元宝山盆地早白垩世植物化石及地层时代.现代地质,12(2):168-172.
    5.邓胜徽,任守勤,陈芬.1997.内蒙古海拉尔盆地早白垩世植物群.北京:地质出版社.49-51.
    6.段喜华,孙立夫,马书荣,祖元刚.2003.不同海拔高度泡沙参叶片形态研究.植物研究,23(3):334-336.
    7.郭双兴.2000.吉林珲春晚白垩世植物群的新材料.古生物学报,39(sub):226-250.
    8.郭双兴,陈吉琳.1989.喜马拉雅山区新生代植物群与聚煤环境.古生物学报,28(4):512-521.
    9.郭双兴,李浩敏.1979.吉林珲春晚白垩世植物群.古生物学报,18(6):547-559.
    10.郭双兴,孙喆华,李浩敏,窦亚伟.1984.新疆阿勒泰古新世植物群.中国科学院南京地质古生物研究所丛刊,8:119-146.
    11.何智英,俞新妥,叶再春.1987.杉木生物系统学研究(Ⅰ).福建林学院学报.7(1):1-12.
    12.贺超兴,陶君容.1994.黑龙江依兰早第三纪植物群的古气候分析.植物学报,36(12):952-956.
    13.贺超兴,陶君容.1997.黑龙江依兰始新世植物群的研究.植物分类学报,35(3):249-256.
    14.贺新强,林月惠,林金星,胡玉熹.1998.气孔密度与近一个世纪大气CO_2浓度变化的相关性研究.科学通报,43(8):860-862.
    15.侯泊鑫,肖国华,程政红,贺果山,雷秀娥.1996.秃杉自然分布区的研究.湖南林业科技,23(3):7-15.
    16.胡玉熹,林金星,王献涛,魏令波.1995.中国特有植物台湾杉的生物学特性及其保护.生物多样性,3(4):206-212.
    17.湖南省林业科学研究所.1994.杉木种源针叶组织解剖初步研究.江西林业科技,3-4:116-119.
    18.黄德明.1998.耐水淹浸乔木——池杉.植物杂志,5:12.
    
    19.李承森,王宇飞,孙启高.2001,定量分析第三纪以来环境变化的新方法—特有种气候分析法.植物学报,43(2)217-220.
    20.李发根,夏念和.2004.水松地理分布及其濒危原因.热带亚热带植物学报,12(1):13-20.
    21.李浩敏,杨桂英.1984.吉林敦化秋梨沟中新世植物群.古生物学报,23(2):204-214.
    22.李林初.1987.从核型看北美红杉的起源.云南植物研究,9(2):187-192.
    23.李林初.1988.从形态学看北美红杉的亲本.云南植物研究,10(1):33-37.
    24.李星学.1995.中国地质时期植物群.广州:广东科技出版社.310-416.
    25.林植芳,李双顺,林桂珠.1986.叶片气孔的分布与光合途径.植物学报,28(4):387-395.
    26.刘艳菊,李承森,王宇飞,Arens NC.2003.活化石植物——水杉.植物学报,45(增刊):59-63.
    27.刘业经,吕福原,欧辰雄.1994.台湾树木志.台湾:国立中兴大学农学院出版委员会,62-69.
    28.马清温.2003.台湾杉属(杉科)的地理分布与生境.见:李承森主编,植物科学进展(第五卷).北京:高等教育出版社.245-254.
    29.马清温,顾锋旗.2000.杉科的几个形态学特征相近属的比较形态学研究进展.植物学通报,17(专集):161-164.
    30.马清温,李承森.2002.水杉属和红杉属化石叶表皮鉴定参照系的特殊性.武汉植物学研究,20(6):413-416.
    31.马清温,徐景先,王宇飞,李承森.2000.红杉属植物在中国云南中新世的首次发现.植物学报,42(4):438-440.
    32.马清温,张金保.2003.水杉(杉科)的叶表皮结构.植物研究,23(1):32-35.
    33.孟祥营,陈芬,邓胜徽.1988.杉木属的一个化石种——亚洲杉木.植物学报,30(6):649-654.
    34.阙再炅,李景熹.1981.杉木属一新变种.西南师范学院学报,1:106.
    35.商平.1987.阜新含煤盆地早白垩世植物组合及其意义.植物学报,29(2):212-217.
    36.沈阳地质矿产研究所.1980.东北地区古生物图册(二)中新生代分册.北京:地质出版社.296-300.
    37.斯行健.1951.现代水杉叶部的表皮及小气孔的构造.中国科学,2(2):239-243.
    38.斯行健,李星学.1963.中国植物化石(第二册)中生代化石植物.北京:科学出版社.280-286.
    39.孙启高,陈立群,李承森.1998.地质历史时期大气CO_2浓度变化对陆地微管植物气孔参数的影响.科学通报,43(23):2478-2482.
    
    40.唐萍,侯泊鑫,程政红,肖国华,贺果山,柏方敏.1996.秃杉名称的历史演变.湖南林业科技,23(4):4-9.
    41.陶君容.1992.中国第三纪植被和植物区系历史及分区.植物分类学报,30(1):25-43.
    42.陶君容,熊宪政.1986.黑龙江晚白垩世植物区系及东亚、北美区系的关系.植物分类学报,24(1):1-15,24(2):121-135.
    43.陶君容,张川波.1990.吉林延吉盆地早白垩世被子植物化石.植物学报,32(3),220-229.
    44.汪企明,江泽平,吕祥生,等.1995.落羽杉属种源研究:树种生物学研究.江苏林业科技,22(2):14-18.
    45.王德银,刘和林.1982.杉木属新种及新变种.植物分类学报,20(2):230-232.
    46.王宇飞,陶君容.1991.植物角质层分析术语新体系.植物学通报,8(4):6-13.
    47.吴中伦.1984.杉木.北京:中国林业出版社.
    48.熊宪政.1986.黑龙江嘉荫古新世乌云组植物化石.古生物学报,25(5):571-576.
    49.徐景先,王宇飞,杜乃秋,张翠芬.2000.云南吕合地区晚第三纪孢粉植物群.植物学报.42(5):526-532.
    50.徐俊森,罗美娟,危孝棋.1999.台湾杉属木材比较解剖学研究.福建林学院学报,19(4):361-364.
    51.杨家驹,齐国凡,徐瑞瑚.1998.晚第三纪武汉地区的化石木对当地古气候的指相.武汉植物学研究,16(2):149-153.
    52.姚壁君,胡玉熹.1982.松柏类植物叶子的比较解剖观察.植物分类学报,20(3):275-294.
    53.依铁梅,李承森,徐景先.2003.云南中新世杉科化石木研究.植物学报,45(4):384-389.
    54.应俊生,张玉龙.1994.中国种子植物特有属.北京:科学出版社,35-46.
    55.于永福.1994.杉科植物的分类学研究,植物研究,14(4):370-375.
    56.于永福.1995.杉科植物的起源、演化及其分布.植物分类学报,33(4):362-389.
    57.云南植被编写组.1987.云南植被.北京:科学出版社.
    58.张守仁,马克平,陈灵芝.2002.适应不同光环境小蜡叶片气孔导度、气孔开度和气孔密度的时空变化.植物学报,44(10):1225-1232.
    59.张小全,徐德应,赵茂盛,陈仲庐.2000.CO_2增长对杉木中龄林针叶光合生理生态的影响.生态学报,20(3):390-396.
    60.张应麟.2002.回首广东的落羽杉.广东园林,增刊:3-11.
    61.张志诚.1983.黑龙江北部嘉荫地区晚白垩世植物化石.见:地质科学院地层古生物论文集编委会.地层古生物论文集(第十一辑).北京:地质出版社.111-132.
    
    62.张志诚.1985.东北北部白垩纪被子植物的基本发展阶段.古生物学报,24(4):453-460.
    63.郑万钧,傅立国.1978.中国植物志(第七卷).北京:科学出版社:281-312.
    64.郑万钧.1983.中国树木志(第一卷).北京:中国林业出版社,306-324.
    65.中国新生代植物编写组.1978.中国植物化石(第三册) 中国新生代植物.北京:科学出版社.10-15.
    66. Ahuja MR, Nealed B. 2002. Origins of Polyploidy in Coast Redwood (Sequoia sempervirens (D. DON) ENDL.) and Relationship of Coast Redwood to other Genera of Taxodiaceae. Silvae Genetica 51 (2-3): 93-100.
    67. Alvin KL. 1970. The study of fossil leaves by scanning electron microscopy. 3rd annual symposium scanning electron microscopy. Chicago: Illinois Institute of Technology Press, 121-128.
    68. Alvin KL, Boulter MC. 1974. A controlled method of comparative study of taxodiaceous cuticles. Botanical Journal of the Linnean Society 69: 277-286.
    69. Apple ME, Olszyk DM, Ormrod DP, Lewis J, Southworth D, Tingey DT. 2000. Morphology and stomatal function of Douglas fir needles exposed to climate change: elevated CO_2 and temperature. International Journal of Plant Science 161: 127-132.
    70. Archangelsky S. 1963. A new Mesozoic flora from Tico, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology series 8: 45-92.
    71. Aulenback KR, LePage BA. 1998. Taxodium wallisii sp. nov.: First occurrence of Taxodium from the Upper Cretaceous. International journal of plant science 159(2): 367-390.
    72. Becker HE 1969. Fossil plants of the Tertiary Beaverhead basins in southwestern Montana. Palaeontographica B 127, 1-142.
    73. Beerling DJ. 1999. Stomatal density and index: theory and application. In: Jones TP and Rowe NP (eds.). Fossil Plants and Spores: Modern Techniques. The Geological Society, London. 251-256.
    74. Beerling DJ, Royer DL. 2002. Reading a CO_2 signal from fossil stomata. New Phytologist 153: 387-397.
    75. Bell WA. 1956. Lower Cretaceous floras of western Canada. Canada Geological Survey Memoirs 285:1-331.
    76. Berger D, Altmann T. 2000. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes and Development 14: 1119-1131.
    77. Berner RA. 1994. GEOCARB Ⅱ: a revised model of atmospheric CO_2 over Phanerozoic time. American Journal of Science 294:56-91.
    78. Boulter MC. 1970. Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae). Biological Journal of the Linnean Society 2: 41-46.
    
    79. Boulter MC. 1971. Fine details of some fossil and recent conifer leaf cuticles. In: Heywood VH ed. Scanning Electron Microscopy. Academic Press, London and New York.211-236.
    80. Buchholz JT. 1939. The generic segregation of the Sequoia. American Journal of Botany 26: 535-538.
    81. Cantrill DJ, Falcon-Lang HJ. 2001. Cretaceous (Late Albian) conifers of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119-145.
    82. Centritto M, Maonani F, Lee HSJ, Jarvis PG. 1999. Interactive effects of elevated [CO_2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytologist 141: 141-153.
    83. Cerling TE. 1992. Use of carbon isotopes in paleosols as an indicator of the P(CC>2) of the paleoatmosphere. Global Biogeochemical Cycles 6: 307-314.
    84. Chandrasekharam A. 1974. Megafossil flora from the Genesee Locality, Alberta, Canada. Palaeontographica B 147: 1-41.
    85. Chaney RW. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society 40: 171-263.
    86. Chaturvedi S. 1993. Morphological, cuticular and anatomical studies of some members of Taxodiaceae. Bionature 13(2): 127-131.
    87. Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL. 2001. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO_2 change. American Journal of Botany 88: 1309-1315.
    88. Christophel DC. 1976. Fossil floras of the Smoky Tower Locality, Alberta, Canada. Palaeontographica B 157, 1-43.
    89. Clifford SC, Black CR, Roberts JA, Stronach IM, Singleton-Jones PR, Mohamed AD, Azam-Ali SN. 1995. The effect of elevated atmospheric CO_2 and drought on stomatal frequency in groundnut (Arachis hypogaea (L.)). Journal of Experimental Botany 46: 847-852.
    90. Coladonato M. 1992. Taxodium distichum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis. [2004, March 21].
    91. Croxdale JL. 2000. Stomatal patterning in angiosperms. American Journal of Botany 87: 1069-1080.
    92. Cutler DF, Alvin KL, Price DL. 1982. The plant cuticle: Linnean Society Symposium Series, no. 10. London and New York: Academic Press, 461.
    93. Dallimore, W, Jackson AB, Harrison SG. 1967. A handbook of Coniferae and Ginkgoaceae, 4th ed. New York: St. Martin's Press, xix, 729 p.
    
    94. Dawson TE. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476-485.
    95. Deardorff D. 1976. Plant portraits: Montezuma cypress. Lasca Leaves 26(3): 79-81.
    96. Dilcher DL. 1968. Sequoia, an element of the Eocene flora in southeastern North America. American Journal of Botany 55(6): 727.
    97. Dixon M, Le Thiec D, Garrec J P. 1995. The growth and gas exchange response of soil-planted Norway spruce [Picea abies (L.) Karst.] and red oak (Quercus rubra L.) exposed to elevated CO_2 and to naturally occurring drought. New Phytologist 129: 265-273.
    98. Dorofeev PI. 1974. On the history of the genus Glyptostrobus Endl. Botanicheskiy Zhurnal 59(1): 3-13.
    99. Eckenwalder J E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23: 237-256.
    100. Ehleringer JR, Cerling TE. 1995. Atmospheric CO2 and the ratio of intercellular to ambient CO_2 concentrations in plants. Plant Physiology 15: 105-111.
    l0l.Endo S. 1928. a new Palaeocene species of Sequoia. Japanese Journal Geology and Geography 6(1-2): 27-29.
    102. Endo S. 1936. New fossil species of Sequoia from the Far-East. Jap. Proc. Imp. Acda., Takyo 12(6): 172-175.
    103. Endo S. 1951. A record of Sequoia from the Jurassic of Manchuria. Botanical Gazette 113: 228-230.
    104.Estiarte M, Penuelas J, Kimball BA, Idso SB, LaMorte RL, Pinter PJ, Wall GW, Garcia RL. 1994. Elevated CO_2 effects on stomatal density of wheat and sour orange trees. Journal of Experimental Botany 45: 1665-1668.
    105. Ferris R, Long L, Bunn SM, Robinson KM, Bradshaw HD, Rae AM, Taylor G. 2002. Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxode concentration in poplar. Tree Physiology 22: 633-640.
    106. Ferris R, Nijs I, Behaeghe T, Impens I. 1996. Elevated CO_2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Annals of Botany 78: 489-497.
    107. Ferris R, Sabatti M, Miglietta F, Mills RF, Taylor G. 2001. Leaf area is stimulated in Populus by free air CO_2 enrichment (POPFACE) through increased cell expansion and production. Plant Cell and Environment 24: 305-315.
    108. Fields PF. 1991. Neogene paleographic and paleoecologic distribution patterns of the taxodiaceae in the N.W. U.S. American Journal of Botany 78(Suppl): 113.
    109. Fields PF. 1993. A newly recognized Neogene Sequoia in the Pacific Northwest of North America. American Journal of Botany 80(Suppl): 89.
    110. Figueiral I, Mosbrugger V, Rowe NP, Ashraf AR, Utescher T, Jones TP. 1999. The Miocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparison with previous palynological interpretations. Review of Palaeobotany and Palynology 104: 239-266.
    
    111.Florin R. 1922. Zur alttertiaeren Flora der sudlichen Manschurei. Palaeontologia Sinicav Ser.A, 1(1): 1-52.
    112. Florin R. 1931. Untersuchungen zur Stammesgeschicnte der Coniferales und Cordaitales. Kungl svenska Vetensk Akad Handl Ser 5 10:1-588.
    113. Florin R. 1958. On Jurassic Taxads and Conifers from North-Western Europe and Eastern Greenland. Acta Horti Bergiani 17(10): 257-402.
    114. Florin R. 1963. The distribution of conifer and taxad genera in time space. Acta Horti Bergiani 20(4): 121-312.
    115. Freeman KH, Hayes JM. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO_2 levels. Global Biogeochemical Cycles 6: 185-198.
    116.Fu LG, Yu YF, Mill RR. 1999. Taxodiaceae. In Wu Zheng-yi and Raven P H (eds.). Flora of China, Volume 4. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.54-61.
    117.Furukawa A. 1997. Stomatal frequency of Quercus myrsinaefolia grown under different irradiances. Photosynthetica 34: 195-199.
    118. Gay AP, Hurd RG. 1975. The influence of light on stomatal density in the tomato. New Phytologist 75: 37-46.
    119. Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Heterington AM. 2000. The HIC signaling pathway links CO_2 perception to stomatal devepment. Nature 408: 713-716.
    120. Hayashi, Y., 1960. Taxonomical and Phytogeographical Study of Japanese Conifer (in Japanese). Norm- Shuppan, Tokyo.
    121. Hill RS. 2001. The Cenozoic macrofossil record of the Cupressaceae in the Southern Hemisphere. Acta Palaeobotanica 41(2): 123-132.
    122. Hill RS, Brodribb TJ. 1999. Turner Review No. 2 - Southern conifers in time and space. Australian Journal of Botany 47: 639-696.
    123. Hill RS, Jordan GJ, Carpenter RJ. 1993. Taxodiaceous macro fossils from Tertiary and Quaternary sediments in Tasmania. Australian Systematic Botany 6: 237-249.
    124. Hovenden MJ, Schimanski LJ. 2000. Genotypic differences in growth and stomatal morphology of Southern Beech, Nothofagus cunninghamii, exposed to depleted CO_2 concentrations. Australian Journal of Plant Physiology 27: 281-287.
    125.1ndermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B. 1999. Holocene carbon-cycle dynamics based on CO_2 trapped in ice at Taylor Dome, Antarctica. Nature 398: 121-126.
    126.Jongmans WJ, Dijkstra SJ. 1972. Fossilium Catalogus II: Plantae Pars 81: Gymnospermae (Ginkgophyta et Coniferae) III Coniferites-Dadoxylon. Dr W. Junk
    Publishers, 's-Gravenhage. 110 pp.
    
    127. Kelly CK, Beerling DJ. 1995. Plant life form, stomatal density and taxonomicrelatedness: a reanalysis of Salisbury (1927). Functional Ecology 9: 422-432.
    128.Kerp H. 1990. The study of fossil Gymnosperms by means of cuticular analysis.Palaios 5: 548-569.
    129. Kerp H. 2002. Atmospheric CO_2 from fossil plant cuticles. Nature 415: 38.
    130. Kerp H, Krings M. 1999. Light microscopy of cuticles. In: Jones TP. and Rowe NP. (eds.). Fossil Plants and Spores: Modern Techniques. The Geological Society, London. 52-56.
    131.Korner Ch. 1988. Does global increase of CO_2 alter stomatal density? Flora 181:253-257.
    132.Kovar-Eder J, Kvacek Z, Meller B. 2001. Comparing Early to Middle Miocenefloras and probable egetation types of Oberdorf N Voitsberg (Austria), Bohemi(Czech Republic), and Wackersdorf (Germany). Review of Palaeobotany andPalynology 114:83-125.
    133.Kurschner WM. 1997. The anatomical diversity of recent and fossil leaves of thedurmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) ~ implicationsfor their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotanyand Palynology 96: 1-30.
    134.Kurschner WM, Stulen I, Wagner F, Kuiper PJC. 1998. Comparison ofpalaeobotanical observations with experimental data on the leaf anatomy of durmastoak [Quercus petraea (Fagaceae)] in response to environmental change. Annals ofBotany 81: 657-664.
    135.Kurschner WM, van der Burgh J, Visscher H, Dilcher DL. 1996. Oak leaves asbiosensors of late Neogene and early Pleistocene paleoatmospheric CO_2concentrations. Marine Micropaleontology 27: 299-312.
    136. Kurschner WM, Wagner F, Visscher EH, Visscher H. 1997. Predicting the response of leaf stomatal frequency to a future CO_2-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86: 512-517.
    137. Kvacek Z. 1998. Bilina: a window on Early Miocene marshland environments. Review of Palaeobotany and Palynology 101: 111-123.
    138.Leng Q, Yang H, Yang Q, Zhou JP. 2001. Variation of cuticle micromorphology of Metasequoia glyptostroboides (Taxodiaceae). Botanical Journal of the Linnean Society 136: 207-219.
    139. Little EL, Jr. 1971. Atlas of United States trees, vol. 1. Conifers and important hardwoods. U.S. Department of Agriculture., Miscellaneous Publication 1146. Washington, DC. 9 p., 313 maps.
    140. Liu TS, Su HJ. 1983. Biosystematic studies on Taiwania and numerical evaluation of the systematic of Taxodiaceae. Taiwan Mus Spec Pub series 2. Taipei.
    
    141. Liu YJ, Li CS, Wang YF. 1999. Studies on fossil Metasequoia from north-east China and their taxonomic implications. Botanical Journal of the Linnean Society 130: 267-297.
    142. Ma QW, Li CS. 2002. Epidermal structures of Sequoia sempervirens (D. Don) Endl. (Taxodiaceae). Taiwania 47(3): 194-202.
    143. Ma QW, Zhang JB, Wang YF, Li CS. 2000. Studies on cuticle of Sequoia sempervirens. In: Palaeobotanical committee of Palaeontological and Botanical Society, China, (eds.). Abstract of the sixth conference of international organization of palaeobotany. Qinhuangdao of Hebei, China, 81.
    144. Mai DH. 1995. Tertiare vegetations geschichte Europas. Gustav Fascher, Jena Stuttgart New York, 248.
    145. Major J. 1977. California climate in relation to vegetation. In: M. G. Barbour and J. Major, eds. Terrestrial vegetation of California. New York: John Wiley. 11-74.
    146.Malone SR, Mayeux HS, Johnson HB, Polley HW 1993. Stomatal density andaperture length in four plant species grown across a subambient CO_2 gradient.American Journal of Botany 80: 1413-1418.
    147.Matsuo H. 1970. On the omichidani flora (Upper Cretaceous), inner side of centralJapan. Trans. Proc. Palaeont. Soc. Japan, N.S. 80:371-389.
    148.McElwain JC. 1998. Do fossil plants signal palaeoatmospheric CO_2 concentration inthe geological past? Philosophical Transactions Royal Society of London B 353:83-96.
    149.McElwain JC, Chaloner WG. 1996. The fossil cuticle as a skeletal record ofenvironmental change. Palaios 11: 376-388.
    150. McGahan MW, Fulton RH. 1965. Leaf spot of bananas caused by Mycosphaerella musicola: A comparative anatomical study of juvenile and adult leaves I relation to lesion morphology. Phytopathology 55: 1179-1182.
    151. Miki S. 1941. On the change of flora in Eastern Asin since Tertiary Period (I), the clay or lignite beds flora in Japan with special reference to the Pinus trifolia beds in Central Hondo. Journal of Japanese Botany 11: 237-303.
    152. Miller CN. 1977. Mesozoic conifers. Botanical Review 43(2): 217-280.
    153. Miller CN, Lapasha CA. 1983. Structure and affinities of Athrotaxites berryi Bell, a early Cretaceous conifer. American Journal of Botany 70: 772-779.
    154.Napp-Zinn K. 1966. Anatomie des Blattes. I. Blattanatomie der Gymnospermen.Berlin—Nikolassee: Gebrudder Borntraeger.
    155.0berbauer SF, Strain BR. 1986. Effects of canopy position and irradiance on the leafphysiology and morphology of Pentaclethra macroloba (Mimosaceae). AmericanJournal of Botany 73: 409-416.
    156. Otto A, Simoneit BRT. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta 65: 3505-3527.
    
    157. Page CN. 1990. Coniferophytina. In: Kramer KU, Green PS, eds. Pteridophytes and Gymnosperms, Berlin: Springer-Verlag, 282-361.
    158. Pant DD, Basu N.1977. A comparative study of the leaves of Cathaya argyrophylla Chun & Kuang and three species of Keteleeria Carriere. Botanical Journal of the Linnean Society 75: 271-282.
    159. Peat HJ, Fitter AH. 1994. Comparative analyses of ecological characteristics of British Angiosperm. Biological Reviews 69: 95-115.
    160. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436.
    161. Pole M. 1995. Late Cretaceous macrofloras of Eastern Otago, New Zealand: gymnosperm. Australian Systematic Botany 8: 1067-1106.
    162.Polley HW, Johnson HB, Marino BD, Mayeux HS. 1993. Increase in C_3 plant water-use efficiency and biomass over Glacial to present CO_2 concentrations. Nature 361:61-64.
    163.Poole I, Kiirschner WM. 1999. Stomatal density and index: the practice. In: Jones TP and Rowe NP (eds.). Fossil Plants and Spores: Modern Techniques. The Geological Society, London. 257-260.
    164. Poole I, Weyers JDB, Lawson T, Raven JA. 1996. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell and Environment 19: 705-712.
    165.Pritchard SG, Mosjidis C, Peterson CM, Runion GB, Rogers HH. 1998. Anatomical and morphological alterations in longleaf pine needles resulting from growth in elevated CO_2: interactions with soil resource availability. International Journal of Plant Sciences 159: 1002-1009.
    166.Radford AE, Ahles HE, Bell CR. 1968. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill. 1183 p.
    167.Rahim MA, Fordham R. 1991. Effect of shade on leaf and cell size and number of epidermal cells in garlic (Allium sativum). Annals of Botany 67: 167-171.
    168. Raven JA, Ramsden HJ. 1988. Similarity of stomatal index in the C_4 plant Salsola kali L. in material collected in 1843 and 1987: relevance to changes in atmospheric CO2 content. Transaction of the Botanical Society of Edinburgh 45: 223-233.
    169.Rawson HM, Constable GA, Howe GN. 1980. Carbon production of sunflower cultivars in field and controlled environments. II. Leaf growth. Australian Journal of Plant Physiology 7: 575-586.
    
    170.Reddy KR, Robana RR, Hodges HF, Liu XJ, McKinion JM. 1998. Interactions of CO_2enrichment and temperature on cotton growth and leaf characteristics. Environmentaland Experimental Botany 39: 117-129.
    171.Retallack GJ. 2001. A 300-million-year record of atmospheric carbon dioxide fromfossil plant cuticles. Nature 411: 287-290.
    172. Rouse GE. 1967. A late Cretaceous plant assemblage from east-central BritishColumbia: I, fossil leaves. Canadian journal of earth sciences 4: 1185-1196.
    173.Rowson JM. 1946. The significance of stomatal index as a differential character. PartⅢ. Studies in the genera Atropa, Datura, Digitalis, Phytolacca and in polyploidleaves. Quarterly Journal of Pharmacy and Pharmaceuticals 19: 136-143.
    174.Royer DL. 2001. Stomatal density and stomatal index as indicators ofpaleoatmospheric CO_2 concentration. Review of Palaeobotany and Palynology 114:1-28.
    175.Royer DL. 2003. Estimating latest Cretaceous and Tertiary atmospheric CO_2 fromstomatal indices. Geological Society of America Special Paper 369: 79-93.
    176.Royer DL, Osborne CP, Beerling DJ. 2002. High CO_2 increases the freezingsensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras.Geology 30: 963-966.
    177. Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LH, Berner RA. 2001.Paleobotanical evidence for near present day levels of atmospheric CO_2 during part ofthe Tertiary. Science 292: 2310-2313.
    178.Sakai A. 1971. Freezing resistance of relicts from the Arcto-Tertiary flora. NewPhytologist 70: 1199-1205.
    179. Salisbury EJ. 1927. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society of London B 216: 1-65.
    180. Schneider W. 1990. Floral succession in Miocene bogs of Central Europe. In: Knobloch E, Kvacek Z, eds. Proceedings of the Symposium Paleofloristic and Paleoclimatic Changes in the Cretaceous and Tertiary. Prague: Geological Survey Publisher, 205-212.
    181.Schoch PG, Zinsou C, Sibi M. 1980. Dependence of the stomatal index onenvironmental factors during stomatal differentiation in leaves of Vigna sinensis L. I.Effect of light intensity. Journal of Experimental Botany 31: 1211-1216.
    182. Schweitzer HJ. 1974. Die "Tertiaren" koniferen spitzbergens. Palaeontographica B149: 1-89.
    183.Serlin BS. 1982. An Early Cretaceous fossil flora from northwest Texas: itscomposition and implications. Palaeontographica B 182: 52-86.
    184. Sharma GK, Dunn DB. 1968. Effect of environment on the cuticular features inKalanchoe fedschenkoi. Bulletin of the Torrey Botanical Club 95: 464-473.
    
    185.Sharma GK, Dunn DB. 1969. Environmental modifications of leaf surface traits in Datura stramonium. Canadian Journal of Botany 47: 1211-1216.
    186. Shoemaker RE. 1966. Fossil leaves of the Hell Creek and Tullock formations of eastern Montana. Palaeontographica B 119: 54-75.
    187. Smith S, Weyers JDB, Berry WG. 1989. Variation in stomatal characteristics over the lower surface of Commelina communis leaves. Plant, Cell and Environment 12: 653-659.
    188.Spicer RA. 1981. The sorting and deposition of allochthonous plant material in amodem environment at Sillwood Lake, Sillwood Park, Berkshire, England.Professional Paper. U.S. Geological Survey 1143:1-77.
    189.Srinivasan V. 1995. Conifers from the Puddledock locality (Potomac Group, EarlyCretaceous) in eastern North America. Review of Palaeobotany and Palynology 89:257-286.
    190. Srinivasan V, Friis EM. 1989. Taxodiaceous conifers from the Upper Cretaceous ofSweden. Biologiske Skrifter 35: 5-57.
    191.Stancato GC, Mazzoni-Viveiros SC, Luchi AE. 1999. Stomatal characteristics indifferent habitat forms of Brazilian species of Epidendrum (Orchidaceae). NordicJournal of Botany 19: 271-275.
    192.Stebbins GL. 1948. The chromosomes and relationships of Metasequoia and Sequoia.Science 108: 95-98.
    193. Stockey RA, Rothwell GW, Falder AB. 2001. Diversity among Taxodiaceous conifers: Metasequoia Foxii sp. Nov. from the Paleocene of central Alberta, Canada. International Journal of Plant Science 162(1): 221-234.
    194. Stuchlik L, Szynkiewicz A, Lancucka-Srodoniowa M, Zastawniak E. 1990. Results of the hitherto palaeobotanical investigations of the Tertiary brown coal bed "Belchatow" (Central Poland). Acta Palaeobotanica 30 (1-2): 259-305.
    195. Sullivan J. 1994. Taxodium mucronatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis. [2004, March 22].
    196.Sveshnikova IN. 1963. Atlas and a key for the identification of the living and fossilSciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. AcadSci USSR, Paleobotany 4: 207-237.
    197. Sveshnikova IN. 1967. The Late Cretaceous conifers of the Soviet Union. I. Fossilconifers of the Viliuyian depression (syneclyne fold). In: Takhtajan AL, ed.Proceedings of the Bot. Inst. Ac. Sc. USSR, ser. 8, Paleobotany, issue 6. Leningrad:"Nauka" Publishes, 177-203.
    198.Takahara H, Kitagawa H. 2000. Vegetation and climate history since the lastinterglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123-134.
    
    199. Taylor WA, Taylor TN, Archangelsky S. 1989. Comparative ultrastructure of fossil and living gymnosperm cuticles. Review of Palaeobotany and Palynology 59:145-151.
    200. Taylor TN. 1999. The ultrastructure of fossil cuticle. In: Jones TP, Rowe NP eds. Fossil Plants and Spores: Modern Techniques. London: The Geological Society, 113-115.
    201. Taylor G, Ceulemans R, Ferris R, Gardner SDL, Shao BY. 2001. Increased leaf area expansion of hybrid poplar in elevated CO_2. From controlled environments to open-top chambers and to FACE. Environmental Pollution 115: 463-472.
    202.Ticha I. 1982. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomatadensity and sizes. Photosynthetica 16: 375-471.
    203.Tsukada M. 1986. Altitudinal and latitudinal migration of Cryptomeria japonica forthe past 20,000 years in Japan. Quaternary Research 26,135-152.
    204. Van der Burgh J. 1984. Some palms in the Miocene of the Lower Rhenish Plain. Review of Palaeobotany and Palynology 40:359-374.
    205. Van der Burgh J, Visscher H, Dilcher DL, Kurschner WM. 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260: 1788-1790.
    206. Van der Ham RWJM, Van Konijnenburg-van Cittert JHA, Van der Burgh J. 2001. Taxodiaceous conifers from the Maastrichtian type area (Late Cretaceous, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 116: 233-250.
    207.Vasil V, Sahni RA. 1964. Morphology and embryology of Taxodium mucronatumTenore. Phytomorphology 14: 369-384.
    208.Vickulin SV, Ma QW, Zhilin SG, Li CS. 2003. On Cuticle Compressions ofGlyptostrobus europaeus (Taxodiaceae) from Kaydagul Formation (Lower Miocene)of the Central Kazakhstan. Acta Botania Sinica 45(6): 673-680.
    209.Vickulin SV, Zhilin SG. 1998. Structurally preserved leafy shoots of Glyptostrobus(Taxodiaceae) from the Kaydagul Formation of Turgay (Central Kazakhstan).Toporkovskiye redings. Kazakhstan: Rudny Publishing House. 217-219.
    210. Villar De Seoane L. 1998. Comparative study of extent and fossil conifer leaves from the Baquero Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review of Palaeobotany and Palynology 99:247-263.
    211. Wagner F, Below R, De Klerk P, Dilcher DL, Joosten H, Kiirschner W M, Visscher H. 1996. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO_2 increase. Proceedings of the National Academy of Sciences USA 93: 11705-11708.
    212. Watson FD. 1993. Taxodiaceae. Flora of North America Editorial Committee (eds.): Flora of North America North of Mexico, Vol. 2. Oxford University Press.
    213.Watts WR, Neilson RE, Jarvis PG. 1976. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) VII. Measurements of stomatal conductance and 14 CO_2 uptake in forest canopy. Journal of Applied Ecology 13:623-638.
    
    214. Weatherspoon C P.1990. Sequoiadendron giganteum (Lindl.) Buchholz. in: Burns, R.M., and Honkala BH. tech. coords. Silvics of North America: 1. Conifers. Agriculture Handbook 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 552-562.
    215.Weyers JDB, Lawson T. 1997. Heterogeneity in stomatal characters. Advances in Botanical Research 26: 317-352.
    216. Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO_2 from pre-industrial level. Nature 327: 617-618.
    217. Woodward FI, Bazzaz FA. 1988. The responses of stomatal density to CO_2 partial pressure. Journal of Experimental Botany 39: 1771-1781.
    218. Woodward FI, Kelly CK. 1995. The influence of CO_2 concentration on stomatal density. New Phytologist 131:311 -327.
    219.Worobiec G. 1995. A preliminary report on the lower Miocene leaf flora from thebrown coal mine "Betchatow" (Central Poland). Acta Palaeobotanica 35(2): 243-251.
    220. Yi TM, Li CS, Xu JX. 2003. Late Miocene woods of Taxodiaceae from Yunnan, China.Acta Botania Sinica 45(4): 384-389.
    221.Zacchini M, Morini S, Vitagliano C. 1997. Effect of photoperiod on some stomatalcharacteristics of in vitro cultured fruit tree shoots. Plant, Cell, Tissue and OrganCulture 49: 195-200.
    222.Zhilin SG. 1974. The Tertiary flora of Plateaustjurt, Transcaspia. Leningard: Naukapublishers, 200.
    223.Zhilin SG. 1989. History of the development of the temperate forest flora inKazakhstan (USSR) from the Oligocene to the early Miocene. Botanical Review 55(4):205-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700