用户名: 密码: 验证码:
一类具有真空的可压缩非牛顿流
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论了,在一维情形下,一类可压缩非牛顿流体初边值问题解的存在唯一性。我们把可压缩非牛顿流体分成两种情况:
     第一种就是剪切变稀流
     其中1     第二种就是剪切变稠流
     其中p≥2,μ_0>0。
     我们分别讨论了(1),(2)具有如下条件
     的初边值问题,其中ρ_0≥0,即我们允许问题有真空出现,这给我们的讨论带来了实质性的困难。
     对于上述两类问题,我们分别得到了它们的局部解的存在唯一性。
With the development of the technology, we find that there are a lot of fluids which belong to non-Newtonian fluids in the process of product and nature. The classical non-Newtonian fluids are macromolecule melt and macromolecule liquor, and the all kinds of slurry and suspend liquor, paint, dope, palette and biology fluids, for example, in the body of people and animals, the blood, the synovia of arthrosis cavity, lymph liquor, cell liquor, brain liquor etc, which are provided with the property of non-Newtonian fluids. So the non-Newtonian fluids exist widely in nature.In this paper, we study, in one dimension, local existence of a unique solution to a class of compressible non-Newtonian fluids with initial and boundary conditions. We choose Γ (denote viscous terms of the momentum equation) with the following formwhere 1 < p < 2, then μ = (p -1)|u_x|~(p-2). This model with this kind viscous term captures the shear thinning fluid. Because of -1 < p - 2<0, the momentum equation has singularity, which brings us many difficulties. Moreover, Vacuum may appear , which brings more difficulties. This model with the viscous term captures the shear thinning fluid. Then, we choose another kind of Γ with the following formwhere p ≥ 2, μ_0> 0. We study local existence of a unique solution to the class of compressible non-Newtonian fluids with initial and boundary conditions and vacuum. This
    model with the viscous term captures the shear thickening fluid. Firstly, we study the following initial boundary value problemPt + (pu)x = 0,{pu)t + (pu2)x - {\ux\p-2 ux)x + irx = pf (x,t)enT) (1)ir = tt(p) = Ap7, A > 0, 7 > 1,withf (P.u)Lo = (Po.tto) x e [0,1],1where QT = I x (0,T) = (0,1) x (0,T). p e (1, 2), p# ^ 0, and for some g e L2(/), such that(|uOx|p"2uox)x = tti(po) - (po)' 9- (3)Since the momentum equation has singularities, and vacuum may appear, we consider the problem in two steps. We firstly consider the case of non-vacuum and regularizing the viscous term. Then we study the original case with vacuum .For the case of non-vacuum, we consider the following initial boundary problemPt + {pu)x = 0,(pu)t + (Pu2)x-(\ux\p-2ux)x + ?rx = pf (x,t)enT, (4)7T = Ap^, A>0, 7 > 1,withf x €[0,1],(5) { u\x=o=u\x=1 = 0 te[O,T],where fj > 0. Due to the singlarities, we need regularize the equation, then we construct the following approximating problem: Let u° = 0, and for k = 1, 2, ? ? ? ,pk + uk~lpkx + uk~lpk = 0, (6)okuk + okuk~luk - ( "K"'XJ__— \ uk + 7rft = oK f ■ (x t) eQ,t (7)p ut -1- p u ux \ f__kA2 | ^ ] ux -|-7rx — p j, ^,ijt iiTi \()
    pk\t=o = Po, uk\t=o = ueo, x € [0, 1]; uk(0,t) =uk(l,t) = 0, te [0,r],where it§ € Hq(I)(MI2{I) is the smooth solution of the following boundary value problemwhere but it is difficult for p e (1, 2), we must separately discuss the cases for 1 < p ^ |, | < p < 2, then we will finally get the following uniform estimate to the approximate solutions:ess sup ( \pk{t)\Hi{I) + \uk{t)\ liP ff2rn + Iv^^I^Il2^) + \pk(t)\L2{I) )(9)where C is a positive constant, depending only on M0 = 1 + \po\Hl(I) + lfliL2(7) + |/Il°°(0,According to (9), by taking limit about k and e, then we obtain the following theorem:Theorem 1 Assume that po>/ are both sufficiently smooth, po ^ 8 for some given constant 8 > 0, and f(O,t) = /(l,i) = 0, u0 € H^(I) DH2(I). If there exists some g e L2(I), g(0) = g(l) = 0, such that (J\p2) + kx(pq) = (po)2P a.e. in I.Then there exists a T* 6 (0, +oo), such that the initial boundary problem (4)~(5) has a
    unique solution (p, u) in £It, satisfyingpt 6 C([O,T*];L2(I)), ut € L2(0, 2ux) eC([0,T*};L2(I)).According to Theorem 1, we may prove existence and uniqueness of the solution to the initial and boundary problem with vacuum. So we need regularize the initial value of the original problem, such that they satisfy the conditions in Theorem 1.Since p0 is smooth, for small 0 < 8 ? 1> ps0 = p0 + 6, let us0 e H^(I) (1 H2(I) be a unique solution of the following boundary value problem' * e (0, i),where g$ € C?(I) satisfies\9s\l*(i) < Mi2(/), ]im |&$ - #|z,2(/) = 0.So we obtain that (ps, us) is a unique solution of the problem (lO)-(ll), and the following uniform estimate holds \p6(t)\HHl) nwhere C is a positive constant, depending only on Mq. According to the uniform estimate, we take limit about <5, then obtain the following theorem:Theorem 2 Assume that po IS sufficiently smooth, f e Loo(0, T; L2(I)), ft e L°°(0, T; L2(J)), po > 0, /(0,t) = /(l,t) = 0, u0 € Hj(I)n52(;). // tfiere ewis some g £ L2(I), such that , + 7rx(p0) = (po)5 5 a. e. in I.
    Then there exists a time T* G (0, +00) and a unique strong solution (p, u) satisfying (l)-(2) such that,T*];H\l)), pteC([0,T*};L2(I)), ut e L2(0,%;H(KrH e c([o, r,]Finally, we consider the following compressible shear thichening fluidPt + (pu)x = 0,{pu)t + {Pu2)x - \(u2x + mo) ^ ux I +nx = pf (x, t) € fir, (10)7T = ^p7, ^4 > 0, 7 > 1,with the initial and boundary conditionsf {p,u)\t=o = (po1uo) xe [0,1],I ?|B=o = <=l = ° te[°'Tlwhere p ^ 2, /xq > 0.Firstly, we prove existence and uniqueness of the solution to the initial boundary value problem with non-vacuum, and we may use the same technique as Theoreml, it is different from it that we don't need to regularize the viscous term. Then we obtain the following result:Theorem 3 Assume that po> / o^e both sufficiently smooth, po ^ 5 for some given constant 5 > 0, and f(Q,t) = f(l,t) — 0, no € Hq(I) D H2(I). If there exists some g e L2(/), 0(0) = 9(1) = 0, such that 5 g.Then there exists a time T* e (0,T) and a unique solution {p,u) satisfying (10)-(ll) such that } ut € L2(0,T*; ^
引文
[1] R. A. Adams, Sobolev space, Academic Press, New York, 1975.
    [2] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vols. 1,2 Oxford: Clarendon Press, 1998.
    [3] P. L. Lions, Global existence of solutions for isentropic compressible Navier-Stokes equations, C. R. Acad. Sci. Paris Ser.I Math., 1993, Vol.316, 1335-1340.
    [4] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, RI., 1968.
    [5] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon & Breach, New York, 1969.
    [6] O. A. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, in "Boundary Value Problems of Mathematical Physics V,", Amer. Math. Soc., Providence, RI., 1970.
    [7] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Spring-Verlag, New York, 1985.
    [8] R. Temam, Navier-Stokes equations: Theory and numerical analysis, North-Holland, Amsterdam, 1977.
    [9] R. Temam, Navier-Stokes equations and nonlinear functional analysis(Second Edition), SIAM. Philadelphia, 1983(1995).
    [10] H. Kreiss, J. Lorenz, Initial-boundary value problems and the Navier-Stokes equations, Academic Press,London, 1989.
    [11] L. P. Liu, Z. Xin, T. Yang, Vacuum states of compressible flow, Discrete and Continuous Dynamical Systems; 1998, Vol.4, 1-32.
    [12] T. Lou, Z. Xin, T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 2000, Vol.31, 1175-1191.
    [13] Zouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 1998, Vol.51,229-240.
    [14] A. V. Kazhikov, V. V. Shelukhin, Unique global solution with respect to time of the initial boundary value problems for one dimensional equations of a viscous gas, Journal Application Mathematical Mechanics, 1977, Vol.41,273-282.
    [15] Hi Jun Choe, Hyunseok Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, Journal of Differential Equations, 2003, Vol.190, 504-523.
    [16] Yonggeun Cho, Hi Jun Choe, Hyunseok Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, Journal Mathematics Pure and Applications, 2004, Vol.83, 243-275.
    [17] J. L. Lions, Quelques methodes de resoltuion des problemes aux limites NonLineaires, Dunod, Pairs, 1969.
    [18] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Springer-Verlag, New York, 1994.
    [19] J. Malek, J.Necas, M.Rokyta, M. Ruzixka, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, New York, 1996.
    [20] J. Malek, J.Necas, M.Ruzicka On weak solutions to a class of non-newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Advancesin Differential Equations, 2001, Vol.6, 257-302.
    [21] J. Malek, J.Necas, M.Ruzicka On non-newtonian incompressible fluids, Math. Models Methods Appl. Sci., 1993, Vol.3, 35-63.
    [22] S. Matusu-Necasova, M.Medvid'ova-Lukacova, Bipolar isothermal non-newtonian compressible fluids, Journal of Mathematical Analysis and Applications, 1998, Vol.225, 168-192.
    [23] S. Matusu-Necasova, M.Medvid'ova-Lukacova Bipolar barotropic non-newtonian fluid Comment. Math. Univ. Carolinae, 1994, Vol.35(3), 467-483.
    [24] J. Necas, A. Novotny, Some qualitative properties of the viscous compressible heat conductive multipolar fluid, Communication in Partial Differential Equations, 1991, Vol.16(2&3), 197-220.
    [25] J. Necas, A. Novotny, M. Silhavy, Global solution to the compressible isothermal multipolar fluid, Journal of Mathematical Analysis and Applications, 1991, Vol.162, 223-241.
    [26] H. Bellout, F. Bloom, J. Necas,, Phenomenological behavior of multipolar viscous fluid, Quarterly of Applied Mathematics, 1992, Vol.L(3), 559-583.
    [27] J. Necas, M. Silhavy, Multipolar viscous fluids, Quarterly of Applied Mathematics, 1991, Vol.ⅩLⅨ(2), 247-265.
    [28] Hyeong-Ohk Bae, Existence, regularity, and decay rate of solutions of non-Nwetonian flow Journal of Mathematical Analysis and Applications, 1999, Vol.231,467-491.
    [29] Boling Guo,Peicheng Zhu, Partial regularityof suitable weak solutions to the system of the incompressible non-Nwetonian fluids, Journal of Differential Equations, 2002, Vol.178, 281-297.
    [30] Boling Guo, Guoguang Lin, Existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids Communications in Nonlinear Science & Numerical Simulation, 1999, Vol.4,No.1, 63-68.
    [31] Yingfei Sun, Tianyou Fan, Meike Zhou, The existence of periodic solution and behaviorof the generalized solution when t→+∞ of boundary problem of non-Newtonian fluids, Applied Mathematics and Computation, 2000, Vol.112, 213-222.
    [32] Frederick Bloom, Wenge Hao, Regularization of a non-Newtonian system in an unbounded channel: existence of a maximal compact attractor, Nonlinear Analysis: TMA, 2001, Vol.43, 743-766.
    [33] Frederick Bloom, Wenge Hao, Regularization of a non-Newtonian system in an unbounded channel: existence and uniqueness of solutions, Nonlinear Analysis: TMA, 2001, Vol.44, 281-309.
    [34] Caidi Zhao, Yongsheng Li, A note on the asymptoticsmoothing effect of solutions to a nonNewtonian system in 2-D unbounded domains Nonlinear Analysis: TMA, 2005, Vol.60, 475-483.
    [35] Boqing Dong, Yongsheng Li, Large time behavior tothe system of incompressible nonNewtonian fluids in R~2, Journal of Mathematical Analysis and Applications, 2004, Vol.298, 667-676.
    [36] S.Necasova, P.Penel, L~2 decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space, Nonlinear Analysis: TMA, 2001, Vol.47, 4181-4192.
    [37] E.Fernandez-Cara, F.Cuillen, R.R.Ortega, Some theoretical results for visco-plastic and dilatant fluids with variable density, Nonlinear Analysis: TMA, 1997, Vol.28, 1079-1100.
    [38] Hyeong-Ohk Bae, Hi Jun Choe, Existence of weak solutions to a class of non-Newtonian flows, Houston Journal of Mathematics, 2000, Vol.26(2), 387-408.
    [39] Qiang Du, Max D. Gunzburger, Analysis of a Ladyzhenskaya Model for incompressible viscous flow, Journal of Mathematical Analysis and Applications, 1991, Vol.155, 21-45.
    [40] H. Bellout, F. Bloom, J. Necas, Young measure-valued solutions for non-Newtonian incompressible fluids, Comm. Partial Diffrential Equations, 1994, Vol.19, 1763-1803.
    [41] Tong Yang, Huijiang Zhao, A vacuum problem for the one-Dimensional compressible NavierStokes equations with density-dependent viscosity, Journal of Differential Equations, 2002, Vol.184, 163-184.
    [42] Seak-Weng Vong, Tong Yang, Changjiang Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II), Journal of Differential Equations, 2003, Vol.192, 475-501.
    [43] Tong Yang, Changjiang Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum, Communications in Mathematical Physics, 2002, Vol.230, 329-363.
    [44] R. Salvi, I. Staskraba, Global existence for viscous compressible fluids and their behavior as t→∞, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 1993, Vol.40, 17-51.
    [45] R. J. Diperna, P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 1989, Vol.98, 511-547.
    [46] Mariarosaria Padula, Existence of global solutions for 2-Dimensional viscous compressible flows, Journal of functional analysis, 1986, Vol.69, 1-20.
    [47] David Hoff, Global existence for 1D compressible isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc.,1987, Vol.303, 169-181.
    [48] E. Zeidler, Nonlinear frictional analysis Ⅱ/B-Nonlinera Monotone operators., Springer-Verlag, Berlin-heidelberg-New York. 1990.
    [49] H. Gajewski, K. Groger, K. Zacharias, Nichtlineare operatorgleichungen und operatordifferentialgleichungen., Akademie-Verlag, Berlin 1974.
    [50] R. Salvi, I. Straskraba, Global existence for viscous compressible fluids and their behavior as t→∞, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 1993, Vol.40, 17-51.
    [51] David Hoff, Global existence of the equations of 1-Dimensional, compressible flow with large data and forces, and with differing end states, Z. Angew. Math. Phys., 1998, Vol.49, 774-785.
    [52] Benoit Desjardins, D.M.I.T.N.S., Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Communication in Partial Differential Equations, 1997, Vol.22, 977-1008.
    [53] M. Reed, B. Simon, Methods of modern mathematical physics Ⅰ: Functional analysis, Academic Press, London, 1980.
    [54] Hoff David, Smoller Joel, Non-formation of vacuum states for compressible Navier-Stokes equations. Comm. Math. Phys., 2001,Vol.216(2), 255-276.
    [55] Hoff David, Jenssen Helge Kristian, Multidimensional compressible flows with symmetry. Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003,493-498.
    [56] Hoff David, Ziane Mohammed, Finite-dimensional attractors and exponential attractors for the Navier-Stokes equations of compressible flow. SIAM J. Math. Anal., 2003, Vol.34(5), 1040-1063.
    [57] Chen Gui-Qiang, Hoff David, Trivisa Konstantina, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data. Arch. Ration. Mech. Anal., 2003, Vol.166(4), 321-358.
    [58] Hoff David, Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Comm. Pure Appl. Math., 2002, Vol.55(11), 1365-1407.
    [59] Hoff David, Ziane Mohammed, The global attractor and finite determining nodes for the Navier-Stokes equations of compressible flow with singular initial data. Indiana Univ. Math. J., 2000, Vol.49(3), 843-889.
    [60] Chen, Gui-Qiang; Hoff David, Trivisa Konstantina, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data. Comm. Partial Differential Equations, 2000, Vol.25(11-12), 2233-2257.
    [61] Hoff David, Ziane Mohammed, Compact attractors for the Navier-Stokes equations of onedimensional, compressible flow. C. R. Acad. Sci. Paris S e r, I Math., 1999, Vol.328(3), 239-244.
    [62] Luo Tao, Xin Zhouping, Yang Tong, Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal., 2000, Vol.31(6), 1175-1191.
    [63] Liu Tai-Ping, Xin Zhouping, Yang Tong, Vacuum states for compressible flow. Discrete Contin. Dynam. Systems, 1998, Vol.4(1), 1-32.
    [64] Jiang Song, Zhang Ping, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J. Math. Pures Appl., 2003, Vol.82(8), 949-973.
    [65] Jiang Song, Zhang Ping, Global weak solutions to the Navier-Stokes equations for α 1D viscous polytropic ideal gas. Quart. Appl. Math., 2003, Vol.61(3), 435-449.
    [66] Jiang Song, Remarks on the asymptotic behaviour of solutions to the compressible Navier-Stokes equations in the half-line. Proc. Roy. Soc. Edinburgh Sect. A, 2002, Vol.132(3), 627-638.
    [67] Jiang Song, Zhang Ping, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys., 2001, Vol.215(3), 559-581.
    [68] Xin Zhouping, Yanagisawa Taku, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane. Comm. Pure Appl. Math., 1999, Vol.52(4), 479-541.
    [69] Nishihara Kenji, Yang Tong, Zhao Huijiang, Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J. Math. Anal., 2004, Vol.35(6), 1561-1597.
    [70] Yang Tong, Yao Zheng-an, Zhu Changjiang, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm. Partial Differential Equations, 2001, Vol.26(5-6), 965-981.
    [71] Fang Daoyuan, Zhang Ting, Compressible Navier-Stokes equations with vacuum state in one dimension. Commun. Pure Appl. Anal., 2004, Vol.3(4), 675-694.
    [72] Kweon Jae Ryong, Kellogg R. Bruce, Regularity of solutions to the Navier-Stokes system for compressible flows on a polygon. SIAM J. Math. Anal., 2004, Vol.35(6), 1451-1485.
    [73] Vod a k Rostislav, Behaviour of weak solutions of compressible Navier-Stokes equations for isothermal fluids with a nonlinear stress tensor. J. Evol. Equ., 2004, Vol.4(2), 213-247.
    [74] Huang Feimin, Matsumura Akitaka, Shi Xiaoding, On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary. Osaka J. Math., 2004, Vol.41(1), 193-210.
    [75] Choe Hi Jun, Jin Bum Ja, Regularity of weak solutions of the compressible Navier-Stokes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700