用户名: 密码: 验证码:
基于层状化合物的主-客体组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Host-guest Assembly Based on Layered Materials
  • 作者:郭影
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2005
  • 导师:陈接胜
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-06-01
  • 答辩委员会主席:张洪杰
摘要
随着微孔、介孔材料,无机-有机、无机-无机纳米复合材料研究的深入,多功能无机化合物-层状化合物的研究又成为人们关注的热点。层状化合物的结构具有特殊性,可作为制备无机-无机、无机-有机纳米复合材料的母体材料。本文选择层板带负电荷的层状硅酸盐和层板带正电荷的类水滑石型层状化合物为主体,开展了从主客体组装化学研究到新型层状化合物的合成研究,旨在制备出具有潜在应用价值的新型材料。
    以层板带负电荷的层状硅酸盐为主体,将修饰了偶氮苯分子的硅烷化试剂通过接枝反应组装到层间,形成了以共价键方式键合的无机-有机纳米复合材料。该复合物中无机层板的存在提高了偶氮苯分子光致各向异性的热稳定性。
    合成了新型含镉的层状化合物,包括镉铬型、锌镉铬型和镉铝型类水滑石结构的氢氧化物以及类水镁石结构的氢氧化镉,层间阴离子均为十二烷基硫酸根离子,这四个化合物结构有序性较好。磁性分析表明含铬型的化合物均在低温的时候显示出反铁磁性的相互作用以及零场能级分裂。
    以含镉的类水滑石氢氧化物为模板通过气固反应技术制备了3-5 nm尺寸的硫化物半导体纳米晶。研究表明类水滑石结构中三价金属的存在起到了控制纳米粒子尺寸的作用。这种层状化合物-纳米晶复合材料具备较好的光催化特性。
    以类水镁石结构的氢氧化镉为前驱体于低温水热反应条件下制备了微米棒/管,并考察了微米棒/管的形成机理和影响因素。
When a guest species is encapsulated in a host, composite host-guestcompounds with unusual properties may form. Layered inorganic materials havebeen extensively considered as good hosts to incorporate functional guest specieswhich yield a variety of useful applications as catalyst, ion conductors,shape-selective adsorbents, ion exchangers, photofunctional materials, etc., andmany novel assembly structures can be tailored at the molecular level through thedesign of the host and the guest species. In this dissertation, we describe some newhost-guest systems related to layered materials.
    (1) A novel azobenzene derivative modified magadiite has been prepared by thereaction between the interlayer hydroxyl groups of magadiite and the azobenzenederivative using dodecyltrimethylammonium-exchanged magadiite as theintermediate. The formation of the silylated magadiite-azobenzene system wasconfirmed by X-ray diffraction, IR and MAS NMR spectroscopies. The organicgroups of the azobenzene molecules are grafted onto the interlayer surface ofmagadiite by covalent bond, affording compounds different from those derived byion exchange. The composite compound is stable in water and other commonorganic solvents. The orientation and reorientation of the azobenzene derivative inthe magadiite have been examined through observing its photoinduced anisotropybehavior. Because the azobenzene derivatives are grafted on the interlayer surface ofmagadiite, the rigid inorganic layers of pDRSiM act as a “wall”to prevent the
    azobenzene molecules from getting entangled with the polymer chains of PMMA. Inother words, the inorganic layers of magadiite provide a relatively free space aroundthe azobenzene groups, rendering the azobenzene free to reorient. The freeorientation of azobenzene groups leads to the faster reversal of the inducedanisotropy to isotropy. Furthermore, the photoinduced anisotropy behavior of thecomposite material can be observed even at 95 C. Our approach provides an oalternative route for the construction of new materials which can be used forreversible photoinduced anisotropy study.(2) We synthesized four types of Cd-containing LDHs compounds (CdCr-LDH,ZnCdCr-LDH, CdAl-LDH, CdDS) containing alkyl sulfate as the interlamellaranion through a coprecipitation technique. The powder X-ray diffraction patternsindicate that the as-synthesized samples exhibit high structural order. The typicaldiffraction peaks correspond to intercalated layered double hydroxides with layerseparations in good agreement with those reported previously. The UV-vis spectrareveal the existence of mononuclear state of CrIII in a nearly octahedral OH-environment within the hydroxide layer of the Cr-containing LDHs.Antiferromagnetic interactions between the CrIII centers have been observed for theas-prepared CdCr-LDH and ZnCdCr-LDH. The introduction of zinc influences theligand field of CrIII and the CrIII-CrIII interactions in the Cr-containing LDHcompound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminatedby dispersion in formamide, leading to translucent and stable colloidal solutions.Dodecyl sulfate (DS) has been used as the anion to intercalate the layers of theseCr-containing compounds which exhibit high structural order and can be exfoliatedinto single layers in formamide solution, providing new precursors to be used inassembly chemistry.(3) Using these LDHs compounds mentioned above as precursors, for the first time
    we prepared CdS nanocrystals and CdS/ZnS those are implanted and stabilized inthe layer matrices of the four types of compounds through a gas/solid reaction route.Depending on the Cd/M (M is trivalent metal) ratio in the precursor, the size of theCdS nanoparticles can be controlled and tuned. The XRD patterns of the CdM-LDHafter sulfurization reaction show three broad peaks corresponding to the (111), (220)and (311) reflections of cubic CdS, whereas the XRD patterns of the ZnCdCr-LDHafter sulfurization reaction show three broad peaks corresponding to the mixture ofcubic CdS and cubic ZnS. In contrast, the CdS nanoparticles in CdDS aftersulfurization reaction appear to be a predominant hexagonal phase contains a smallamount of cubic CdS phase. It indicates the MIII plays an important effect on theformation of the nanocrystals. It is also found that the photocatalyic performance ofthe CdAl-LDH implanted with CdS nanocrystals is distinctly superior to those ofbulk CdS and even nanosized TiO2 for the degradation of rhodamine B under UVand visible light irradiation. In principle, our preparation approach can begeneralized to extend to other nanocrystals implanted in layer matrices, and a varietyof functional composites with nanocrystals of controlled size may be prepared in asimilar way.(4) Preparation of microrods/microtubes from single metal layered hydroxides saltcompound (Cd2(OH)3(DS)·nH2O) through hydrothermal reaction.Microrods/microtubes (long: 5-30 μm; diameter: about 1-3 μm) were obtained bythe synthesis of the layered hydroxides salt compound followed by hydrothermaltreatment at 100 C for 12h. The hydrothermal temperature and the period can oinfluence the yield of the microrods/microtubes. If the hydrothermal temperature isabove 120 oC or the hydrothermal period below 4h, we can’t get themicrorods/microtubes. The hydrothermal reaction and the surfactant are
引文
[1] Guo C. X., Hou W. H., Guo M., Yan Q. J., Chen Y., Synthesis of a new solid-acid: silica pillared lanthanum niobate with a supergallery, Chem. Commun., 1997, 801-820.
    [2] Marino M., Donaghy K. J., Synthesis of carborane containing diphosphonate hangers for zirconium phosphate materials. Abstract of papers of the American chemical society, 2003, 225, 618.
    [3] Holman K. T., Pivovar A. M., Ward M. D.; Engineering crystal symmetry and polar order in molecular host frameworks. Science, 2001, 294, 1907-1911.
    [4] 耿利娜,相明辉,李娜,李克安,层状无机化合物-磷酸锆的研究和应用进展,化学进展, 2004, 16, 717.
    [5] 杨娟, 南京理工大学博士学位论文,2002.
    [6] Whittingham M. S., Jacobson A. J., Eds., Intercalation Chemistry, Acedemic Press: New York, 1982.
    [7] Ogawa M., Kuroda K., Photofunctions of intercalation compounds. Chem. Rev., 1995, 399-438.
    [8] Suib S. L. Chem. Rev., 1993, 93, 803.
    [9] Pinnavaia T. J., Science, 1983, 220, 4595.
    [10] Johnson J. W., Jacobson A. J., Butler W. M., Rosenthal S. E., Brody J. F., Lewandowsky J. T., J. Am. Chem. Soc., 1989, 111, 381.
    [11] Cao G., Mallouk T. E., Inorg. Chem., 1991, 30, 1434.
    [12] Clearfield A., Chem. Rev., 1988, 88, 125.
    [13] Ruiz-Hitzky E., Adv. Mater., 1993, 5, 334.
    [14] Fitch A., Clays Clay Miner., 1990, 38, 391.
    [15] Clearfield A., Role of Ion Exchange in Solid-state Chemistry, Chem. Rev. 1988, 88, 125-148.
    [16] Izawa H., Kikkawa S., Koizumi M., Efect of intercalated alkylammounium on cation exchange properties of H2Ti3O7, J. Solid State Chem., 1987, 69, 336-342.
    [17] Sasaki T., Watanabe M., Komatsu Y., Fujiki Y., Sodium ion/hydrogen ion-exchange process on layered hydrous titanium dioxide, Bull. Chem. Soc. Jpn., 1985, 58, 3500-3555
    [18] Airoldi C., Nunes L. M., Faria, R.F., The intercalation of n-alkyldiamines into crystalline layered titanate, Mater. Res. Bull., 2000, 35, 2081-2090.
    [19] Izawa H., Formation and properties of n-alkylammonium complexes with layered tri and tetratitanates, Polyhedron, 1983, 2(8), 741-747.
    [20] Nalwa H. S., Handbook of Nanostructured Materials and Nanotechnology, Chap.1., Intercalation compounds in layered host lattices: supramolecular chemistry in nanodimensions, Academic Press, San Diego, 1999.
    [21] Ogawa M., Takizawa Y., Intercalation of alkylammonium cations into a layered titanate in the presence of macrocyclic compounds, Chem. Mater., 1999, 11, 30-32.
    [22] Yang J. H., Han Y S., Chos J. H., Tateyama H., Intercalation of alkylammonium cations into expandable fluorine mica and its application for the evaluation of heterogeneous charge distribution, J. Mater. Chem., 2001, 11, 1305-1312.
    [23] Fang M. M., Kim C. H., Mallouk T. E., Chem. Mater., 1999, 11, 1519-1525.
    [24] Sasaki T., Watanabe M., Hashizume H., Yamada H., Nakazawa H., Macromolecule like aspects for a colloidal suspension of an exfoliated titanate. Pair wise association of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc., 1996, 118(35), 8239-8335.
    [25] Sasaki T., Watanabe M., Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, J. Phys. Chem. B, 1997, 101, 10159-10161.
    [26] Kim D. W., Blumstein A., Kumar J., Tripathy S. K., Layered aluminosilicate/chromophore nanocomposites and their electrostatic layer-by-layer assembly, Chem. Mater., 2001, 13, 243-246.
    [27] Sasaki T., Watanabe M., Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate, J. Am. Chem Soc., 1998, 120, 4682.
    [28] Sasaki T.,Ebina Y, Watanabe M., Decher G., Multilayer ultrathin films of molecular titania nanosheets showing highly efficient UV-light absorption, Chem. Commun., 2000, 2163-2164.
    [29] Saupe G. B., Waraksa C. C., Kim H. N., Han Y. J., Kaschak D. M., Skinner D. M., Mallouk T. E., Nanoscale tubules formed by exfoliation of potassium hexaniobate, Chem. Mater., 2000, 12, 1556-1562.
    [30] Han Y.S., Park I, Choy J. H., Exfoliation of layered perovskite, KCa2Nb3O10, into colloidal nanosheets by a novel chemical process, J. Mater. Chem., 2001, 11, 1277-1282.
    [31] Xu Z. P., Xu R., Zeng H. C., Sulfate-Functionalized Carbon/Metal-Oxide Nanocomposites from Hydrotalcite-like Compounds, Nano Lett., 2001, 1, 703
    [32] Han Y. S., Choy J. H., Modification of the interlayer pore structure of silica iron oxide sol pillared clay using organic templates, J. Mater. Chem., 1998, 8(6), 1459–1463
    [33] Cheng S., Wang T., Pillaring of layered titanates by polyoxocations of aluminum, Inorg. Chem., 1989, 28, 1283-1289.
    [34] Hou W. H., Peng B. C., Yan Q. J., Fu X. C., Shi G. Q,The first silica-pillared layered niobate, J. Chem. Soc., Chem. Commum., 1993, 253-254.
    [35] Yanagisawa M., Uchida S., Yin S.,Sato T.,Synthesis of titania-pillared hydrogen tetratitanate nanocomposites and control of slit width, Chem. Mater., 2001, 13, 174-178.
    [36] 黄炎球, 潘忠华, 高广立, 柱撑蒙脱石研究现状, 材料导报, 1999, 13, 31-33.
    [37] 耿利娜, 相明辉, 李娜, 李克安, 层状无机化合物-磷酸锆的研究和应用进展, 化学进展, 2004, 16(5), 717.
    [38] Mallouk T. E., Gavin J. A., Acc. Chem. Res., 1998, 31, 209 –217.
    [39] Perathoner S., Centi, G. Vaccari A., Catalysts based on pillared interlayered clays for the selective catalytic reduction of NO, Clay Minerals, 1997, 32, 123-125.
    [40] Sasaki T., Ebina Y., Tanaka T., Harade M., Watanabe M., Layer-by-layer assembly of titania nanosheet/polycation composite films, Chem. Mater., 2002.
    [41] Komatsu Y, Fujiki Y, Adsorption of cesium from aqueous solutions using crystalline hydrous itanium dioxide fibers, Chem. Lett., 1980, 12, 1525-1528.
    [42] Lothenbach B., Furrer G., Schulin R., immobilization of heavy metals by polynuclear aluminum and montmorillonite compounds, Environ. Sci. Technol., 1997, 31, 1452-1456.
    [43] Thompson D. W., Butterworth J. T., J. Colloid Interface Sci., 1992, 151, 236.
    [44] Ogawa M., Kuroda K.; Kato C., Chem. Lett. 1989,1659.
    [45] Ogawa,M.; Kato, K., Kuroda K., Kato C., Clay Sci. 1990, 8, 31.
    [46] Ogawa M.; Nagafusa Y.; Kuroda K., Kato C. Appl. Clay Sci., 1992, 7, 291.
    [47] Ogawa M., Hirata T., Kuroda K., Kato C., Chem. Lett.1992, 365.; Ogawa M., Handa T., Kuroda K., Kato C., Chem. Lett., 1990, 71.
    [48] Eugster H. P., Science, 1967, 157, 1177—1179.
    [49] Rojo J. M., Ruiz-Hitzky E., Sanz F., Inorg. Chem., 1988, 16, 2785-2790.
    [50] lmond A., Harris G. G. , Franklin R. K., K. R., J. Mater. Chem., 1997, 7, 681-687.
    [51] 彭淑鸽, 高秋明, 新型纳米层状硅酸盐Magadiite 主体材料的制备、表征、结构和生成机理研究, 高等学校化学学报, 2004, 25, 603-606.
    [52] Ogawa M., Kuroda K., Bull. Chem. Soc. Jpn., 1997, 70, 2593-2597.
    [53] Lagaly G., Bentke K., Weiss A., Am. Mineral., 1975, 60, 650.
    [54] Lagaly G., Bentke K., Weiss A., Magadiite and H-Magadiite: I. Sodium Magadiite and Some of Its Derivatives., Am. Mineral., 1975, 60, 642-649.
    [55] Wang Z., Lan T., Pinnavaia T., J. Chem. Mater., 1996, 8, 2200-2204.
    [56] Cavani F., Trifiro F., Vaccari. A., Catal. Today, 1991, 11, 173-301.
    [57] Chibwe M., Pinnavaia T. J., J. Chem. Soc., Chem. Commun., 1993, 278.
    [58] 杜以波, Evans D. G., 孙鹏, 段雪, 阴离子型层柱材料研究进展, 2000, 5, 20.
    [59] Rives V., Ulibarri M. A., Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coord. Chem. Rev., 1999, 181, 61-120.
    [60] 俞卫华, 倪哲明, 郭志强, 周春晖, 葛忠华, LDHs 材料制备技术研究进展, 浙江工业大学学报, 2004, 32, 306.
    [61] 李文卓,吉林大学博士学位论文,2004.
    [62] Reichle W.T., Solid State Ionics, 1986, 22, 135.
    [63] Carrado K.A., Kostapapas A., Suib S.L., Solid State Ionics, 1988, 26, 77.
    [64] Meyn M., Beneke K., LagalyG., Inorg. Chem., 1990, 29, 5201.
    [65] Jones W., Chibwe M., in IV. Mitchell (Ed.), Pillared Layered Structures: Current Trends and Applications, Elsevier, London, 1990, 67-77.
    [66] Nijs H., Bock M., De E.F. Vansant Evaluation of the microporosity of pillared [Fe(CN)6]–MgAl–LDHs, Microporous and Mesoporous Materials, 1999, 30, 243–253.
    [67] Narita E., Kaviratra P., Pinnavaia T. J., Chem. Lett., 1991, 805.
    [68] Prihodko R., Sychev M., Layered double hydroxides as catalysts for aromatic nitrile hydrolysis, Microporous and Mesoporous Materials, 2002, 56, 241-255.
    [69] Constantino V. R. L., Pinnavaia T. J., Inorg. Chem., 1995, 34, 883.
    [70] Meyn M., Beneke K., Lagaly G., Inorg. Chem., 1993, 32, 1209.
    [71] Kwon T., Pinnavaia T. J., Chem. Mater., 1989, 1, 381.
    [72] Vicente R., Characterisation of layered double hydroxides and their decomposition products, Materials Chemistry and Physics, 2002, 75, 19–25.
    [73] Ulibarri M A., Labajos F. M., Inorg. Chem., 1994, 33, 2592.
    [74] Kwon T., Pinnavaia T. J., Chem. Mater., 1989, 1, 381.
    [75] Zhang J., Zhang F. Z., Ren L. L., David G., Evans, Duan, X., Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions Materials Chemistry and Physics, 2004, 85, 207-214.
    [76] Park I. Y., Kuroda K., Kato C., J. Chem. Soc., Dalton Trans., 1990, 3071.
    [77] 李海艳, 李强, 有机染料-层状硅酸盐光活性纳米复合材料, 化学进展, 2003, 15, 135.
    [78] Takagi K., Kuwahara, T., Sawaki Y. J., Chem. Soc., Perkin Trans. 1991, 2, 1517.
    [79] Ogawa T., Shigematsu K., J. Am. Chem. Soc., 1981, 103, 111.
    [80] Ogawa M., Fujii K., Kuroda K., Kato C., Mater. Res. Soc. Symp. Proc., 1991, 233, 89.
    [81] Tachibana H., Got A., J. Am. Chem. Soc., 1989, 111, 3080.
    [82] Ogawa M., Chem. Mater., 1996, 8, 1347-1349.
    [83] Ogawa M., Photoisomerization of azobenzene in the interlayer space of magadiite, J. Mater. Chem., 2002, 12, 3304-3307.
    [84] Ogawa M., Ishikawa A., J. Mater. Chem., 1998, 8, 463-467.
    [85] Lrie M., Chem. Rev., 2000, 100, 1685.
    [86] Sasai R., Itoh H., Shindachi I., et al., Chem. Mater., 2001, 13, 2012-2016.
    [87] Ahmadi M. F., Rusling J. F., Langmuir, 1995, 11, 94.
    [88] Ogawa M., Takahashi M., Kuroda K., Langmuir, 1995, 11, 4598.
    [89] Endo T., Nakada N., Sato T., Shimada M. L., Phys. Chem. Solids, 1989, 50, 133-137.
    [90] Kim D. W., Blumstein A., Downey M., Poly. Mater. Sci. Eng., 2001, 84, 182.
    [91] Kim D. W., Blumstein A., Downey M., Poly. Mater. Sci.Eng., 2000, 83, 200.
    [92] Copper S., Dutta P. K., J. Phys. Chem., 1990, 94, 114
    [93] Coradin T., Nakatani K., Ledoux I., Zyss J., Clement R., J. Mater. Chem., 1997, 7, 853.
    [94] Ogawa M., Takahashi M., Kuroda K., Chem. Mater., 1994, 6, 715.
    [95] Suib S. L., Carrado K. A., Inorg. Chem. 1985, 24, 863.
    [96] Suib S. L., Tanguay J. F., Occelli M. L., J. Am. Chem. Soc., 1986,108, 6972.
    [97] Takagi K., Usami H., Fukaya H., Sawaki Y., J. Chem. Soc., Chem. Commun., 1989, 1174.
    [98] Usami H., Takagi K., Sawaki Y., J. Chem. Soc., Faraday Trans., 1992, 88, 77.
    [99] Kovar L., Guardia R., Thomas J. K. J. Phys. Chem., 1984, 88, 3595
    [100]Ogawa M., Takahashi M., Kato C., Kuroda K., J. Mater. Chem., 1994, 4, 519.
    [101]Ogawa M., Handa T., Kuroda K., Kato C., Tani T., J. Phys. Chem., 1992, 96, 8116.
    [102]Vermeulen L. A., Thompson M. E., Nature, 1992, 358, 656.
    [103]Vermeulen L. A., Snover J., Sapochak L. S., Thompson, M. E., J. Am. Chem. Soc. 1993,115, 11767.
    [104]Snover J., Thompson M. E., J. Am. Chem. Soc. 1994,116, 765.
    [105]Kumar C. V., Chadhari A., Rosenthal G. L., J. Am. Chem. Soc. 1994, 116, 403.
    [106]Delaire J. A., Nakatani K., Chem. Rev. 2000, 100, 1817
    [107]Barrett C. J., Natansohn A. L., Rochon P. L., J. Phys. Chem. 1996, 100, 8836.
    [108]Viswanathan N. K., Kim D. Y., Bian S. P., Williams J., Liu W., Li L., Samuelson L., Kumar J., Tripathy S. K., J. Mater. Chem., 1999, 9, 1941
    [109]Takahiro Y., Takashi I., Langmuir, 1992,8,1007
    [110]Seki T., Fukuda R., Tamaki T., Ichimura K., Thin Solid Films, 1994, 243, 675
    [111]王长顺,吉林大学博士学位论文,1998.
    [112]杨庆鑫,吉林大学博士学位论文,2000.
    [113]朱宝林, 陈晓, 许丽梅, 隋震鸣, 赵继宽, 刘杰, 层状固体模板组装有机/ 无机纳米结构材料, 化学通报, 2003, 1, 19.
    [114]Simon U., Franke M. E., Microporous and Mesoporous Materials, 2000, 41, 1.
    [115]Zhou Y. K., Huang J., Shen C. M., et al., Materials Science and Engineering A, 2002, 335, 260.
    [116]Gao F., Lu Q. Y., Liu X. Y., et al. Nano. Lett., 2001, 1, 743.
    [117]Ravaine S., Fanucci G. E., Seip C. T., et al., Langmuir, 1998, 14, 708.
    [118]Khomutov G. B., Bykov I. V., Gainutidinov R. V. et al., Colloids and surfaces A, 2002, 198-200, 347.
    [119]Khomutov G. B., Gubin S. P., Khanim V. V., et al., Colloids and surfaces A, 2002, 198-200, 593.
    [120]Bague R. P., Khilar K. C., Langmuir, 2000, 16, 905.
    [121]Casom J. P., Roberts C. B., J. Phys. Chem. B, 2000,104, 1217.
    [122]Jiang X.C., Xie Y., Lu J., et al., J. Mater. Chem., 2001, 11, 1775.
    [123]Coleman R. B., Atard G. S., Microporous and Mesoporous Materials, 2001, 44-45, 73.
    [124]Atard G. S., Edgar M., Goltner C. G., Acta. Mater., 1998, 46, 751.
    [125]Niemeyer C. M., Angew. Chem. Int. Ed., 2001, 40, 4128.
    [126]Mertig M., Kirsch R., Pompe W., et al., Eur. Phys. J. D, 1999, 9, 45.
    [127]Konopny L., Berfeld M., Popovitz-Biro R. et al., Adv. Mater., 2001, 13, 580
    [128]Guo S.W., Konopny L., Popovitz-Biro R., et al., Adv. Mater., 2000, 12(4), 302.
    [129]Huang X. Y., Li J., J. Am. Chem. Soc., 2000, 122, 8787.
    [130]Era M., Miyake K., Yoshida Y.,et al., Thin Solid Films, 2001, 393, 24.
    [131]Era M., Maeda K., Tsutsui T., Chem. Lett., 1997, 1235.
    [132]Era M., Oka S., Thin Solid Films, 2000, 376, 232.
    [133]Guo S. W., Popovitz-Biro R., Weissbuch I., et al., Adv. Mater., 1998, 10, 121
    [134]Samokhvalov A., Berfeld M., Lahav M., et al., J. Phys. Chem. B, 2000, 04, 8631.
    [135]Mitzi D. B., Inorg. Chem., 2000, 39, 6107.
    [136]Ledsham R. C., Day P., J. C. S. Chem. Comm., 1981, 921.
    [137]Guo S. W., Konopny L., Popovitz-Biro R. et al., J. Am. Chem. Soc., 1999, 121, 9589.
    [138]Konopny L., Berfeld M., Popovitz-Biro R., et al., Adv. Mater., 2001, 13, 58.
    [139]Samokhvalov A. M., Berfeld, MLahav et al. J. Phys. Chem. B, 2000, 104, 8631~8634.
    [140]Guo S. W., Popovitz-Biro R, Arad T., et al., Adv. Mater., 1998, 10, 657-661.
    [141]Konopny L., Berfeld M., Popovitz-Biro R., et al., Adv. Mater., 2001, 13, 580.
    [142]Guo S. W., Popovitz-Biro R., Weissbuch I., et al., Adv. Mater., 1998, 10, 121.
    [143]马国宏, 杜祖亮, 赵伟利, ZnS 超微粒有序组装体系制备与结构研究, 化学物理学报, 1998, 11, 252.
    [144]Era M., Hatori T., Taira T.,et al., Chem. Mater., 1997, 9, 8.
    [145]Chen X., Zhu B. L., Wang W., Shlomo, Efrima, Liu J. and Yang K. Z., In Situ Formation of Semiconductor Nanbparticles in the Three-DimensionalOrganic Layered Crystal, Mol. Cryst. and Liq. Cryst, 2001, 371, 139-142.
    [146]Wang W., Chen X., Efrima S., Fabrication of semiconductor nanoparticles in a three-dimensional organic-layered solid crystal, Chem. Mater., 1999, 11, 1883-1889.
    [147]Fujish I. A., Honda K., Electrochemical photolysis of water at a semicondutor electrode, Nature, 1972, 238, 37-38.
    [148]Linsebigler A. L., Lu G. Q., Photocatalysis on TiO2 surface: Principles, mechanisms and selected results, Chem. Rev., 1995, 95, 735 –758.
    [149]Frank S. N., Bard A. J., Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder, J. Am. Chem. Soc., 1977, 99, 303.
    [150]Frank S. N., Bard A. J., Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem., 1977, 81, 1484.
    [151]蔡乃才, 董庆华, 化学通报, 1991, 7.
    [152]Ollis D. F., Pelizzetti E., Serpone N., Destruction of water contaminants, Environ. Sci. Technol., 1991, 25, 1523.
    [153]Hoffmann M. R., Martin S .T., Choi W., et al., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69-96.
    [154]Linsebigler A. L., et al., Chem. Rev., 1995, 95, 735-758.
    [155]Fujima I. A., et al., Chem. Phys. Lett., 1984, 106, 517-522.
    [156]Kamat P. V., Dimitrijevic N. M., Solar Energy, 1990, 44, 83-98.
    [157]Hagfeldt A., Gratzel M., Chem. Rev., 1995, 95, 49-68.
    [158]崔玉民, 韩金霞, 燃料化学学报, 2004, 32, 123.
    [159]Martin S. T., Herrmann H., Hoffmann M. R., Time-resolved microwave conductivity (TRMC) 1. TiO2 photoactivity and size quantization, J. Chem. Soc. Faraday Trans., 1994, 90, 3315-3322.
    [160]崔玉民, 范少化, 污水处理中光催化技术的研究现状及其发展趋势, 洛阳工学院学报, 2002, 23, 85-89.
    [161]张彭义, 余刚, 蒋展鹏, 半导体光催化剂及其改性技术进展, 环境科学进展, 1997, 5, 1.
    [162]张立德, 牟季美, 纳米材料和纳米结构, 科学出版社, 2002.
    [163]Yoneyama, H., Cryt. Rev. Solid State Mater. Sci., 1993, 18, 69.
    [164]Rothenberger G., Moser J., Gratzel M., J. Am. Chem. Soc., 1985, 107, 8054.
    [165]Rufus B. I., et al., Indian Journal of Technology, 1989, 27, 171-173.
    [166]Linsebigler A. L., et al., Chem. Rev., 1995, 95, 735-758.
    [167]Hoffmann M. R., Martin S. T., Choi W., et al., Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69-96.
    [168]Wang Y. Q., Cheng H. M., Zhang L., et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles, Journal of molecular catalysis A: chemical, 2000, 151, 205 -216.
    [169]Wang Y.Q., Cheng H. M., Yan Z. H., Yan Z., et al., Photoelectrochemical properties of various metal-ion-doped TiO2 nanocrystalline electrodes, Thin Solid Films, 1999, 349, 120-125.
    [170]Lixz L., Study of Au/ Au3 /TiO2 photocatalysts toward visible photooxidation + for water and wastewater treatment, Environ. Sci. Technol., 2001, 35, 2381-2387.
    [171]Aguado M. A., Anderson M. A., Degradation of formic acid over semiconducting membranes supported on glass: effect of structure and electronic doping, Solar Energy Mater & Solar Cells, 1993, 28, 345 -361.
    [172]Ileperuma O. A., et al., Appl. Catal., 1990, 62, L1-L5.
    [173]Choi W., et al., J. Phys. Chem., 1994, 98, 13669-13679.
    [174]Wilke K., Breuer, H. D., The influence of transition metal doping on the physical and photocatalytic properties of titania, J. Photochem. A, 1999, 121, 49-53.
    [175]Navio J. A., et al., Photochem. J., Photobiol. A: Chem., 1991, 55, 319.
    [176]Ileperuma O. A., et al., Appl. Catal., 1990, 62, 1-5.
    [177]Nozik A. J., Appl. Phys. Lett., 1977, 70, 567.
    [178]Bedja I., Kamat P. V., J. Phys. Chem., 1995, 99, 9182-9188.
    [179]Wentworth W E., Chem P. J., Solar Energy, 1994, 52, 253-263.
    [180]Do Y. R., et al., J. of Solid State Chem., 1994, 108, 198-201.
    [181]李晓红, 颜秀茹, 张月萍, TiO2/SnO2 复合光催化剂的制备及光催化降解敌敌畏, 应用化学, 2001, 18, 32-35.
    [182]Spanhel L., et al., J. Am. Chem. Soc., 1987, 109, 6632.
    [183]Vogel R., et al., J. Phys. Chem., 1994, 98, 3183.
    [184]Vogel R., et al., J. Phys. Chem., 1990, 174, 241.
    [185]Kohtani S., et al., Chem. Phys. Lett., 1993, 206, 166.
    [186]Serpone N., et al., Journal of the Electrochem. Ical. Soc., 1988, 135, 2760-2766.
    [187]K. R. Gopidas, et al., J. Phys. Chem., 1990, 94, 6435-6440.
    [188]朱振中, 陈坚,半导体光催化氧化反应降解废水中有机污染物的研究进展, 江南大学学报(自然科学版), 2002, 1, 365.
    [189]Nazeeruddin M. K., Kay A , J. Am. Chem. Soc., 1993, 115, 6382-6390.
    [190]Meier H., Photochem. Photobiol., 1972, 16, 219.
    [191]Patrick B., Kamat P. V., J. Phys. Chem., 1992, 96, 1473-1478.
    [192]Ross H., et al., Solar Energy Materials and Solar Cells, 1994, 33, 475-481.
    [193]Mansour E., et al., Journal of Molecular Catalysis, 1987, 41, 361-366.
    [194]Kamat P. V., Fox M. A., Chem. Phys. Lett., 1983, 102, 379.
    [195]罗菊仙, 赵中一, 地球科学—中国地质大学学报, 2000, 25, 536.
    [196]Wohrle D., et al., J. of Molecular Catal., 1992, 75, L39-L44.
    [197]Fungo F., Otero L. A., Serno L., et al., Synthesis of a porphyrin/C60 dyad for potential use in solar energy conversion, Dye and Pigments, 2001, 50, 163-170.
    [198]Choia W., Kojy P. H., et al., Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of ace-tone, Appl. Catal. B: Environ. 2001, 31, 209 -220.
    [199]Enric B., Evam R. S, et al., Aniline mineralization by AOP’s: anodic oxidation, photocatalytsis, electro-Fenton and photoelectron-Fenton processes, Appl. Catal. B: Environ., 1998, 16, 59-67.
    [200]Muneer M., Theurich J., Bahenemann D., Titanium dioxide mediated photocatalytic degradation of 1, 2-diethyl phthalate, J. Photochem. & Photobio. A: Chem., 2001, 143, 213-219.
    [201]Zhao Y. G., Advanced treatment of dyeing wastewater for reuse, Water Sci. and Technol., 1999, 39, 249 -255.
    [202]蒋伟川, 俞传明, 王琪全, 半导体光催化降解实际印染废水的研究, 工业水处理, 1994, 14, 25-27.
    [203]王红娟, 奚红霞, 含酚废水处理技术的现状与开发前景, 工业水处理, 2002, 22, 6-9.
    [204]付小荣, TiO2/Pt/Glass 纳米膜的制备及对可溶性染料的光电催化降解, 应用化学, 1997, 14, 77-79.
    [205]段启伟, 达志坚, 郝小明, 第九届全国催化学术会议论文集[C]. 北京:海潮出版社, 1998.
    [206]陈颖, 王宝辉, 张海燕, 半导体光催化技术及其应用, 大庆石油学院学报, 1998, 22.
    [207]谷学谦, 董秀芹, 光催化氧化降解有机废物研究进展, 化学工业与工程, 2004, 21, 142.
    [208]朱学文, 廖列文, 崔英德, 半导体纳米材料的光催化及其应用, 精细化工, 2000, 17, 476.
    [209]Bhakta D., Shukla S. S., Chandrasdeharaiah M. S., A novel photocatalytic method for detoxification of cyanide wastes, Environ. Sci. Technol., 1992, 26, 625.
    [210]王红娟, 李忠, 半导体多相光催化氧化技术, 现代化工, 2002, 22, 56.
    [211]Tada H., Hyodo M., Kawahara, H., J. Phys. Chem., 1991, 95, 10185.
    [212]Hoffman A. J., Yee H., Hills G., et al., Photoinitiated polymerization of methyl methacrylate using Q2 sized ZnO colloids, J. Phys. Chem., 1992, 96, 5540.
    [213]Hoffman A. J., Hills G., Yee H., et al., Q-sized CdS: Synthesis, characterization, and efficience of photoinitiation of polymerization of several vinylic monomers, J. Phys. Chem., 1992, 96, 5546.
    [214]Tryk D. A., Fujishima A., Honda K., Recent topics in photoelectrochemistry: achievements and future prospects, Electrochimica Acta, 2000, 45, 2363.
    [215]Watanabea T., Nakajima A., Wanga R., Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Film, 1999, 351, 260.
    [216]上官文峰, 太阳能光解水制氢的研究进展, 无机化学学报, 2001, 50, 619.
    [217]Armor N. J., Appl. Catal., A: General, 1999, 176, 159.
    [218]Takata T., Tanaka A., Hara M., et al., Recent progress of photocatalysts for overall water splitting, Catal. Today, 1998, 44, 17.
    [219]Ena O., Bard A. J., J. Phys. Chem., 1986, 90, 301.
    [220]Stramel R. D., et al., Chem. Phys. Lett., 1986, 130, 423.
    [221]Sterte J., Clays and Minerals, 1986, 34, 658-664.
    [222]Sho J. Y., Yamanaka S., et al., Materials Chemistry and Physics, 1987, 17, 87; Yoneyama H., Yamanaka, S., et al., J. Phys. Chem., 1989, 93, 4833-4837.
    [223]Hirokazu M., et al., Langmuir, 1991, 7, 503-507.
    [224]王玲玲, 吴季怀, 黄妙良, 化工新型材料,2002, 30, 6.
    [225]Yoneyama, H., Haga S., Yamanaka, S., J. Phys. Chem., 1989, 93, 4833.
    [226]Miyoshi, H, J. Chem. Soc., Faraday Trans. I, 1989, 85, 1873.
    [227]Sato T., Sato K., Fujishiro Y., et al. J. Chem. Tech. Biotechnol., 1996, 67, 345-349.
    [228]Sato T., Sato K., Fujishiro Y., et al. J. Chem. Tech. Biotechnol., 1996, 67, 339-344.
    [229]Bedja I., Kamat P. V., J. Phys. Chem., 1995, 99, 9182.
    [230]Vinodgopal K., Kamat, P. V., Environ Sci & Technol., 1995, 29, 841.
    [231]Lin J., Yu J. C., Lo D., et al. J. catal., 1999, 183, 368.
    [232]Vogel R., Hoyer P., Weller, H., J. Phys. Chem., 1994, 98, 3183.
    [233]Fu X., Clark L. A., Yang Q., et al. Environ Sci & Technol, 1996, 30, 647.
    [234]Bard A. J., J. Photochem., 1979, 10, 59.
    [235]Ohtani B., Iwaik, Nishimoto S. et al., J. Phys. Chem. B, 1997, 101, 3349.
    [236]Masato M., Xu, W. M., Hideki T. et al., J. Molecular Catal. A: chem., 2000, 155, 131-142.
    [237]Hideki, K., Akihiko, K., J. Phys. Chem. B, 2001, 105, 4285~4292.
    [238]Wu J. H., Uchida S., Fujishiro Y., et al. Intern. J. of Inorg. Mater., 1999, 1, 253-258.
    [239]Shangguan W. F. Yoshida A., J. Phys. Chem. B, 2002, 106, 12227.
    [240]Guo Y. H, Li D. F., Hu C. W., Wang Y. H., Wang E. B., Layered double hydroxides pillared by tungsten polyoxometalates Synthesis and photocatalytic activity, Intern. J. of Inorg. Mater., 2001, 3, 347–355
    [241]彭革, 张大伟, 胡长文. 工业催化, 2000, 8, 13.
    [242]Suib S. L., Chem. Rev., 1993, 93, 803.
    [243]Hoffmann K., Marlow F., Caro J., Adv. Mater., 1997, 9, 567.
    [244]Moller K., Bein T., Chem. Mater., 1998, 10, 2950.
    [245]Tian Y., Li G. D., Chen J. S., J. Am. Chem. Soc., 2003, 125, 6622.
    [246]Ogawa M., Kuroda K., Bull. Chem. Soc. Jpn., 1997, 70, 2593.
    [247]Zhang Z. T., Saengkerdsub S., Dai S., Chem. Mater., 2003, 15, 2921.
    [248]Ogawa M., Annu. Rep. Prog. Chem., Sect. C, 1998, 94, 209.
    [249]Endo K., Sugahara Y., Kuroda K., Bull. Chem. Soc. Jpn., 1994, 67, 3352.
    [250]Corma A., Chem. Rev. 1997, 97, 2373.
    [251]Eypert-Blaison C., Humbert B., Michot L. J., Pelletier M., Sauzeat E., Villieras F., Chem. Mater., 2001, 13, 4439.
    [252]Hanaya M., Harris R. K., J. Mater. Chem., 1998, 8, 1073.
    [253]Gardiennet C., Tekely P., J. Phys. Chem. B, 2002, 106, 8928.
    [254]Almond G. G., Harris R. K., Franklin K. R., J. Mater. Chem., 1997, 7, 681.
    [255]Isoda K., Kuroda K., Ogawa M., Chem. Mater., 2000, 12, 1702.
    [256]Ogawa M., Miyoshi M., Kuroda K., Chem. Mater., 1998, 10, 3787.
    [257]Okutomo S., Kuroda K., Ogawa M., App. Clay Sci., 1999, 15, 253.
    [258]Ogawa M., Okutomo S., Kuroda K., J. Am. Chem. Soc., 1998, 120, 7361.
    [259]Thiesen P. H., Beneke K., Lagaly G., J. Mater. Chem., 2002, 12, 3010.
    [260]Huang Y., Jiang Z., Schwieger W., Chem. Mater., 1999, 11, 1210.
    [261]Eypert-Blaison C., Sauzeat E., Pelletier M., Michot L. J., Villieras F., Humbert B., Chem. Mater., 2001, 13, 1480.
    [262]Fujita I., Kuroda K., Ogawa M., Chem. Mater., 2003, 15, 3134.
    [263]Wong S. T., Cheng S., Chem. Mater., 1993, 5, 770.
    [264]Miyamoto N., Kawai R., Kuroda K., Ogawa M., App. Clay Sci., 2001, 19, 39.
    [265]Ogawa M., Takizawa Y., J. Phys. Chem. B, 1999, 103, 5005.
    [266]Kikuta K., Ohta K., Takagi K., Chem. Mater., 2002, 14, 3123.
    [267]Dailey J. S., Pinnavaia T. J., Chem. Mater., 1992, 4, 855.
    [268]Sprung R., Davis M. E., Kauffman J. S., Dybowski C., Ind. Eng. Chem. Res., 1990, 29, 213.
    [269]Wang Z., Lan T., Pinnavaia T. J., J. Chem. Mater., 1996, 8, 2200.
    [270]Ogawa M., Ishikawa A., J. Mater. Chem., 1998, 8, 463.
    [271]Ogawa M., J. Mater. Chem., 2002, 12, 3304.
    [272]Ogawa M., Ishii T., Miyamoto N., Kuroda K., Adv. Mater., 2001, 13, 1107.
    [273]Ogawa M., Kuroda K., Chem. Rev., 1995, 95, 399.
    [274]Natansohn A., Xie S., Rochon P., Macromolecules, 1992, 25, 5531.
    [275]Delaire J. A., Nakatani K., Chem. Rev., 2000, 100, 1817.
    [276]Wang C., Fei H., Qiu Y., Yang Y., Wei Z., Tian Y., Chen Y., Zhao Y., App. Phys. Lett., 1999, 74, 19.
    [277]Ogawa M., Kuroda K., Chem. Rev., 1995, 95, 399.
    [278]Thomas J. K., Acc. Chem. Res., 1988, 21, 275.
    [279]Schulz-Ekloff G., Wohrle D., Duffel B., Schoonheydt R. A., Micropor. Mesopor. Mater., 2002, 51, 91.
    [280]Coradin T., Nakatani K., Ledoux I., Zyss J., Clement R., J. Mater. Chem., 1997, 7, 853.
    [281]Kim H. K., Kang S. J., Choi S. K., Min Y. H., Yoon C. S., Chem. Mater., 1999, 11, 779.
    [282]Eypert-Blaison C., Sauzeat E., Pelletier M., Michot L. J., Villieras F., Humbert B., Chem. Mater., 2001, 13, 1480.
    [283]Thiesen P. H., Beneke K., Lagaly G., J. Mater. Chem., 2002, 12, 3010.
    [284]Fujita I., Kuroda K., Ogawa M., Chem. Mater., 2003, 15, 3134.
    [285]Shimojima A., Umeda N., Kuroda K., Chem. Mater., 2001, 13, 3610.
    [286]Ogawa M., Chem. Mater., 1996, 8, 1347.
    [287]Kumar C. V., Chaudhari A., Micropor. Mesopor. Mater., 2000, 41, 307.
    [288]Natansohn A., Rochon P., Gosselin J., Xie S., Macromolecules, 1992, 25, 2268.
    [289]Ho M. S., Natansohn A., Rochon P., Macromolecules, 1996, 29, 44.
    [290]Song O. K., Wang C. H., Pauley M. A., Macromolecules, 1997, 30, 6913.
    [291]Guo Y., Wang Y., Yang Q. X., Li, G. D.,Wang C. S., Cui Z. C., Chen J. S., Solid State Sci., 2004, 6, 1001.
    [292]Li W. Z., Qin C. G., Xiao W. M., Chen J. S., J. Solid State Chem., 2005, 178, 390.
    [293]Li W. Z., Qin, C. G., Lv C. S., Li L. S., Chen J. S., Catal. Lett., 2004, 94, 95.
    [294]Yun S. K., Pinnavaia T. J., Inorg. Chem., 1996, 35, 6853.
    [295]Acro M., Gutierrez S., Martin ,C., V. Rives, Inorg. Chem., 2003, 42, 4232.
    [296]Grosso R. P., Suib S. L., Weber R. S., Schubert P. F., Chem. Mater., 1992, 4, 922.
    [297]Bhattacharjee S., Anderson J. A., Chem. Commun. 2004, 554.
    [298]Tyner K. M., Schiffman S. R., Giannelis E. P., J. Control. Release, 2004, 95, 501.
    [299]Aisawa S., Hirahara H., Ishiyama K., Ogasawara W., Umetsu Y., Narita E., J. Solid State Chem., 2003, 174, 342.
    [300]Choy J. H., Oh J. M., Park M., Sohn K. M., Kim J. W., Adv. Mater., 2004, 16, 1181.
    [301]Zhang H., Qi R., Evans D. G., Duan X., J. Solid State Chem., 2004, 177, 772.
    [302]Guo Y. H., Li D. F., Hu C. W., Wang Y. H., Wang E. B., Int. J. Inorg. Mater., 2001, 3, 347.
    [303]Kovanda F., Grygar T., Dornicak V., Solid State Sci., 2003, 5, 1019.
    [304]Drezdzon M. A., Inorg. Chem., 1988, 27, 4628.
    [305]Bubniak G. A., Schreiner W. H., Mattoso N., Wypych F., Langmuir, 2002, 18, 5967.
    [306]Yang Q. Z., Sun D. J., Zhang C. G., Wang X. J., Zhao W. A., Langmuir, 2003, 19, 5570.
    [307]Consatantino V., Pinnavaia ,T. J., Inorg. Chem., 1995, 34, 883.
    [308]Arco M., Malet P., Trujillano R., Rives V., Chem. Mater., 1999, 11, 624.
    [309]Villegas J. C., Giraldo O. H., Laubernds K., Suib S. L., Inorg. Chem., 2003, 42, 5621.
    [310]Gutmann N., Muller B., Tiller H. J., J. Solid State Chem., 1995, 119, 331.
    [311]Miyata S., Kumura T., Chem. Lett., 1973, 843.
    [312]Bao Y. M., Li L. S., Ma, S. J., Xiong D. C., Fu ,G. Y., Feng ,S. H., R. R. Xu, Chem. J. Chinese U., 1996, 17, 355.
    [313]Vichi F. M., Alves O. L., J. Mater Chem., 1997, 7, 1631.
    [314]Crepaldi E. L., Pavan P. C., Tronto J., Valim J. B., J. Colloid Interface Sci., 2002, 248, 429.
    [315]Gutmann N., Muller B., J. Solid State Chem., 1996,122, 214.
    [316]Zhu Z. D., Chang Z. X., Kevan L., J. Phys. Chem. B, 1999, 103, 2680.
    [317]Boclair J. W., Braterman P. S., Jiang ,J. P., Lou ,S. W., Yarberry ,F., Chem. Mater., 1999, 11, 303.
    [318]Roussel H., Briois V., Elkaim E., de Roy A., Besse J. P., Jolivet J. P., Chem. Mater., 2001, 13, 329.
    [319]Ohba M., Usuki N., Fukita N., Okawa H., Inorg. Chem., 1998, 37, 3349.
    [320]Kou H. Z., Tang J. K., Liao D. Z., Gao S., Cheng P., Jiang Z. H., Yan S. P., Wang G. L., Chansou, B., Tuchagues J. P., Inorg. Chem., 2001, 40, 4839.
    [321]Coronado E., Gimenez M. C., Gomez-Garcia C. J., RomeroF. M., Polyhedron, 2003, 22, 3115.
    [322]Marinescu G., Lescouezec R., Armentano D., De Munno G., Andruh M., Uriel S., Llusar R., Lloret F., Julve M., Inorg. Chim. Acta, 2002, 336, 46.
    [323]Munoz M. C., Julve M., Lloret F., Faus J., Andruh M., J. Chem. Soc., Dalton Trans., 1998, 3125.
    [324]Marinescu G., Andruh M., Julve M., Lloret F., Llusar R., Uriel S., Vaissermann J., Cryst. Growth Des., 2005, 5, 261.
    [325]Serre C., Millange F., Thouvenot C., Nogues M., Marsolier G., J. Am. Chem. Soc., 2002, 124, 13519.
    [326]O’Leary S., Seeley G., Chem. Commun., 2002, 1506.
    [327]Adachi-Pagano M., Forano C., Besse J. P., Chem.Commun., 2000, 91.
    [328]Hibino T., Jones W., J. Mater. Chem., 2001, 11, 1321.
    [329]Hibino T., Chem. Mater., 2004, 16, 5482.
    [330]Shenton W., Pum D., Sleytr U. B., Mann S., Nature, 1997, 389, 585.
    [331]Cao Y. C., Wang J. H., J. Am. Chem. Soc., 2004, 126, 14336.
    [332]Holman J., Ye S., Nevandt D. J., Davies P. B., J. Am. Chem. Soc., 2004, 126, 14332.
    [333]Zhang P., Cao L., Langmuir, 2003, 19, 208.
    [334]Brennan J. G., Siegrist T., Carroll P. J., et al., J. Am. Chem. Soc., 1989, 111, 4141-4143.
    [335]Rossetti R., Hull R., Cibson, J. M., et al., J. Chem. Phys., 1985, 82, 552-559.
    [336]Bunker C. E., Harruff B. A., Pathak A., et al., Langmuir, 2004, 20, 5642-5644.
    [337]平贵臣, 曹立新, 王丽颖, 化学通报, 2000, 2, 32-36
    [338]吴庆生, 郑能武, 丁亚平, 高等学校化学学报, 2000, 21, 1471-1472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700