用户名: 密码: 验证码:
氯酚的电化学降解行为及治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类芳香化合物毒性大、难生物降解,具有“三致”效应和遗传毒性,在环境中长期残留、降解周期长,被美国环境保护局列为优先控制污染物。本文从获取氯酚系列化合物的分子结构信息以期指导其治理过程着手,考察电化学作用下的降解行为,开发出电催化激活分子氧工艺、光助电催化氧化工艺和活性炭载钯电化学处理工艺,以分布最广的水和土壤典型环境进行净化修复研究,为其治理提供基础数据和理论依据。
     计算了全系列氯酚化合物的分子结构参数和能量,基于C-Cl、C-O和O-H的键长、键角及分子内的氢键与氯取代基的位置,排序了氯酚类化合物稳定性和pKa值,化合物结构的稳定性与降解的关系和pKa对迁移率贡献应用于实验的设计。借助UV-VIS光谱、Raman光谱、HPLC色谱等现代分析技术,考察了氯酚的电化学降解行为,证实了在电化学降解过程中4-氯酚的C-Cl键发生断裂和破环反应。电化学氧化降解中C-Cl键断裂是羟基攻击苯环发生亲电加成反应的结果,继而提出还原脱氯和氧化降解结合的工艺。
     开发了电催化激活氧气降解氯酚工艺。常温常压下不活泼的氧气分子在电催化作用下被激活,产生HO~·、HO_2~·等强氧化性活性物质。对氯酚和毒性大的中间产物苯醌等去除效果显著,氧气激活增强因子为110%。电流密度、曝氧或空气量、pH值、温度等因素对电催化激活分子氧有不同程度的影响。电催化激活分子氧的工艺具有广泛适用性,对酸性或碱性的氯酚废水,不需稀释或中和调节而直接处理,50mgL~(-1)的降解率240min时达到95%以上。实验还发现废水的浓度在很大的范围均有高的降解速率,增加了40倍的氯酚初始浓度高达2000mgL~(-1)时其仍有80%,同时其中间产物如苯醌亦降解迅速。基于此的初步工程设计可用于工业废水治理。
     发展了光助强化电催化氧化工艺处理氯酚,将紫外光引入电催化反应器,光电结合协同作用明显,增强因子达到108%。当操作条件相同时,在120分钟的处理时间内,氯酚的去除效率:光助电催化激活氧气>光助电催化>电催化激活氧气>电催化。光助电催化工艺适合处理浓度小于1000mgL~(-1)的氯酚废水,对pH值在3-9间的氯酚废水都能取得较好的处理效果。光电结合能促进羟基自由基的氧化作用,紫外光的引入促进了对电催化副产物氧气的利用。氯酚降解的主要产物与电催化激活氧气过程相似,降解动力学符合表观一级反应过程。
     制备了载钯活性炭催化剂用于氯酚废水处理,其吸附等温曲线遵循Freundlich等温式。实验结果表明载钯促进氯酚的去除,氢气对载钯催化剂的脱氯效果起着非常关键的作用。载钯活性炭电化学处理工艺对氯酚的去除作用主要包括三方面:(1)活性炭的吸附;(2)活性炭微电极表面钯还原脱氯;(3)电极表面上的降解矿化。该工艺采用还原作用脱除氯酚污染物中的氯取代基,使氯离子从苯酚母体上解离,苯酚进一步降解直至
Chlorophenols (CPs), having high toxicity, biorefractory, bioaccumulation and carcinogenic potential, are widely found in the environment and are significant contaminants at many sites selected for cleanup on the USEPA top priority toxic pollutants list. There is need to treat such contaminants in concerning of environmental protection. In present work, various electrochemical methods such as electrocatalytic activation of dioxygen, photo-assisted electrocatalysis, and electrochemical dechlorination by activated carbon loaded palladium, were developed to treat and remediate water and soil contaminated by chlorophenols.Calculation of molecular structure and properties of the whole chlorophenols series by applying Gaussian'98 software were carried out to arrange and assist experiments design based on their stabilities and pKa values. Electrochemical degradation behaviors of chlorophenols were systematically investigated by employing analytical techniques of UV-VIS, Raman spectroscopy and HPLC. For electrochemical degradation of 4-CP, the C-Cl bond was broken and chlorine ion was taken away from the benzene ring as a result of electrophilic addition reaction of hydroxyl radical. The combination technologies of reduction dechlorination and oxidation degradation were proposed.Electrocatalytic activation of dioxygen for chlorophenol degradation was studied. At ambient temperature and atmosphere pressure, dioxygen can be activated to generate stronger oxidants such as HO and HO2 under the electrocatalysis. The process of activated dioxygen with electrocatalysis can significantly improve the degradation of chlorophenol and its intermediate. The promoting factor for 4-CP degradation was 110%. Operational parameters can affect the activation of dioxygen in electrochemical process such as current density, sparged dioxygen rate, pH, and temperature. By applying the technique, acid/alkali and enriched wastewater can be treated without necessary pretreatment with efficiency over 95% for a 240 min treatment of a 50 mg L~(-1) concentration. It was found that removal rate of chlorophenol could be 80% for high concentration of 2000 mg L~(-1), 40 times as normal, and highly descended for its intermediate of benzoquinone. The preliminary systematic design and economic validity of the technology were analyzed.Photo-assited electrocatalysis technology was developed. Synergetic effects of the combined process were obvious and the promoting factor was 108%. Given the same operating conditions and reaction time, the removal rate of 4-CP followed the sequence: photo-assited electrocatalysis activation of dioxygen > photo-assited electrocatalysis > electrocatalysis activation of dioxygen > electrocatalysis. Photo -assited electrocatalysis technology had good efficiency on the lower concentration chlorophenol wastewater (less than 1000 mg L~(-1)). The combination of photocatalysis and electrocatalysis could enhance the
引文
Abe K,I., Tanaka K., Fe~(3+) and UV-enhanced ozonation of chloropbenolic compounds in aqueous medium, Chemosphere, 1997, 35: 2837-2847.
    Acar Y.B., Alshawabkeh A.N., Principles of electrokinetic remediation, Environ. Sci. Technol., 1993, 27(13): 2638-2647.
    Agrios, A. G., Gray, K.A., Weitz, E., Narrow-band irradiation of a homologous series of chloropbenols on TiO_2: charge-transfer complex formation and reactivity, Langmuir, 2004, 20(14): 5911-5917.
    Alshawabkeh A.N., Acar Y.B., Removal of contaminants from soils by electrokinetics: a theoretical treatise, J. Environ. Sci. Health, 1992, A27:1835-1861.
    Androulaki E., Hiskia A., Dimotikali D., Minero C., Calza P., Pelizzetti E., Papaconstantinou E., Light induced elimination of mono and polychlorinated phenols from aqueous solutions by PW_(12)O_(40)~(3-). The case of 2,4,6-trichlorophenol, Environ. Sci. Technol., 2000, 34: 2024-2028.
    Antonaraki S., Androulaki E., Dimotikali D., Hiskia A., Papaconstantinou E., Photolytic degradation of all chlorophenols with polyoxometallates and H_2O_2, J. Photochem. Photobiol. A: Chem., 2002, 148: 191-197.
    APHA; AWWA; WEF. 1995. Standard Method for the Examination of Water and Wastewater, 19th ed. APHA. Washington, DC.
    Armenante P.M., Kafkewitz D., Lewandowski G., Env. Pro., 1992, 11 (2): 113-122.
    Armenante P.M., Pal N., Lewandowski G, Role of mycelium and extracellular protein in the biodegradation of 2, 4, 6-trichlorophenol by Phanerochaete chrysosporium, Appl. Environ. Microbiol., 1994, 66: 1711-1718.
    Arnold W.A., Ball W.P., Roberts A.L., Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control, Journal of Contaminant Hydrology, 1999, 40: 183-200.
    Arnold W.A., Roberts A.L., Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environ. Sci. Technol., 2000, 34(9): 1794-1805.
    Axelssona A.K., Dunne L.J., Mechanism of photocatalytic oxidation of 3,4-dichlorophenol on TiO_2 semiconductor surfaces, J. Photochem. Photobiol. A: Chem., 2001, 144:205-213.
    Ayranci E., Conway B.E. Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes, J. Electroanal. Chem., 2001, 513: 100-110.
    Bader H., Sturzenegger V., Hoigne J., Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalysed oxidation of N, N-diethyl-p-phenylenediamine (DPD), Water Res., 1988, 22 (9): 1109-1115.
    Barthazy P., Worle M., Mezzetti A., Dioxygen activation at [OsCl(dcpe)_2]~+ gives [OsCl(O)(dcpe)_2]~+, the first stable oxo complex of osmium(Ⅳ), J. Am. Chem. Soc., 1999, 121: 480-481.
    Barthazy P., Worle M., Ruegger H., Mezzetti A., Oxo complexes of osmium (Ⅳ) formed via dioxygen activation. X-ray structures of [OsX(dcpe)_2]PF_6 (X=Cl, Br), [OsCl(E2-O_2)(dcpe)~2]-BPh_4, and [OsCl(O)(dcpe)_2]BPh_4 (depe=1,2-Bis(dieyclohexylphosphino) ethane), Inorg. Chem., 2000, 39: 4903-4912.
    Batchelder L.S., Clymer J., Ragle J.L., Deuteron quadrupole coupling in hydrogen bonded systems. IV. Deuteron quadrupole coupling in substituted phenols, J. Chem. Phys., 1981,74:4791-4799.
    Bauer R., Waldner G, Fallmann H., Hager S., Klare M., Krutzler T., Malato S., Maletzky P., The photo-Fenton reaction and the TiO_2/UV process for wastewater treatment-novel developments, Catal. Today, 1999, 53(1): 131-144.
    Benitez F.J., Beltran-Heredia J., Acero J.L., Rubio F.J., Chemical decomposition of 2,4,6-trichlorophenol by ozone, Fenton's reagent, and UV radiation, Ind. Eng. Chem. Res., 1999,38 (4): 1341-1349.
    Benitez F.J., Beltran-Heredia J., Acero J.L., Rubio F.J., Contribution of free radicals to chlorophenols decomposition by several advanced oxidation techniques, Chemosphere, 2000a, 41:1271-1277.
    Benitez F.J., Beltran-Heredia J., Acero J.L., Rubio F.J., Rate constants for the reactions of ozone with chlorophenols in aqueous solutions, J. Hazard. Mater. B, 2000b, 79:271-285.
    Boncz M.A., Bruning H., Rulkens W.H., Sudholter E.J.R., Harmsen GH., Bijsterbosch J.W., Kinetic and mechanistic aspects of the oxidation of chlorophenols by ozone, Water Science and Technology, 1997, 35: 65-72.
    Boronina T, Klabunde K.J., Sergeev G, Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium, tin, and zinc, Environ. Sci. Technol., 1995,29(6): 1511.
    Borras C, Laredo T., Scharifker B.R., Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2, Electrochimica Acta, 2003, 48: 2775-2780.
    Brink G-J T., Arends I., Sheldon R., Green, Catalytic Oxidation of Alcohols in Water, Science, 2000, 287: 1636-1639.
    Chan W.F., Larson R.A., Products of ozonolysis of aromatic compounds in aqueous solution containing nitrite ion, Ozone: Sci. Eng., 1995,17: 627-635.
    Chan Y.Ch., Chen J.N., Lu M.Ch., Intermediate inhibition in the heterogeneous UV-catalysis using a TiO_2 suspension system, Chemosphere, 2001,45:29-35.
    Chatterjee D., Mahata A., Demineralization of organic pollutants on the dye modified TiO_2 semiconductor particulate system using visible light, Appl. Catal. B, 2001,33:119-125.
    Chen C.C., Lei P.X., Ji H.W., Ma W.H., Zhao J., Photocatalysis by titanium dioxide and poIyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study, Environ. Sci. Technol., 2004,38: 329-337.
    Chen G, Wang Z.Y., Xia D.G, Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium, Electrochimica Acta, 2004, 50(4): 933-937.
    Chen P.C., Tzeng S.C., Theoretical study on the molecular structures of dinitrophenols and trinitrophenols, J. Mol. Struct. (THEOCHEM), 1999,467:243-257.
    Chen ST., Stevens D.K., Kang GY., Pentachlorophenol and crystal violet degradation in water and soil using heme and hydrogen peroxide, Water Research, 1999, 33(17): 3657-3665.
    Chis V., Molecular and vibrational structure of 2,4-dinitrophenol: FT-IR, FT-Raman and quantum chemical calculations, Chem. Phys., 2004,300: 1-11.
    Christiansen N., Hendriksen H.V., Jarvinen T., et al., Degradation of chlorinated aromatic compounds in UASB reactors, Water Sci. Technol, 1995, 31:249-259.
    Comminellis Ch. et al., Electrochemical oxidation of phenol for wasterwater treatment using SnO_2 anode, J. Appl. Electrocbem., 1993, 23: 108-112.
    Comninellis Ch., Pulgarin C., Anodic oxidation o phenol for waste water treatment, J. Appl. Electrocbem., 1991, 21: 703-708.
    Cong Y.Q., Wu Z.C., Ye Q., Tan T., Degradation of chlorophenol by in-situ electrochemically generated oxidant, J. Zhejiang Univ. SCI., 2004, 5(2): 180-185.
    Cong Y.Q., Wu Z.C., Zhou M.H., Ye Q., Tan T.N., In situ electrochemical reactions for phenolic groundwater remediation, Abstracts of papers of the American Chemical Society, 225:114-Envr Part 1 Mar 2003.
    Cong Y.Q., Ye Q., Wu Z.C., Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation, IChemE. Process Safety and Environmental Protection, 2005, 83(B2): 178-183.
    Costas M., Mehn M.P., Jensen M.P., Que L., Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates, Chem. Rev. 2004, 104: 939-986.
    Cox C.D., Shoesmith M.A., Ghosh M.M., Electrokinetic remediation of mercury-contaminated soils using iodine/iodide lixiviant, Environmental Science & Technology, 1996, 30:1933-1938.
    Cybulski A., Trawczynski J., Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts, Applied Catalysis B: Environmental, 2004, 47: 1-13.
    Czaplicka, M., Sources and transformations of chlorophenols in the natural environment, Sci. Total Environ. 2004, 322, 21-39.
    Danis T.G., Albanis T.A., Petrakis D.E., Promonis P.J., Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminium phosphates, Water Res., 1998, 32(2): 295-302.
    Dean J.A., Lange's handbook of chemistry (15th Ed.), The McGraw-Hill Companies, Inc., 1999.
    Dean, J.A., Lange's Handbook of Chemistry, 13th edition (McGraw-Hill, New York, USA), 1985.
    Deng B, Burris D.R., Campbell T.J., Reductive of vinyl chloride in metallic iron-water systems, Environ. Sci. Technol., 1999, 33(15): 2651-2656.
    Deng Yu L., Eberspacher J., Wager B. et al., Degradation of 2,4,6-trichloropbenol by Azotobacter sp. strain GP1. Appl. Environ. Microbiol, 1991, 57: 1920-1928.
    Dionysiou D.D., Khodadoust A., Kern A.M., Suidan M.T., Baudin I., La^yne J.M., Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO_2 rotating disk reactor, Appl. Catal. B, 2000, 24: 139-155.
    Do J.S. and Yeh W-C, Paired electrooxidative degradation of phenol with in situ electrogerered hydrogen peroxide and hypochlorite, J.Appl.Electrochem., 1996, 26: 673-678.
    Doong R.A., Chert C.H., Maithreepala R.A., Chang S.M., The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chloropbenol in titanium dioxide suspensions, Water Res., 2001, 35(12): 2873-2880.
    EC Decision 2455/2001/EC of the European Parliament and of the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC (L 331 of 15-12-2001).
    EPA 822-Z-99-001, U.S. Environmental Protection Agency, Office of Water: Washington, DC, 1999.
    Ettala M., Koskela J., Kiesila A., Wat. Res., 1992, 26(6): 797-804.
    Fennelly J.P., Roberts A.L., Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants, Environ. Sci. & Technol., 1998, 32: 1980.
    Flesazr, B., Ploszynska J., An attempt to define benzene and phenol electrochemical oxidation mechanism, Electrochim Acta, 1985, 30:31-42.
    Gherman B.F., Baik M-H., Lippard S.J., Fresher R.A., Dioxygen activation in methane monooxygenase: A theoretical study, J. Am. Chem. Soc., 2004, 126: 2978-2990.
    Gillham R.W., O'Hannesin S.F. Modern trends in Hydrology, International Association of Hydrologists Conference; IAH: Hamilton, Canada, 1992, 10.
    Gillham R.W., O'Hannesin S.F., Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground water, 1994, 32: 958.
    Goi A., Trapido T., Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: a comparative study, Chemosphere, 2002, 46(6): 913-922.
    Goskonda S., James Catallo W., Junk T., Sonochemical degradation of aromatic organic pollutants, Waste Management, 2002, 22:351-356.
    Graham L.J., Jovanovic G., Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed; Implications for sludge and liquid remediation, Chemical Engineering Science, 1999, 54: 3085-3093.
    Guo J., Al-Dahhan M., Kinetics of wet air oxidation of phenol over a novel catalyst, Ind. Eng. Chem. Res., 2003, 42(22): 5473-5481.
    Oupta S., Stadler M., Noser C., Ghosh A., Steinhoff B., Dieter L., Horwitz C., Schramm K., Collins T., Rapid total destruction of chlorophenols by activated hydrogen peroxide, Science, 2002, 296: 326-328.
    Hamoudi S., Larachi E, Sayari A., Wet oxidation of phenolic solutions over heterogeneous catalysts: Degradation profile and catalyst behavior, Journal of Catalysis, 1998, 177: 247-258.
    Hansch C. and Leo A., Exploring QSAR: fundamentals and applications in chemistry and biology, Washington: American Chemical Society, 1995.
    Hao H.W., Chen Y.E, Wu M.S., Wang H., Yin Y.W., Lu Z.L., Sonochemistry of degrading p-chlorophenol in water by high frequency ultrasound, Ultrasonics Sonochemistry, 2004, 11: 43-46.
    Hashem T.M., Zidewagen M., Braun A.M., Simultaneous photochemical generation of ozone in the gas phase and photolysis of aqueous reaction systems using one VUV light source, Ozone: Sci. Eng., 1990, 12: 73-94.
    Hautaniemi M., Kallas J., Munter R., Trapido M., Modeling of chloropbenol treatment in aqueous solutions. 1. Ozonation and ozonation combined with UV radiation under acidic conditions, Ozone: Sci. Eng., 1998, 20(4): 259-282.
    Heberer T., Stan H., Detection of more than 50 substituted phenols as their tert-butyldimethylsilyl derivatives using gas chromatography-mass spectrometry, Anal. Chim. Acta, 1997, 341:21-34.
    Hendriksen H.V., Larsen S., Appl. and Env. Micr., 1992, 58(1): 365-370.
    Herrmann J.M., Guillard Ch., Disdier J., Lehaut C., Malato S., Blanco J., New industrial titania photocatalysts for the solar detoxification of water containing various pollutants, Appl. Catal. B, 2002, 35: 281-294.
    Hirvonen A., Trapido M., Hentunen J., Tarhanen J., Formation of hydroxylatcd and dimeric intermediates during oxidation of chlorinated phenols in aqueous solution, Chemosphere, 2000, 41: 1211-1218.
    Horvath T., Kaizer J., Speier G., Functional phenoxazinone synthase models Kinetic studies on the copper-catalyzed oxygenation of 2-aminophenol, Journal of Molecular Catalysis A: Chemical, 2004, 215:9-15.
    Howard P.H. and Meylan W.M., Handbook of physical properties of organic chemicals, CRC Press, Inc., 1997.
    Huling S.C.G., Arnold R.G., Sierka R.A., Jones P.K., Fine D.D., Contaminant adsorption and oxidation via Fenton reaction, J. Environ. Eng., 2000, 126(7): 595-600.
    Hunsberger J.F., Standard reduction potentials, in: R.C. Weast (Ed.), Handbook of Chemistry and Physics, 58th ed., D141-144, CRC Press, Ohio, 1977.
    Iniesta J., Exposito E., Gonzalez-Garcia J., Montiel V., Aldaz A., Electrochemical treatment of industrial wastewater containing phenols, J. Electrochem. Soc., 2002, 149: D57-D62.
    James R.C., Cascarelli A., William W.M., et al., Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol, Appl. Environ. Microbiol., 1994, 60: 3536-3542.
    Janoschek R., Fabian W.M.F., Thermodynamic properties of chlorinated phenols, cycle-C5 compounds, and derived radicals from G3MP2B3 calculations, J. Mol. Struct., 2003, 661: 635-645.
    Jardim W.F., Moraes S.G., Takiyama M.M.K., Photocatalytic degradation of aromatic chlorinated compounds using TiO_2: toxicity of intermediates, Water Res., 1997, 31:1728-1732.
    Jia J.P., Yang J., Liao J., Wang W.H., Wang Z.J., Treatment of dyeing wastewater with ACF electrodes, Water Research, 1999, 33(3): 881-884.
    Jovanovic G.N., Plazl P.Z., Sakrittichai P., Al-Khaldi K., Dechlofination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst, Ind. Eng. Chem. Res., 2004, ASAP Article.
    Juttner K., Galla U., Schmieder H., Electrochemical approaches to environmental problems in the process industry, Electrochimica. Acta, 2000, 45: 2575-2594.
    Kaballo H.P., Zhao Y.G., Wilderer P.A., Elimination of p-chiorophenol in biofilm reactors-a comparative study of continuous flow and sequenced batch operation, Wat. Sci. Tech., 1995, 31(1): 51-60.
    Kauzmann W., Adv. Protein Chem., 1959, 14, 37.
    Kiefer P.M., Jr., Copley S.D., Characterization of the initial steps in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase, Biochemistry, 2002, 41: 1315-1322.
    Kim S., Choi W., Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path, J. Phys. Chem. B., 2005, 109(11): 5143-5149.
    Kim S.M., Vogelpohl A., Degradation of organic pollutants by the photo-Fenton process, Chem. Eng. Technol., 1998, 21: 187-191.
    Kim Y., Carraway E.R., Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons, Environ. Sci. Technol., 2000, 34(10): 2014-2017.
    Kiwi J., Pulgarin C., Peringer P., Effect of Fenton and Photo-Fenton reactions on the degradation and biodegradafion and biodegradability of 2 and 4-nitrophenols in water treatment, Appl. Catal. B: Environ., 1994, 3(4): 335-350.
    Kiyohara H., Hatta T., Ogawa Y., et al., Isolation of Pseudormonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols, Appl. Environ. Microbiol, 1992, 58: 1276-1283.
    Koh S.C., Mccullar M.V., Focht D.D., Biodegradation of 2,4-dichlorophenol through adistal meta-fission path way, Appl. Environ. Microbiol., 1997,63: 2054-2057.
    Komatsuzaki H., Nagasu Y., Suzuki K., Shibasaki T., Satoh M., Ebina F., Hikichi S., Akita M., Moro-oka Y., J. Chem. Soc. Dalton Trans., 1998, 511-512.
    KSrbahti B.K., Tanyolac A., Continuous electrochemical treatment of phenolic wastewater in a tubular reactor, Water Research, 2003, 37:1505-1514.
    Korbahti B.K., Tanyolac A., Kinetic modeling of conversion products in the electrochemical treatment of phenolic wastewater with aNaCl electrolyte, Ind. Eng. Chem. Res., 2003,42(21): 5060-5065.
    Kryatov S.V., Chavez F.A., Reynolds A.M., Rybak-Akimova E.V., Que L., Tolman W.B., Mechanistic studies on the formation and reactivity of dioxygen adducts of diiron complexes supported by sterically hindered carboxylates, Inorg. Chem., 2004,43: 2141-2150.
    Kuo W.S., Destruction of toxic organics in water by an injection-type downflow UV/O_3 oxidation reactor, Ozone: Sci. Eng., 1999,21(5): 539-550.
    Kwon B.G, Lee D.S., Kang N., Yoon J., Characteristics of p-chlorophenol oxidation by Fenton's reagent, Water Res., 1999, 33(9): 2110-2118.
    Lageman R., Electroreclamation. Applications in the Netherlands, Environ. Sci. Technol., 1993, 27(13):2648-2650.
    Laurenti E., Ghibaudi E., Ardissone S., Ferrari R.P., Oxidation of 2,4-dichlorophenol catalyzed by horseradish peroxidase: characterization of the reaction mechanism by UV-visible spectroscopy and mass spectrometry, Journal of Inorganic Biochemistry, 2003,95: 171-176.
    Lee B.N., Lou J.C., Yen P.C., Catalytic wet oxidation of 2,4-dichlorophenolic solutions: activity of the manganese-cerium composite catalyst and biodegradability of the effluent stream, Water Environ. Res.: A Res. Publ. Water Environ. Fed., 2002, 74(1): 28-32.
    Legrini O., Oliveros E., Braun A.M., Photochemical process for water treatment, Chem. Rev., 1993, 93:671-698.
    Li Z.H. and Neretnieks I., Electroremediation: removal of heavy metals from soils by using cation-selective membrane, Environ Sci Technol, 1998, 32: 394-397.
    Lin K.S., Wang H.P., Catalytic oxidation of 2-chlorophenol in confined channels of ZSM-48, J. Phys. Chem. B., 2001,105(21): 4956-4960.
    Lin K.S., Wang H.P., Li M.C., Oxidation of 2,4-dichlorophenol in supercritical water, Chemosphere, 1998,36(9): 2075-2083.
    Liu Y.H., Yang F.L., Chen J.W., Gao L.N., Chen GH., Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe, Chemosphere, 2003,50(10): 1275-1279.
    Liu Y.H., Yang F.L., Yue P.L., Chen GH., Catalytic dechlorination of chlorophenols in water by palladium/iron, Water Research, 2001,35: 1887-1890.
    Lucking F., Koser H., Jank M., Ritter A., Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Res., 1998, 32(9): 2607-2614.
    Ma K.C., Shiu W.Y., Mackay D., Aqueous solubilities of chlorinated phenols at 25.degree.C, J. Chem. Eng. Data, 1993, 38: 364-366.
    Madsen T., Aamand J., Anaerobic transfomation and toxicity of trichlorophenols in a stable enrichment culture, Appl. Environ. Microbiol., 1992, 58: 557-561.
    Maletzky P., Bauer R., Lahnsteiner J., Pouresmael B., Immobilization of iron ions on Nation and its applicability to the photo-Fenton method, Chemosphere, 1999, 38(10): 2315-2325.
    Masschelein R.W., Langlais B., Thielsen E., Blaich L., Bell J., Reading A., Colorimetric method for manual determination of ozone concentrations in water, Ozone: Sci. Eng., 1998, 20(6): 443-445.
    Masunaga S., Susarla S., Gundersen J.L., Yonezawa Y., Pathway and rate of chlorophenols transformation in anaerobic estuarine sediment, Envir. on Sci. Technol., 1996, 30:1253-1260.
    Matheson L.J., Tratnyek P.G., Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 1994, 28(12): 2045-2053.
    Mazellier P., Mallhot G., Bolte M., Photochemical behavior of the iron(Ⅲ)/2,6-dimetylphenol system, New J. Chem., 1997, 21: 389-397.
    Meunier B., Catalytic degradation of chlorinated phenols, Science, 2002, 296: 270-271.
    Michalska D., Bienko D.C., Abkowicz-Bienko A.J., Latajka Z., Density Functional, Hartree-Fock, and MP2 studies on the vibrational spectrum of phenol, J. Phys. Chem., 1996, 100: 17786-17790.
    Michalska D., Zierkiewicz W., Bienko D.C., Wojciechowski W., Zeegers-Huyskens T., "Troublesome" vibrations of aromatic molecules in second-order moller-plesset and density functional theory calculations: Infrared spectra of phenol and phenol-OD revisited, J. Phys. Chem. A., 2001, 105(38): 8734-8739.
    Muftikian R., Fernando Q., Korte N.A., Method for the rapid dechlodnation of low molecular weight chlorinated hydrocarbons in water, Water Res., 1995, 29 (10): 2434-2439.
    Muftikian R., Nebesny K., Fernando Q., X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants, Environ. Sci. Technol., 1996, 30: 3593.
    Nagata Y., Nakagawa M., Okuno H., Mizukoshi Y., Yim B., Maeda Y., Sonochemical degradation of chlorophenols in water, Ultrasonics Sonochemistry, 2000, 7:115-120.
    Ni C.H., Chen J.N., Heterogeneous catalytic ozonation of 2-chlorophenol in aqueous solution with alumina as a catalyst, Water Sci. Technol., 2001, 43(2): 213-220.
    Noradoun C., Engelmann M.D., McLaughlin M., Hutcheson R., Breen K., Paszczynski A., Cheng I.F., Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions, Ind. Eng. Chem. Res., 2003, 42: 5024-5030.
    Otsuka K., Yamanaka I., Electrochemical cells as reactors for selective oxygenation of hydrocarbons at low temperature, Catalysis Today, 1998, 41: 311-325.
    Ottosen L.M., Eriksson T., Hansen H.K. and Ribeiro A.B., Effects from different types of construction refuse in the soil on electrodialytic remediation, Journal of Hazardous Materials, 2002, B91: 205-219.
    Oturan M.A., An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants, Journal of Applied Electrochemistry, 2000, 30: 475-482.
    Oturan M.A., Oturan N., Lahitte C., Trevin S., Production of hydroxyl radicals by electrochemically assisted Fenton's reagent application to the mineralization of an organic micropollutant, pentachlorophenol, J. Electroanal. Chem., 2001, 507: 96-102.
    Phillips D.L., Fang W.H., Zheng X., Isodiiodomethane is the methylene transfer agent in cyclopropanation reactions with olefms using ultraviolet photolysis of diiodomethane in solutions: A density functional theory investigation of the reactions of isodiiodomethane, iodomethyl radical, and iodomethyl cation with ethylene, J. Am. Chem. Soc., 2001, 123(18): 4197-4203.
    Phillips D.L., Myers A.B., Short-time photodissociation dynamics of iodoalkancs: Refinement using resonance Raman intensities of isotopic derivatives, Journal of Raman Spectroscopy, 1997, 28(11): 839-848.
    Polcaro A.M., Mascia M., Palmas S., Vacca A., Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process, Ind. Eng. Chem. Res., 2002, 41:2874-2881.
    Polcaro A.M., Palmas S.F., Mascia R., On the performance of Ti/SnO_2 and Ti/PbO_2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, J. Appl. Eleetrochem., 1999, 29: 147-151.
    Portela J.R., Nebot E., Martinez de la Ossa E., Kinetic comparison between subcritical and supercritical water oxidation of phenol, Chemical Engineering Journal, 2001, 81: 287-299.
    Quan X., Chen S., Su J., Chen J.W., Chen G.H., Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped TiO_2/Ti electrode, Separation and Purification Technology, 2004, 34: 73-79.
    Reddy K. and Parupudi U.S., Effects of soil composition on the removal of chromium by electrokinetics, Journal of Hazardous Materials, 1997, 55: 135-158.
    Reddy K.R., Xu C.Y., Chinthamreddy S., Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, Journal of Hazardous Materials, 2001, B84: 279-296.
    Rinker E.B., Ashour S.S., Johnson M.C., Kott G.J., Rinker R.G., Sandall O.C., Kinetics of aqueous-phase reaction between ozone and 2,4,6-trichlorophenol, AIChE J., 1999, 45(8): 1802-1807.
    Robert R., Ratnasamy P., Activation of dioxygen by copper complexes incorporated in molecular sieves, Journal of Molecular Catalysis A: Chemical, 1995, 100: 93-102.
    Rodgers J.D., Jedral W., Bunce N.J., Electrochemical oxidation of chlorinated phenols, Environ. Sci. Technol., 1999, 33(9): 1453-1457.
    Rodriguez I., Llompart M.P., Cela R., Solid-phase extraction of phenols, J. Chromatogr. A, 2000, 885: 291-304.
    Sabhi S., Kiwi J., Degradation of 2,4-dichlorophenol by immobilized iron catalysts, Water Res., 2001, 35(8): 1994-2002.
    Sauleda R., Brillas E., Mineralization of anliline and 4-chlorophenol in acidic solution by ozonation catalysed with Fe~(2+) and UVA light, Appl. Catal. B, 2001, 29: 135-145.
    Senzaki T., Kasuo Y., Removal of chlorinated organic compounds from wastewater by reduction process. Treatment of tetrachloroethane with iron powder, Kogyo Yosui, 1988, 357: 2-7.
    Senzaki T., Kasuo Y., Removal of chlorinated organic compounds from wastewater by reduction process. II Treatment of trichloroethane with iron powder, Kogyo Yosui, 1989,369:19-25.
    Senzaki T., Removal of chlorinated organic compounds from wastewater by reduction process. ⅢTreatment of trichloroethyene with iron powder, Kogyo Yosui, 1991,391: 29-35.
    Shen Z.M., Wang W.H., Jia J.P., Ye J.C., Feng X., Peng A., Degradation of dye solution by an activated carbon fiber electrode electrolysis system, Journal of Hazardous Materials, 2001,84:107-116.
    Shirin Z., Borovik A.S., Young V.G, Jr., Synthesis and structure of a MnIII(OH) complex generated from dioxygen, Chem. Commun, 1997,1967-1968.
    Shul'pin GB., Bochkova M.M., Nizova GV., Kozlova N.B., Aerobic photodegradation of phenols in aqueous solutions promoted by metal compounds, Appl. Catal. B, 1997,12:1-19.
    Sorokin A., Sens J., Meunier B., Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine, Science, 1995,268:1163-1166.
    Sung M., Huang C.P., In situ removal of 2-chlorophenol from unsaturated soils by ozonation, Environ. Sci. Technol., 2002, 36(13): 2911-2918.
    Sweeny K.H., Reductive degradation treatment of industrial and municipal wastewaters, Proc. Water Reuse Symposium, American Water Works Association Research Foundation: Denver, 1979,2: 1487-1497.
    Sweeny K.H., The reductive treatment of industrial wastes. II Process applications, AIChE Symp. Ser., 1981,77:72-78.
    Tahar N.B. and Savall A.J., Mechanistic aspects of phenol electorchemical degradation by oxidation by oxidation on aTa/PbO2 anode, J. Electrochem. Soc, 1998,145:3427-3434.
    Tomita K., Oshima Y., Stability of manganese oxide in catalytic supercritical water oxidation of phenol, Ind. Eng. Chem. Res., 2004,43(24): 7140-1143.
    Torrent M., Mogi K., Basch H., Musaev D.G, Morokuma K., A density functional study of possible intermediates of the reaction of dioxygen molecule with non-heme iron complexes, J. Phys. Chem. B., 2001,105(36): 8616-8628.
    Torres R.A., Torres W, Peringer P., Pulgarin C, Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes: Attempt of a structure-reactivity relationship assessment, Chemosphere, 2003, 50: 97-104.
    Trapido M., Hivronen A., Veressinina Y, Hentunen J., Munter R., Ozonation, ozone/UV and UV/H_2O_2 degradation of chlorophenols, Ozone: Sci. Eng., 1997,19(1): 75-96.
    Trawczynski J., Noble metals supported on carbon black composites as catalysts for the wet-air oxidation of phenol, Carbon, 2003,41:1515-1523.
    Ureta-Zaflartu M.S., Bustos P., Berrios C, Diez M.C., Mora M.L., Gutierrez C, Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode, Electrochimica Acta, 2002,47: 2399-2406.
    Virkutyte J., Sillanpaa M., Latostenmaa P., Electrokinetic soil remediation - critical overview, The Science of the Total Environment, 2002,289: 97-121.
    Wabner D., Grambow C, Reactive intermediates during oxidation of water at lead dioxide and platinum electrodes, J. Electroanal. Chem., 1985, 195:95-108.
    Wallar B.J., Lipscomb J.D., Dioxygen activation by enzymes containing binuclear non-heme iron clusters, Chem. Rev., 1996, 96: 2625-2657.
    Wang C.B., Zhang W., 15th Meeting of the North American Catalysis Society, May 18-23, 1997, Chicago, IL.
    WHO (World Health Organization). Environmental health criteria 93. Chlorophenols other than pentachlorophenol. WHO: Geneva, 1989.
    WHO (World Health Organization). Environmental health criteria for pentachlorophenol. Supplement Draft; WHO: Geneva, 1986.
    WHO (World Health Organization). Guidelines for drinking water quality, vol.2. Health criteria and other supporting information.Geneva, 1998.
    WHO, Global Water Supply and Sanitation Assessment 2000 Report, WHO/UNICEF Joint Monitoting Programme for Water Supply and Sanitation, World Health Organization and United Nations Children Fund.
    Wiley, Ullmann's Encyclopedia of Industrial Chemistry, 6th ed., New York, 1998.
    Wu Z. and Zhou M., Partial degradation of phenol by advanced electrochemical oxidation process, Environ. Sci. Technol., 2001, 35(13): 2698-2703.
    Wu Z.C., Cong Y.Q., Zhou M.H., Ye Q., Tan T.E., Removal of phenolic compounds by electro-assisted advanced process for wastewater purification, Korean J. Chem. Eng., 2002, 19(5): 866-870.
    Xiong Z., Xu Y., Zhu L., Zhao J., Photosensitized oxidation of substituted phenols on aluminum phthalocyanine-intercalated organoclay, Environ. Sci. Technol., 2005, 39(2): 651-657.
    Xu Y., Zhang W.X., Subcolloidal Fe/Ag particles for reductiove dehalogenation of chlorinated benzenes, Ind. Eng. Chem. Res., 2000, 39: 2238-2244.
    Yak H.K., Wenclawiak B.W., Cheng I.F., et al., Reductive dechlorination of polycholrinated biphenyls by zerovalent iron in subcritical water, Environ. Sci. Technol., 1999, 33(8): 1307-1310.
    Yang J., Jia J.P., Liao J., Wang Y.L., Removal of fulvic acid from water electrochemically using active carbon fiber electrode, Water Research, 2004, 38: 4353-4360.
    Yeh C.K.J., Kao Y.A., Cheng C.P., Oxidation of chlorophenols in soil at natural pH by catalysed hydrogen peroxide: the effect of soil organic matter, Chemosphere, 2002, 46: 67-73.
    Yoon J., Kim S., Lee D.S., Huh J., Characteristics of p-chlorophenol degradation by photo-Fenton oxidation,Water Sci. Technol., 2000, 42(3-4): 219-224.
    Yue B., Zhou Y., Xu J., Wu Z., Zhang X., Zou Y., Jin S., Photocatalytic degradation of aqueous 4-chlorophenol by silica-immobilized polyoxometalates, Environ. Sci. Technol., 2002, 36:1325-1329.
    Zhang L.H., Jia J.P., Ying D.W., Zhu N.W., Zhu Y.C., Electrochemical effect on denitrification in different microenvironments around anodes and cathodes, Research in Microbiology, 2005b, 156: 88-92.
    Zhang L.H., Jia J.P., Zhu Y.C., Zhu N.W., Wang Y.L., Yang J., Electro-chemically improved bio-degradation of municipal sewage, Biochemical Engineering, 2005a, 22: 239-244.
    Zheng X., Li Y.L., Phillips D.L., Resonance raman study of the short-time photodissociation dynamics of the A-band absorption of cyclopropyl iodide in cyclohexane solution, J. Phys. Chem. A., 2004, 108(39): 8032-8039.
    Zhou M.H., Wu Z.C., Wang D.H., Synergetic effects of UV/Fe~(3+) combined with electrocatalysis for p-nitrophenol degradation, Chinese Chemical Letters, 2002, 13: 375-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700