用户名: 密码: 验证码:
肺炎衣原体对血管内皮细胞的损伤及黄芩苷的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     动脉粥样硬化(atheroclerosis,AS)是多种心脑血管疾病的病理基础,加强对其病因、发病机制及防治的研究,对于预防多种心脑血管疾病的发生,降低心脑血管疾病的病残率和死亡率,具有非常重要的意义。AS的发生原因还不清楚,近年来愈来愈多的证据证明AS是一个慢性炎症性疾病。本世纪初有人提出了AS发生的感染学说,目前主要侧重于研究肺炎衣原体(Chlamydia pneumoniae简称CPN)与AS的关系。血管内皮细胞的功能障碍和受损是AS重要的病理变化。本实验的研究目的主要集中在两个方面,一是探讨CPN对血管内皮细胞损伤机制及中药对这些环节的调节;二是探讨中药的直接抗CPN增殖的作用。
     方法
     1.建立体外培养人脐静脉内皮细胞(HUVEC)感染肺炎衣原体细胞模型。采用姬母萨染色、荧光染色和电子显微镜证明肺炎衣原体在细胞内的寄生。
     将HUVEC置于25cm~2的培养瓶内,以含体积分数为15%小牛血清、2万U/L链霉素和300μg/L万古霉素、50ng/L内皮细胞添加剂的RPIM-1640培养液,经37℃、体积分数为5%CO_2培养箱内培养,培养后的内皮细胞以2×10~8/L的浓度接种于6孔培养板继续培养;孔底放入载玻片,待长成单层后加入肺炎衣原体,培养48h后,将载波片取出进行姬姆萨染色,姬姆萨染色方法参考鄂征法;
     肺炎衣原体的异硫氰酸荧光素(FITC)荧光染色:取爬有细胞的盖玻片,PBS洗2次;甲醇固定5min后洗去,经自然干燥后加入30μL肺炎衣原体单克隆荧光抗体,③37℃湿盒孵育,30min;再用PBS冲洗2次;或用伊文思蓝复染5min,吸干涂片上的水,在荧光显微镜下观察肺炎衣原体在HUVEC内形成的包涵体、始体(EB)或网状体(RB)。
     CPN的电子显微镜观察:用0.25%胰酶—EDTA消化感染CPN的细胞,在4℃用
ObjectiveArteriosclerosis (AS) is an important basic pathologic process in cardiocerebrosvascular disease. In order to lower the mortality and disability of cardiocerebrosvascular disease, it is very important to study the reasons, mechanism, treatment and prevention of AS. It is not very clear the reason of AS. Recently, more and more facts indicate that AS is a chronic inflammatory disease. At the beginning of this century, somebody has posed the theory of infection of AS. Chlamydia pneumoniae (CPN) has recently been associated with the development of coronary heart diseases by sero-epidemiological studies and by direct detection of the organism in atherosclerotic tissues. The endothelium plays an important role in regulating vascular blood flow, and it is now apparent that endothelial dysfunction is an important contributor to the pathogenesis of arteriosclerosis. The objective of this study was focus on two aspects:(1)to investigate the harm of human vascular endothelial cells induced by Chlamydia pneumoniae and the moderation of Baicalin;(2)to study the inhibitory effect of Baicalin on the proliferation of CPN. Methodl.We established the cell modal of human umbilical endothelial cell infected Chlamydia pneumoniae. The growth of CPN was proved by way of Giemsa, electron microscope and genus specific FITC-labeled monoclonal antibody.
    2. We detected the expression of CD54, CD106 and E-selectin by flow cytometry (FCM).3.We evaluated the level of TNF-α , IL-8 IL-1 Soluble CD54(sCD54) Soluble E-selectin(sE-selectin) by enzyme linked immunosorbent assay (EL1SA).4. We evaluated the effect of Baicalin on the proliferation of HUVEC by MTT5.We investigated the expression of Toll-like receptor-2 and Toll-like receptor-4 mRNA by reversetranscription PCR (RT-PCR).6. We evaluated the Toll-like receptor-2 by FCM.7. We observed the expression of sphingosine kinase mRNA by real-time RT-PCR.8. We test the inhibitory effects of Baicalin by calculating the inclusion count of CPN. Results1 .The normal HUVEC has the typical "cobblestone"style,and is Triangle, polygon. After the cells were infected by CPN, morphologic changes were observed, including cell lysis or necrosis, shedding. We also found many abnormal grains in the cultured cells. We proved the capability of CPN to grow in the HUVEC through Giemsa and anti-chlamydia pneumoniae fluorescein stain. The inclusions were seen in the cytoplasm, purple, sesame-like. By fluorescein stain, we could see the EBs. These appeared as bright apple green fluorescent pin-point, smooth-edge, and could be seen against a background of reddish-brown counterstained cells. Through electron microscope, EBs could be seen like a pear. 2.Baicalin could inhibit the proliferation of HUVEC. The inhibition ratio was 70% by lmg/ml, 10% by 0.062mg/ml, 50% by 0.54mg/ml.3.The expression of CD54, CD 106 were increased after stimulation of CPN by 2 fold respectively. And the level of E-selectin was also higher than the normal cell by 1.5 fold. High-dose Baicalin could lower the level of CD54 CD 106. The inhibition ratio was 73% and 81% respectively, whereas it had no effect on the expression of E-selectin. High-dose Baicalin could lower the level of E-selectin induced by TNF- α and had no effect on the it in normal HUVEC.4.The level of TNF-α and IL-8 were increased after stimulated by CPN by 3.0 fold and 1.27 fold. Baicalin in high mid and low-dose could lowed the levels of TNF- α ; Baicalin in high dose could
    lower the levels of IL-8.5. The level of soluble CD54 and E-selectin were increased after stimulated by CPN by 2.8 fold and 2.3 fold. Baicalin in high dose could low the levels of soluble CD54, whereas it had no effect on the expression of soluble E-selectin. Baicatin could lower the level of soluble E-selectin induced by TNF-α6. HUVECs infected with CPN had many vacuoles. The inclusion is purple, sesame-like. Baicalin in high dose could lower the inclusion count, and the vacuoles were diappeared in this group. 7.HUVECs were able to express TLR2mRNA, but not TLR4mRNA.CPN could upregulate the expression levels of TLR2mRNA and TLR2 obviously. The high-dose of Baicalin could lower the level of TLR2.8. Normal HUVECs were unable to express sphingosine kinase (SK) mRNA. Sphingosine kinase (SK) mRNA could be found after lh of infection of CPN. The highest level was in 2h. We could not detect the expression of SK mRNA after 4h. Baicalin in high dose could not change the expression of SK mRNA. Baicalin in high dose in cell for 4h before infected CPN could lower the expression of SK mRNA. ConclusionHUVECs would change in morphologic including the lysis, abnormal grains. On the other hand, the expression of CD54 CD106 and E-selectin were increased after stimulation of CPN, the level of TNF-α and IL-8 soluble CD54 and E-selectin were also increased, whereas, the level of IL-1 had no change. CPN could upregulate the expression levels of TLR2mRNA sphingosine kinase (SK) mRNA and TLR2 obviously. Our findings proved that CPN could upregulate the mediators of inflammation, TLR and SKmRNA.Baicalin could antiinflammation through lowing the proinflammatory cytokines, adhesion factors, the expression of SK) mRNA and TLR2. Baicalin could also inhibit the proliferation of CPN. Baicalin could potentially be used as a therapeutic strategy with which to inhibit the expression of adhesion factors, TLR in endothelial cells. Our findings encouraged the application of Baicalin for treatment of
引文
[1] Cybulsky M I, Gimbrone Ma Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis [J]. Science, 1991,251:788
    [2] Ross R. Atherosclerosis is an inflammatory disease[J]. N Engl J Heart J, 1999,138(5 PART 2): S419
    [3] Suvi-Sirkku E, Kaukoranta-Tolvanen, Tapani Ronni, et al. Expression of adhesion molecules on endothelial cells stimulated by Chlamydia pneumoniae [J] Microbial Pathogenesis 1996; 21: 407
    [4] Aruna D. Pradhan, MD, MPH et al. Soluble Intercellular Adhesion Molecule-1, Soluble Vascular Adhesion Molecule-1, and the Development of Symptomatic Peripheral Arterial Disease in Men. [J] Circulation 2002; 106:820
    [5] Brian K, Coombes, James B et al. cDNA Array Analysis of Altered Gene Expression in Human Endothelial Cells in Response to Chlamydia pneumoniae Infection. [J] Infection and Immunity 2001, 69(3): p. 1420
    [6] Krull M, Kramp J, Petrov T et al. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells [J] Infect Immun 2004; 72(11):6615
    [7] Capers Q, Alexander RW, Lou Pet al. Monocyte chemoattractant protein-1 in aortic tissues of hypertensive rats [J] Hypertension. 1997; 30:1397
    [8] H Kothe, MD, K Dalhoff et al. Hydroxymethylglutaryl Coenzyme A Reductase Inhibitors Modify the Inflammatory Response of Human Macrophages and Endothelial Cells Infected With Chlamydia pneumoniae [J] Circulation. 2000; 101:1760.
    [9] Kim MP, Gaydos CA, Wood BJ et al. Chlamydia pneumoniae enhances cytokine-stimulated human monocyte matrix metalloproteinases through a prostagl and in E2-dependent mechanism [J] Infect Immun. 2005 Jan;73(1):632
    [10] 郭金玲 张连凤 王金良等 冠心病患者血浆肿瘤坏死因子α及其受体的变化[J].天津医科大学学报 2004,10(2):173
    [11] 张俊 罗开良 刘增长等 高血压患者大动脉粥样硬化、内皮功能与白细胞介素6、肿瘤坏死因子α关系的研究[J].中国心血管病研究杂志 2003 1(3):185
    [12] Antonella Antonelli, Marzia Bianchi, Rita Crinelli, et al. Modulation of ICAM-1 Expression in ECV304 Cells by Macrophage-Released Cytokines[J] Blood Cells, Molecules, and Diseases 2001, 27(6): 978
    [13] 张敬芳 王光浩等 TNF-α诱导HUVE细胞的损伤及其意义[J].荆门职业技术学院学报 2002,17(2):82
    [14] 马丽萍 张国元 侯健等 白细胞介素6、肿瘤坏死因子对体外培养的血管内皮细胞的损伤作用[J].第二军医大学学报 1999,20(2):78
    [15] 金镇 裴凌 王德智等 肿瘤坏死因子对脐静脉内皮细胞增殖和细胞内游离钙浓度的影响[J].中华妇产科杂志 2000,35(11):657
    [16] Ross R The pathogenesis of atherosclerosis: a perspective for the 1990s. [J] Nature 1993; 362(29): 801-9.
    [17] 闻玉梅.现代医学微生物学[M].上海 上海医科大学出版社,1999
    [18] CHARLOTTE A, GAYDOS, JAMES T et al. Replication of Chlamydia pneumoniae In Vitro in Human Macrophages, Endothelial Cells, and Aortic Artery Smooth Muscle Cells[J] Infection and immunity, 64(5): 1614。
    [19] 章黎苹,黄元伟,朱建华等.肺炎衣原体的培养及对人脐静脉内皮细胞的感染[J].科技通报,2002,18(2):89
    [20] Tsun-Mei Lin, Lee Ann Campbell, Michael E, et al Monocyte-Endothelial Cell Coculture Enhances Infection of Endothelial Cells with Chlamydia pneumoniae The Journal of Infectious Diseases [J] 2000; 181: 1096-1100
    [21] 陆德源.医学微生物学[M].北京人民卫生出版社,2001
    [22] 施毅 肺炎支原体与肺炎衣原体研究进展[J]人民军医2004,47(6):354
    [23] 李涛 许香广 张国良等 健康人群肺炎衣原体感染状况分析[J].中国医学检验杂志2003,4(1):66
    [24] Saikku P, Leinonen M, Mattila K et al. Serologic evidencee of an association of a novel chlamydia, TWAR with chronic coronary heart disease and acute myocardial infarction. [J] Lancet. 1988; 2(8618):983-6.
    [25] Kuo CC, Shor A, Campbell LA, et al. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. [J] J Infect Dis, 1993; 167(4): 841~9
    [26] 袁佶 余竹元 冠状动脉粥样硬化性疾病患者肺炎衣原体抗体检测[J].中国人兽共患杂志 1999:15(1):12-13
    [27] 高熙智 王继法 冠心病患者血清肺炎衣原体检测结果分析[J].山东医药(内科) 1998:38(4):1-2
    [28] Bora Farsak, Aylin Yildirir, Yakut Akyon et al. Detection of Chlamydia pneumoniae and Helicobacter pylori DNA in Human Atherosclerotic Plaques by PCR. [J] J Clin Microbiol. 2000; 38(12): 4408-4411
    [29] Jaremo P, Richter A. Chlamydia pneumoniae IgG and the severity of coronary atherosclerosis [J]Eur J Intern Med. 2004; 15(8):508-510.
    [30] 牛玉宏 许从峰 周俊等 肺炎衣原体抗体IgA与动脉粥样硬化及再狭窄的相关性分析[J]临床心血管病杂志 2004,20(6):321
    [31] Zorc M, Kese D, Petrovic D, Chlamydia pneumoniae infection in Slovenian patients with diffuse coronary artery disease[J]. Med Arh. 2004; 58(6): 331-4
    [32] Sessa R, Di Pietro M, Santino I et al. Chlamydia pneumoniae infection and atherosclerotic coronary disease[J], Am Heart J. 1999; 137(6):1116-9.
    [33] Laitinen K, Laurila A, Pyhala L et al. Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits[J]. Infection and Immunity, 1997; 65(11): 4832-5.
    [34] Fong IW, Chiu B, Viira E et al. De Novo Induction of Atherosclerosis by Chlamydia pneumoniae in a Rabbit Model. [J] Infect Immun. 1999; 67(11):6048-55
    [35] Moazed TC, Kuo C, Grayston JT et al. Murine models of Chlamydia pneumoniae infection and atherosclerosis[J]. J Infect Dis. 1997; 175(4):883-90.
    [36] Patel P, Mendall MA, Carrington D et al. Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors[J] BMJ. 1995; 311(7007):711-4
    [37] Joseph BM, Jeffrey LA, Elizabeth HH, et al. Infection with chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model [J]Circulation 1998; 24;97(7): 633-6
    [38] Dumrese C, Maurus CF, Gygi D et al. Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells. [J] BMC Microbiol. 2005,21;5(1):2
    [39] 金俊飞 杨永宗 肺炎衣原体对C57BL/6J小鼠腹腔巨噬细胞泡沫化的影响[J]中国病理生理杂志 2000,16(8):730
    [40] Wick G, Xu Q The role of heat shock protein in protection and pathophysiology of the arterial wall [J]Mol Med Today, 1966,2:372;
    [41] Moazed TC, Kuo CC, Grayston JT et al. Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. [J] J Infect Dis. 1998; 177(5): 1322
    [42] 顾天爵.生物化学 北京:人民卫生出版社,1995
    [43] Zu Heringdorf DM, Vincent ME, Lipinski M, et ai. Inhibition of Ca(2+) signalling by the sphingosine 1-phosphate receptor S1P(1). [J] Cell Signal 2003,15(7):677-87
    [44] Hla T. Signaling and biological actions of sphingosine 1-phosphate. [J] Pharmacol Res 2003,47(5):401-7
    [45] Katsuma S, Hada Y, Ueda T, et al. Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. [J] Genes Cells 2002,7(12): 1217-30
    [46] Q Zhou, S Hakomori, K Kitamura et al. GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. [J]J. Biol. Chem, 1994,269(3): 1959-1965
    [47] Xia P, Vadas MA, Rye KA, et al. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL [J] J Biol Chem 1999,274(46):33143-7
    [48] Nomuria N, Miyajima N, Sazuka T, et al. Prediction of the coding sequences of unidentifiedhuman genes(I): the coding sequencesof 40 new genes(KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell Dine KG-1[J]. DNA Res, 1994,1:27
    [49] Taguchi T, Mitcham J L,Dower S K,et al.Chromosomal localization of TIL,a geneencoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4 p14[J]. Genomics, 1996,32(3):486.
    [50] Medzhitov R, Preston-Hurburt P, Janeway CA et al. Human homologue of the Drosophila Toll protein signals activation of adaptor immunity[J] Nature, 1997,388:394.
    [51] Rock F L, Hardium G, Timans J C, et al. A family of human receptor structurally related to Drosophila Toll [J] Proc Natl Acad Sci USA,1998,95:588.
    [52] Hornung V, Rothenfusser S, Britsch S, Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides[J]. J Immunol. 2002,168(9): 4531-7
    [53] Sebastian Sasu, David LaVerda, Nilofer Qureshi, et al. Chlamydia pneumoniae and Chlamydial Heat Shock Protein 60 Stimulate Proliferation of Human Vascular Smooth Muscle Cells via Toll-Like Receptor 4 and p44/p42 Mitogen-Activated Protein Kinase Activation [J] Circulation Research, 2001, 89: 244.
    [54] Netea MG, Kullberg BJ, Galama JM, et al. Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. [J] Eur J Immunol. 2002,32(4):1188
    [55] 刘青云.中药药理学北京:人民卫生出版社1997:41
    [56] Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. [J] J Pharm Pharmacol. 2000; 52(3):361-6
    [57] 刘克 关键 李菁华等 黄芩甙对铜绿假单胞菌R质粒的消除作用[J].微生物学杂志,2003;23(2):49
    [58] 杨彼得 胡海燕 黄世亮等 黄芩甙元和黄芩甙对皮肤真菌与细菌的抑制作用的研究[J].中药材2000:23(5):273
    [59] Chou TC, Chang LP, Li CY, Wong CS, Yang SP. The antiinflammatory and analgesic effects of baicalin in carrageenan-evoked thermal hyperalgesia. [J] Anesth Analg. 2003 Dec; 97(6): 1724-9.
    [60] 俞燕 杨于嘉 毛定安等 黄芩甙对大鼠感染性脑水肿NF-κB活性的影响[J]中国当代儿科杂志 2000,2(6):387
    [61] 刘杰波 黄芩苷对细菌脂多糖致星形胶质细胞损伤保护机制的研究[J].湖南中医药导报 2004,10(3):79
    [62] 罗志晓 李成章 曹正国 黄芩苷对牙龈成纤维细胞和牙周膜细胞上ICAM-1表达调节的研究[J].口腔医学研究2004,20(2):123
    [63] 李成章 曹正国 杨茹 黄芩苷对牙龈成纤维细胞和牙周膜细胞pro-MMP-1和MMP-3表达的影响 中华口腔医学杂志 2004,39(3):197
    [64] 俞燕 杨于嘉 陶永光等 黄芩甙、地塞米松对大鼠感染性脑水肿细胞因子的影响[J].湖南医科大学学报 2000,25(6):
    [65] 周俊伟 栀子苷、黄芩苷对大鼠局灶性脑缺血模型缺血脑组织单核细胞趋化蛋白(MCP-1)的影响[J].中医药学刊 2004,22(6):1016
    [66] 黄华艺 查锡良等 黄酮类化合物抗肿瘤作用研究进展[J].中国新药与临床杂志 2002,21(7):428
    [67] 张永钦 周井炎 徐辉碧等 黄芩苷对阿霉素引起的脂质过氧化损伤的保护作用[J].中国药理学通报Chinese Pharmacological Bulletin 1999;15(2):190
    [68] 谭延华 刘爱芳 王新英等 黄芩甙和芸香甙对.OH的清除作用[J].西安医科大学学报 1997;18(1):41
    [69] 宋元宗 杨于嘉 贾延吉等 黄芩甙拮抗大鼠神经元和星形胶质细胞氧应激损伤[J].中国中西医结合杂志 2004;24(4):339
    [70] 王毅 朱佩芳 王正国等 黄芩甙对内皮细胞的保护作用及其生化机理[J].中国中医急症 1994;3(6):260
    [71] 刘建勋 尚晓鸿 王钢等 通心络胶囊对实验性心肌缺血心律失常及高脂血症的影响[J].中国中西医结合杂志,1997,17(7):425。
    [72] Berg HF, Maraha B, Scheffer GJ, et al. Treatment with clarithromycin prior to coronary artery bypass graft surgery does not prevent subsequent cardiac events. [J]Clin Infect Dis. 2005; 40(3): 358.
    [73] De Kruif MD, van Gorp EC, Keller TT et al. Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research [J] Cardiovasc Res. 2005; 65(2):317-27.
    [74] 沈自尹 清热解毒药对感染性炎症作用原理的新认识[J].中国中西医结合杂志1997,17(10):628-629
    [75] 鄂征.组织培养技术北京:人民卫生出版社,1988:202
    [76] 郑永唐 贲昆龙.测定细胞存活和增殖的MTT方法的建立[J].免疫学杂志,1992,8(4):266
    [77] Suvi-Sirkku E,Kaukoranta-Tolvanen, Tapani Ronni et al.Expression of adhesion molecule on endothelial cells stimulated by Chlamydia pneumoniae, [J]Microbial Pathogenesis 1966;21:407-411
    [78] Patel P et al. Association of Helicobacter pylori and chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. [J] BMJ,1995; 311, 711
    [79] 仉红刚 修瑞娟TOLL-like受体在血管内皮细胞损伤的作用[J].国外医学临床生物化学和检验学分册 2003,24(3):127
    [80] Katherine L, Edward R, Wang Shk, et al. In vito susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae [J] J Clin Microbiol, 1995, 33(9): 2411
    [81] Munro JM. Endothelial-leukocyte adhesive interactions in inflammatory disease. [J] Eur HEART J 1993; 14:72-7
    [82] 龚非力.医学免疫学北京:科学出版社
    [83] 李晓娟 王培训 刘良等 青藤碱抗炎抗风湿机理研究[J].广州中医药大学学报 2004,(21):1:34
    [84] Janson C, Ludviksdottir D, Gunnbjornsdottir M Circulating adhesion molecules in allergic and non-allergic asthma. [J] Respir Med. 2005; 99(1):45-51
    [85] Myron I, Cybulsky, Kaeko Iiyama, et al. A major role for VCAM-1, but not ICAM-I, in early atherosclerosis [J] J Clin Invest. 2001 May 15; 107(10): 1255-1262
    [86] Robert E, Molestina, Richard D, et al. Infection of Human Endothelial Cells with Chlamydia pneumoniae Stimulates Transendothelial Migration of Neutrophils and Monocytes. [J] Infect Immun. 1999; 67(3): 1323-1330
    [87] 杨奎 张德波 史焱等 含黄芩血清及黄芩甙影响内生致热原产生的影响[J].中药药理与临床1994(6):13。
    [88] 赵红艳 张藩 范书铎等 黄芩甙对发热大鼠下丘脑PGE2和cAMP含量的影响[J].中国应用生理学杂志 2002;18(2):139
    [89] Silvana A., Vielma, Gregor Krings, et al Chlamydophila pneumoniae Induces ICAM-1 Expression in Human Aortic Endothelial Cells via Protein Kinase C-Dependent Activation of Nuclear Factor-κB[J]., Circ Res. 2003; 92:1130-1137.
    [90] Cang-bao XU, Jacob HANSEN-SCHWARTZ, Lars EDVINSSON, Sphingosine signaling and atherogenesis [J]. Acta Pharmacol Sin 2004 Jul; 25(7): 849-854
    [91] Pu Xia, Mathew A, Kerry-Anne Rye et al. High Density Lipoproteins (HDL) Interrupt the Sphingosine Kinase Signaling Pathway [J]. J Biol Chem, 1999, 274(46): 33143.
    [92] Muto R, Motozuka T, Nakano Met al. The chemical structure of new substance as

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700