用户名: 密码: 验证码:
场致倍频吸收在双光子响应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双光子响应包括双光子吸收和倍频吸收两种效应。双光子吸收是一种非谐振的非线性过程,发生在光子的能量hv小于半导体材料的禁带宽度Eg而大于禁带宽度一半时,处于价带中的电子能同时吸收两个光子而完成由价带到导带的跃迁。而倍频吸收指的是入射光波首先发生非位相匹配的倍频效应,然后倍频光子被吸收。从宏观上看,这两种效应都是同时吸收了两个光子,而且反映在实验中都体现出产生的光电流与入射光强的平方成正比,但它们的物理本质是不同的。双光子吸收与三阶非线性光学效应相联系,而倍频吸收与二阶非线性光学效应相联系。双光子响应技术能够用来测量超短光脉冲的宽度。目前人们对硅光电探测器双光子响应的物理机制还不是很清楚。究竟是直接双光子吸收是主要的,还似非位相匹配的倍频效应产生倍频光被吸收是主要的,还是二者兼而有之,目前尚无定论。硅材料是具有反演对称中心的晶体,二阶非线性极化率为零,所以一般情况下不会发生倍频吸收。但是如果在硅晶体中存在电场,则可以产生等效二阶非线性极化率,等于三阶非线性极化率与电场的点乘积。倍频效效应与光整流效应在二阶非线性光学效应中同时发生,场致倍频效应与电场有关,本文的主要目的就是根据这些理论,研究场致倍频吸收在双光子响应中的作用。结果表明场致倍频吸收是主要的物理机制。实验中主要采用三种办法:第一种办法是通过硅商用光电二极管双光子响应特性的研究,发现由于内建电场的存在而导致的光整流效应,得出结论,在硅光电二极管中由电场诱导的倍频吸收是主要的物理机制的结论。第二种办法是制作了硅MSM结构样品,分别测量了器件的双光子响应特性,在外加电场作用下的外加电压与所产生的光电信号的二次关系以及光照位置与光电信号的关系等,根据倍频吸收与外加电场的强烈依赖关系,进一步证实了上述结论。第三种办法就是分别测量了Al/Si肖特基势垒处的双光子响应的各向异性和光电信号与肖特基势垒的关系,更进一步证实了,在硅材料的双光子响应中,由电场诱导的倍频吸收是主要的物理机制。最后,首次将半球型固浸透镜的原理应用于GaAs双光子光电探测器的研制中,使得在连续光输出功率较低的情况下,依然可以测量到较大的光电信号,这也为今后研制不同形状、具有较大的非线性光响应的半导体光电探测器奠定了基础。上述三种方法和GaAs探测器的制作,都具有创新性,都从理论和实验上证实了硅双光子响应器件中场致倍频吸收值主要的结论。
Two-photon response includes the two-photon absorption (TPA) and doubled-frequency absorption (DFA). Both TPA and DFA nonlinear process occur for photons whose energy hv is less than the semiconductor energy gap E_g, but greater than E_g/2 .The TPA means that two photons are absorbed simultaneously. And the DFA means that non-phase matching double frequency effect of the incident lightwave occurs in semiconductor material and then the doubled-frequency photons are absorbed. The essential of DFA is the single photon absorption of double-frequency photon. In macroscopical effect, whether TPA or DFA, both of them show the result that absorbing two photon to produce transmission, so we call "two-photon response" by combing these two effect together. Corresponding to the optical detector made by these two effects, it is difficult to differentiate the two effects because of their resemblance such as their responsibilities are both proportion to the square of incident intensity in experiments, etc. But they are different from each other in theory, the distinction of these two effects is that TPA has a certain feature of three-order nonlinear optics phenomenon but the DFA has a certain feature of two-order nonlinear optics phenomenon. In general, they have different request to incident light intensity, TPA need higher incident light intensity than DFA. Corresponding to centrosymmetric crystal whose second-order nonlinear optical susceptibilities are zero, so no DFA exist but TPA exist in them. But at surface or interface, the inversion symmetry is broken and a second-order dipole response can exist so DFA can appear. In addition, an applied electric field can also destroy its centrosymmetric and arose DFA, which we call it electric-field induced DFA.Since the first report of using two-photon response optical detector to construct autocorrelator to measure ultrashort pulse in 1992, the research of two-photon response optical detector get more and more recognition, especially Si two-photon response optical detector, because its response wavelength range include all optical communication wavelength, and it can construct Si base optical-electric integration device combine with Si base integrate circuit. So it is very significance to study Si two-photon response optical detector. Si is a kind
    of center-symmetric crystal, the physical mechanism of two-photon response is not well know and it cannot concluded which is dominant or both of them exists in optical detector made of such material. Most people think that TPA is the main mechanism of two-photon response before 1996, some person speculate on exist DFA according to reflect double frequency light from Si surface at the same year, but up to now we cannot see their further report about it. Our research shows that the DFA induced by electric field is the main physical mechanism of two-photon response.The theory foundation of DFA is the center of inversion will vanish when a centrosymmetric crystal existing in an invariableness electric field due to the action of electric field, so the second-order nonlinear optical effects include double-frequency effect can occur. Field induced effective second-order nonlinear susceptibilities equal to the product of the three-order susceptibilities tensor and electric-field vector. Si is belong to m3m point group, we discuss the form from theory analysis about field-induced effective second-order nonlinear susceptibilities when the direction of electric field along <100>、 <110> and <111> respectively and find that they have the same form with 4mm 、 mm2 and 3m point group respectively. These results further explain the disappearance of center of inversion. Optical rectification and double-frequency effect which both belong to second-order nonlinear optical effect simultaneity. So we must study double-frequency effect and optical rectification effect if we want to study double-frequency absorption simultaneity. Field-induced effective second-order nonlinear susceptibilities have certain relationship to electric field. However, TPA have no relationship to optical rectification effect, and have no relationship to applied electric field. So we can use such theory to differentiate DFA and TPA from experiment. The following experiments verify field-induced DFA is the main physical mechanism of Si two-photon response detector.We measure the relationship curve between the two-photon response and incident light power of Si commercial optical-electric detector. The result shows when the incident light power extrapolate to its value is zero, but the optical current is not equal to zero and above the origin. We have read some reference before and seen similar situation, some person explain it is the effect of mixed light, however, during our experiment, the mixed light already been removed by us. And we also find in some other reference, when light power extrapolate to its value was zero, the optical current was underside the origin. So if take the physical mechanism of two-photon response as TPA, it could not explain above experiment results better. But it can get reasonable explanation using single photon absorption after doubled-frequency. It was due to optical rectification of
    second-order nonlinear optics effect-existence. Because the direction of electric field produced by optical rectification were different, so when the curve extrapolate to incident light power was zero but the optical current was not zero, may be it lie above the origin or underside the origin.We fabricate Si Metal-Semiconductor-Metal planar two-photon response optical detector. Such device usually be taken as optical conductive device before, but we found it could be taken as optical voltage too. We also find correspond to different point of optical sensitivity plane had different optical sensitivity feature, and had a certain rule. Such phenomena had not been reported before. After analysis, we think the reason of this is due to the contact barrier between metal and semiconductor, and the result of self-build field. As the existence self-build field it must turn up DFA. During our experiment, we observe that the magnitude of optical current had a certain relationship with electric field. The stronger the electric field is, the bigger the optical current, vice versa , the weaker the electric field is, the smaller the optical current. Such situation shows that DFA take the main role, and the TPA has no relationship with electric field.We fabricate Si MSM face to face type two-photon response optical detector. It must exist second-order nonlinear optical effects due to the existence of self- field, so two effects must be existed at the same time those are double-frequency effect and optical rectification effect. During our experiment, let incident plumb MSM plane, and we really observe optical rectification signal, and through a fitting curve, we find that the experimental results are in good agreement with the theoretical analysis. The experimental result also verify the electric-field induced DFA is really existence in Si two-photon response photon-electric detector.Electric field induced DFA of second order nonlinear optical effects take the main role in two-photon response, and two-photon response must rely on the intensity of electric field mightily. We fabricate Si MSM face to face photoelectric detector in order to research the relationship between optical current and the intensity of applied electric field, measure the relationship between two-photon response and electric field. The results shows that the relationship between optical current and applied electric voltage is nonlinear, and it can get a reasonable explanation from the theory of "space-charge limited current". Such result further verify the fact that DFA is the main physical mechanism of two-photon response.GaAs is a cubic crystal with 43 m symmetry, the form of its third order
引文
[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett., 1961, 7(4): 118-119
    [2] A. Agranat and Y. Yacoby, Photorefractive effect produced by photoinduced metastable changes in the dielectric constant, Phys. Rev., 1983,B 27(9):5712-5716
    [3] G. Khitrova, D. Rouede, N. V. Kukhtarev, and H. M. Gibbs, New nonphotorefractive mechanism for two-beam coupling in a crystallographic-cut photorefractive, Phys. Rev. Lett., 1989, 62(10):1110-1113
    [4] D. D. Nolte, D. H. Olson, and A. M. Glass. Nonequilibrium screening of the photorefractive effect, Phys. Rev. Lett., 1989, 63(8):891-894
    [5] S. E. Ralph, F. Capasso, and R. J. Malik, New photorefractive effect in graded-gap supedattices, Phys. Rev. Lett., 1989, 63(20):2272-2275
    [6] K. R. MacDonald and J. Feinberg, Enhanced Four-wave Mixing by Use of Rrequency-Shifted Optical Wave in Photorefractive BaTiO_3, Phys. Rev. Lett., 1985,55(8):821-824;
    [7] Feinberg J. Photorefractive nonlinear optics, Phys Today, 1988, 10(1):46-52
    [8] D. Mahgerefteh and J. Feinberg Explanation of the Apparent Sublinear Photoconductivity of Photorefractive Barium Titanate, Phys. Rev. Lett.,1990, 65(20):2613-2166
    [9] R. J. Reeves, M. G. Jani, B. Jassemnejad, R. C. Powell, G. J. Mizell, and W. Fay, Photorefractive properties of KNbO_3, Phys. Rev., 1991, B 43(l):71-82
    [10] S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, Observation of the photorefractive effect in a polymer, Phys. Rev. Lett., 1991, 66(14):1846-1849
    [11] P. Stojkov and M. Belic, Symmetries of photorefractive four-wave mixing, Phys. Rev., 1992,A45(7):5061-5064
    [12] M. Petrovic and M. Belic, Photorefractive ring resonators with vectorial two-beam coupling: Theory and applications, Phys. Rev., 1995, A 52(1):671-680
    [13] A. A. Zozulya and D. Z. Anderson, Spatial structure of light and a nonlinear refractive index generated by fanning in photorefractive media, Phys. Rev. 1995, A 52(1):878-881
    [14] M. Goulkov, O. Fedorenko, L. Ivleva, M. BSttcher, Th. Woike, T. Granzow, M. Imlau, and M. Wohlecke, Photorefractive parametric scattering in the ferroelectric relaxor SBN: Phenomenological and application aspects, Phys. Rev., 2005,B 71:024104
    [15] E. DelRe, A. D’Ercole, and E. Palange, Mechanisms supporting long propagation regimes of photorefractive solitons, Phys. Rev., 2005,E 71, 036610
    [16] K. Motzek, M. Belie, T. Richter, C. Denz, A. Desyatnikov, Ph. Jander, and F. Kaiser Counterpropagating beams in biased photorefractive crystals: Anisotropic theory, Phys. Rev., 2005,E 71: 016610
    [17] H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, Ultraviolet photorefractivity features in doped lithium niobate crystals, Phys. Rev., 2004, B 70: 094101
    [18] S. T. Yang, R. C. Eckardt and R. L. Byer, Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser,Opt.Lett.,1993,18(12):971-973
    [19] S. T. Yang, R. C. Eckardt, R. L. Byer, Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition, J. Opt. Soc. Am., 1993, B10(9): 1684-1695
    [20] R.Danielius, A.Piskarskas, D.Podenas, P.Di Trapani, A.Varanavicius and G.P.Banfi, High power, subpicosecond, 750-1770 nm tunable pulses from travelling wave parametric generator, Opt. Commun,1992, 87(l):23-27
    [21] T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamadaland and H. Sasabe,Optical-heterodyne-detected induced phase modulation for the study of femtosecond molecular dynamics, J. Chem. Phys., 1991,95(2):937-945
    [22] B.Tahen, J.Hays, J.J.Song, Picosecond four-wave-mixing in GaN epilayers at 532 run, Appl.Phys.lett., 1996,68:587-589
    [23] Zhong, Dongping; Zewail, Ahmed H., Femtosecond Real-Time Probing of Reactions. 23. Studiesof Temporal, Velocity, Angular, and State Dynamics from Transition States to Final Products by Femtoseeond-Resolved Mass Spectrometry, J. Phys. Chem, 1998, A 102(23) :4031-4058
    [24] Antoine M. van Oijen, Martijn Ketelaars, Jurgen Kohler, Thijs J. Aartsma, and Jan Schmidt, Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes, Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes, Science, 1999, 285(1): 400-402
    [25] T. Fiebig, M. Chachisvilis, M. Manger, A. H. Zewail, A. Douhal, I. Garcia-Ochoa, and A. de La Hoz Ayuso, Femtosecond Dynamics of Double Proton Transfer in a Model DNA Base Pair: 7-Azaindole Dimers in the Condensed Phase, Journal of Physical Chemistry, 1999, A 103(37):7419-7431
    [26] C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, Studies of carrier heating in InGaAs/AlGaAs strained-layer quantum well diode lasers using a multiple wavelength pump probe technique, Appl. Phys. Lett., 1993, 62(26):747-749
    [27] M. C. Netti, C. Gadaleta, N. Del Fatti, F. Vallee, and R. Tommasi, Ultrafast exciton dynamics in ternary Ⅱ-Ⅵ semiconductor quantum wells, Phys. Rev., 1999, B60(7):4902-4906
    [28] M. A. Haase, J. Qiu, J. M. DePuydt and H. Cheng, Blue-green laser diodes, Appl. Phys. Lett., 1991, 59(11):1272-1274
    [29] Hiroyuki Okuyama. Eisaku Kato. Satoshi Itoh, Nakayama, Toyoharu Ohata and Akira Ishibashi, Operation and dynamics of ZnSe/ZnMgSSe double heterostructure blue laser diode at room temperature, Appl. Phys. Lett., 1995, 66(6):656-658
    [30] J. Janszky, A. V. Vinogradov, I. A. Walmsley, and J. Mostowski, Competition between geometrical and dynamical squeezing during a Franck-Condon transition, Phys. Rev., 1994, A50(1):732-740
    [31] A. Agarwal and R. Ghosh, Two-photon squeezed laser with long-lived atoms, Phys. Rev., 1994, A50(2): 1950-1953
    [32] C. B. Dane, W. A. Neuman, L. A. Hackel, High-energy SBS pulse compression, IEEE J. Quantrm Electronic, 1994, 30(8): 1907-1915
    [33] W. Qian, L. Lin, Y. J. Deng, Z. J. Xia, Y. H. Zou, and G. K. L. Wong, Femtosecond studies of coherent acoustic phonons in gold nanoparticles embedded in TiO_2 thin films, J. Appl. Phys., 2000, 87(1):612-614
    [34] 贾刚等,半导体学报,1990,11(9):674
    [35] Laughton, F. R.; Marsh, J. H.; Kean, A. H., Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator, Electronics Lett., 1992, 28(17):1663-1665; Jinendra K. Ranka, AlexanderL. Gaeta, Andrius Baltuska, Maxim S. Pshenichnikov, Douwe A. Wiersma Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode, Opt. Lett., 1997, 22(17):1344-1346
    [36] Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, Multiple and single-shot autocorrelator based on two-photon conductivity in semiconductors, Opt. Lett., 1992,17(9) :658-660
    [37] W. Rudolph, M. Sheik-Bahae, A. Bernstein, L. F. Lester, Femtosecond autocorrelation measurem ents based on two-photon photoconductivity in ZnSe, Opt. Lett., 22(5):313-315
    [38] Alexandre M. Streltsov, Jinendra K. Ranka, Alexander L. Gaeta, Femtosecond ultravioletautocorrelation measurements based on two-photon conductivity in fusedsitica, Opt. Lett., 1998,23(10):798-800
    [39] Jinendra K. Ranka, AlexanderL. Gaeta, Andrius Baltuska, Maxim S. Pshenichnikov, Douwe A. Wiersma, Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode, Opt. Lett., 1997,22(17):1344-1346
    [40] A. Gutierrez, P. Dorn, J. Zeller, D. King, L. F. Lester, W. Rudolph, M. Sheik-Bahae, Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array, Opt. Lett., 1999,24(16): 1175-1177
    [41] Dmitriy Panasenko, Yeshaiahu Fainman, Interferometric Correlation of Infrared Femtosecond Pulses with Two-Photon Conductivity in a Silicon CCD, Apl. Opt., 2002, 41 (18):3748-3752;
    [42] M. Goeppert. Meyer, Uber Elementarakte mit zwei Quantensprtingen, Ann. Phys., 1931 (Leipzig) 9(1):273-294
    [43] W. Kaiser and C. G. B. Garrett, Two-Photon Excitation in CaF_2:Eu~(2+), Phys. Rev. Lett., 1961,7(6):229-231
    [44] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett., 1961, 7(4):118-119)
    [45] 石顺祥,陈国锋,赵伟等,非线性光学,西安电子科技大学出版社,2002,16-17
    [46] J. H. Bechtel and W. L. Smith, Two-photon absorption in semiconductors with picosecond laser pulses, Phys. Rev., 1976, B13(8): 3515-3522
    [47] H. Lotem and C. B. de Araujo, Absolute determination of the two-photon-absorption coefficient relative to the inverse Raman cross section, Phys. Rev., 1977,B 16(14): 1711
    [48] J. P. van der Ziel, Two-photon absorption spectra of GaAs with 2ω_1 near the direct band gap, Phys. Rev., 1977, B 16(6):2775
    [49] P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, and R. S. Adhav Absolute two-photon absorption coefficients at 355 and 266 nm, Phys. Rev., 1978,B 17(12):4620
    [50] C. B. de Araujo and H. Lotem, New measurements of the two-photon absorption in GaP, CdS, and ZnSe relative to Raman cross sections, Phys. Rev., 1978,B 18(l):30
    [51] C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, Two-Photon Absorption in Zinc-Blende Semiconductors, Phys. Rev. Lett., 1979, 42(26):1785
    [52] C. B. d. Araujo and H. Lotem, Ultraviolet two-photon absorption in alkali halides, Phys. Rev., 1982,B(26):1044-1049
    [53] K. Fujii, A. Shimizu, J. Bergquist, and T. Sawada, Electric-field-induced changes in the two-photon absorption spectrum of multiple-quantum-well structures, Phys. Rev. Lett., 1990,65(14):1808
    [54] N.G.Basov, A.Z.Grasyuk, I.G.Zubarev, V.A.Katulin, and O.N.Krokhin, Zh.Eksp. Teor. Fiz. Sov. Phys.-JETP, 1966, 23(5):366-370
    [55] Poulin, M.; Latrasse, C; Cyr, N.; Tetu, M.;An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems , IEEE Photonics Technology Lett., 1997, 9(12):1631-1633
    [56] D.J.Bradley and G.H.C.New, Proceeding of the IEEE, 1974, 62(2):313-318
    [57] Ironside, C.N, Two-photon gain semiconductor amplifier , Two-photon gain semiconductor amplifier, IEEE Journal of Quan. Elec. 1992 ,28(4):842-847
    [58] Stephen J. Bepko, Anisotropy of two-photon absorption in GaAs and CdTe, Phys. Rev., 1975, 12(2):669-672
    [59] Hutchings, D.C.; Wherrett, B.S., Theory of anisotropy of two-photon absorption in zinc-blende semiconductors , Nonlinear Optics: Materials, Fundamentals and Applications, 1994. NLO '94 IEEE, 1994, 25(29):230-232
    [60] Sala, K.L., Kenney-Wallace, G.A., and Hall, G.E., CW Autocorrelation measurementsof picosecond laser pulses, IEEE J. Quantum Electronics, 1980,16(9):990-996
    [61] Zheng, Z.; Weiner, A.M.; Marsh, J.H.; Karkhanehchi, M.M., Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors, IEEE Photonics Technology Lett., 1997,9(4): 493 -495
    [62] Takagi, Y., Kobayashi, T., Yoshihara, K., and Imamura , S., Multiple andsingle-shot autocorrelator based on two-photon conductivity in semiconductors, Opt. Lett., 1992, 17(9):658-660
    [63] Laughton L, F.R., Marsh, J H., and Kean, A H.: Very sensitive twophoton absorption GaAsi/AlGaAs waveguide detector for an autocorrelator, Elec. Lett., 1992, 28(17):1663-1665
    [64] Laughton, F.R., Marsh, J H., Barrow, D.A., and Portnoi, E. L., The two-photon absorption semiconductor waveguide autocorrelator, IEEE J. Quantum Electron., 1994, 30(3):838-845
    [65] Tsang, H.K., Chang, L.Y., Soole, J.B.D., Leblanc, HP., Koza, M.A., and Bhat, R., High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides, Elec. Lett., 1995, 31(20):1773-l 775
    [66] Zavri, A., Dupont, E., Corkum, P.B , Liu. H.c., and Biglov, z., Direct autocorrelation measurements of mid-infrared picosecond pulses by quantum-well devices, Opt. Lett., 1995, 20(18): 1886-1888 )
    [67] Maruo, S.; Kawata, S., Two-photon-absorbed photopolymerization for three-dimensional microfabrication, Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop, 1997, 26 :169-174
    [68] W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science , 1990, 73(6):248)
    [69] M. Albota, D.Beljonne, J. L. Bredas, et al, Design of Organic Molecules with Large Two-Photon Absorption Cross Sections, Science, 1998,281(5383):1653-1656
    [70] Y. Z. Shen, D. Jakubezyk, F. Xu, J. Swiatkiewicz, P. N. Prasad, Two-photon fluorescence imaging and spectroscopy of nanostructured organic materials using a photon scanning tunneling microscope, Appl. Phys. Lett. 2000,76(1): 1-3
    [71] Bian Liu, Hui Xu, Lei Jin, Hui Ma, and Die Yan Chen, Two-phton fluorescence imaging of embryo with much less damage than confocal imaging, Proc. SPIE Int. Soc. Opt. Eng., 2002,4919:126
    [72] Andrew K. Dunn, Vincent P. Wallace, Mariah Coleno, Michael W. Berns, and Bruce J. Tromberg, Influence of optical properties on two-photon fluorescence imaging in turbid samples, Appl. Opt., 2000,39:1194
    [73] Z. L. Huang, H. Lei, Z. R. Qiu, H. Z. Wang, Z. P. Zhong, Two-photon induced blue fluorescent emission of heterocycle-based organic molecule Chem Commun, 2002, 20:2400-2401
    [74] Q. Z. Liu, Q. Fang, D. Wang, G. Xue, W. T. Yu, Z. S. Shao, M. H. Jiang, Trivalent boron as acceptor in D- -A chromophores: synthesis, structure and fluorescence following single- and two-photon excitation, Chem. Commun., 2002, 23:2900
    [75] T. Plakhotnik, k. walser, M. Pirotta, A. Renn, U. P. Wkld, Nonlinear Spectroscopy on a Single Quantum System: Two-Photon Absorption of a Single Molecule, Science, 1996, 271:1703-1705
    [76] G. A. Baker, S. Pandey, F. V. Bright, Extending the Reach of Immunoassays to Optically Dense Specimens by Using Two-Photon Excited Fluorescence Polarization, Anal. Chem., 2000,72(22):5748-5752
    [77] A. Van Orden, H. Cai, P. M. Goodwin, R. A. Keller, Efficient Detection of Single DNA Fragments in Flowing Sample Streams by Two-Photon Fluorescence Excitation Anal. Chem. 1999,71(11):2108-2116
    [78] G. A. Baker, C. A. Munson, E. J. Bukowski, S. N. Baker, F. V. Bright, Appl. Spectrose. 2002,56:455
    [79] S. A. Zugel, B. J. Burke, F. E. Regnier, F. E. Eytle, Electrophoretically Mediated Microanalysis of Leucine Aminopeptidase Using Two-Photon Excited Fluorescence Detection on a Microchip, Anal. Chem. 2000,72(22):5731-5735
    [80] Jeffrey S. Lundgren, Lyndon L. E. Salins, Irina Kaneva, and Sylvia Daunert, A Dynamical Investigation of Acrylodan-Labeled Mutant Phosphate Binding Protein, Anal. Chem. 1999,71 (3): 589-595
    [81] 汪国平,双光子技术的应用研究进展,物理,2000,29(9):546-549
    [82] Stefan W. Hell, Martin Booth, and Stefan Wilms, Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation, Opt. Lett., 1998, 23(15): 1238-1240
    [83] Parthenopoulos D A, Rentzepis P M, Science, 1989, 245:843
    [84] James H. Strickler, Watt W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation, Opt. Lett., 1991,16(22): 1780-1782
    [85] M. M. Wang, S. C. Esener, F. B. McCormick, I. C okgr, A. S. Dvornikov, P. M. Rentzepis, Experimental characterization of a two-photon memory, Opt. Lett., 1997,22(8): 558-560
    [86] Yuan.W.; Sun, L.; Tang, H.; Wen, Y.; Jiang, G.; Huang, W.; Jiang, L.; Song, Y.; Tian, H.; Zhu, D, A Novel Thermally Stable Spironaphthoxazine and Its Application in Rewritable High Density Optical Data Storage, Adv. Mater., 2005, 17(2):156-160
    [87] Shoji Maruo, Osamu Nakamura, Satoshi Kawata, Three-dimensional microfabrication with two-photon -absorbed photopolymerization, Opt. Lett., 1997, 22(2):132-134
    [88] Cumpston B H, Ananthavel S P, Barlow S et al, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature, 1999,398:51-54
    [89] Sun H B, Matsuo S, Misawa H., Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett., 1999,74(6):786
    [90] N. Bloembergen and Y. R. Shen, Optical Nonlinearities of a Plasma, Phys. Rev., 1966,141(1):298; N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry, Phys. Rev., 1968,174(3):813-822
    [91] J. Rudnick, E. A. Sern, Second-Harmonic Radiation from Metal Surfaces, Phys. Rev., 1971, B4(12):4274-4290; J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, Analysis of second-harmonic generation at metal surfaces Phys. Rev., 1980,B21 (10):4389-4402
    [92] 郑万泉、李乐等,光学学报,1989,9:186;郑万泉、王恭明等,光学学报,1989,9:289
    [93] T. F. Heinz, C. H. Chen, D. Ricard and Y. R. Shen, Spectroscopy of Molecular Monolayers by Resonant Second-Harrnonic Generation, Phys. Rev. Lett., 1982,48(7):478-481
    [94] T. F. Heinz, H. W. K. Tom and Y. R. Shen, Determination of molecular orientation of monolayer adsorbates by optical second-harmonic generation, Phys. Rev., 1983,A28(3): 1883-1885
    [95] Li Le, Liu Yanghua, Yu Gongda, Wang Wencheng, and Zhang Zhiming, Optical second-harmonic generation study of oxygen adsorption on a polycrystalline Ag surface, Phys. Rev., 1989, B40(15): 10100-10104
    [96] T. Kato, M. Hayashi, A. A. Villaeys, and S. H. Lin, Theoretical study on surface vibrational infrared-visible sum-frequency generation spectroscopy applied to adsorbed molecules, Phys. Rev., 1997,A 56(1):980-993
    [97] C. H. Lee, R. K. Chang, and N. Bloembergen, Nonlinear Electroreflectanee in Silicon and Silver, Phys. Rev. Lett., 1967,18(5): 167-170
    [98] C. K. Chen, A. R. B. de Castro, and Y. R. Shen, Surface-Enhanced Second-Harmonic Generation, Phys. Rev. Lett., 1981, 46(2):145-148
    [99] J. M. Chen, J. R. Vower, C. S. Wang, and C. H. Lee, Optical second-harmonic generation from submonolayer Na-covered Ge surfaces, Opt. Commun., 1973, 9(2):132-134; T. F. Heinz, M. M. T. Loy and W. A. Thompson, Study of Si(111) Surfaces by Optical Second-Harmonic Generation: Reconstruction and Surface Phase Transformation, Phys. Rev. Lett., 1985, 54(1):63-66
    [100] T. F. Heinz, M. M. T. Loy and W. A. Thompson, Study of symmetry and disordering of Si(111)-7×7 surfaces by optical second harmonic generation, J. Vac. Sci. Technol., 1985,B3(5): 1467-1470
    [101] C. V. Shank, R. Yen and C. Hirlimann, Femtosecond-Time-Resolved Surface Structural Dynamics of Optically Excited Silicon, Phys. Rev. Lett., 1983, 51(10):900-902
    [102] H. W. K. Tom, X. D. Ahu, Y. R. Shen and G. A. Somorjai, Investigation of the Si(111)-(7×7) surface by second-harmonic generation: Oxidation and the effects of surface phosphorus Surf. Sci., 1986, 167(1):167-176
    [103] R. W. J. Hollering, D. Dijkkmp, H. W. L. Lindelauf and P. A. M. Vandrheidr, Cleaning of Si(001) surfaces studied by optical second-harmonic generation and x-ray photoelectron spectroscopy, J. Vac. Sci. Technol. 1991,B9(4): 1967-1969
    [104] H. Sano, G. Mizutani, W. Wolf, and R. Podloucky, Ab initio study of linear and nonlinear optical responses of Si(111) surfaces, Phys. Rev., 2002, B 66(19), 195338
    [105] D. Bodlaki and E. Borguet, Dynamics and second-order nonlinear optical susceptibility of photoexcited carders at Si(111) interfaces, Appl. Phys. Lett., 2003,83(12):2357-2359
    [106] J. I. Dadap, Z. Xu, X. F. Hu, M. C. Downer, N. M. Russelt, J. G. Ekerdt and O. A. Aktsipetrov, Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage, Phys. Rev., 1997,B 56(20)13367-13379
    [107] Y. Q. An and S. T. Cundiff, Phase inversion in rotational anisotropy of second harmonic generation at Si(001) interfaces, Phys. Rev., 2003, B 67(19), 193302
    [108] Kang-Xian Guo, and Shi-Wei Gu, Nonlinear optical rectification in parabolic quantum wells with an applied electric field, Phys. Rev., 1993, B 47(2):16322-16325
    [109] L. Zhang and H.-J. Xie, Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells, Phys. Rev.,2003,B 68(23), 235315
    [110] Zahn, M., Kerr effect measurements with non-uniform electric field distributions whose direction changes along the light path, Elec. Insulation, Conference Record of the 1994 IEEE International Symposium, 1994, 5(8) :137 -140
    [111] Filip Kadlec, Petr Kuzel, Jean-Louis Coutaz, Optical rectification at metal surfaces, Opt. Lett., 2004,29(22):2674-2676
    [112] M.Maier, W. Kaiser, and J. A. Giordmaine, Intense light bursts in the stimulated Raman effect, Phys. Rev. Lett., 1966, 17(23):1275-1277
    [113] J. A. Armstrong, Measruement of picosecond laser pulse wieths, Appl. Phys. Lett., 1967,10(1):16-18
    [114] P.eber, Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked lasers using nonlinear optics, Appl. Phys., 1967,30(30): 2231-2234
    [115] H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBland, N .C. Andreadakis, R. Bhat, and M. A. Koza, Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides, J. Appl. Phys., 1991, 70(7):3992-3994
    [116] Yoshihiro Takagi, Tohru Kobayashi, Keitaro Yoshihara, Shunji Imamura, Multiple and single-hot autocorrelator based on two-photon conductivity in semiconductors, Opt. Lett., 1992 ,17(9):658-660
    [117] A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipocs, Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser, Opt. Lett., 1995, 20(6):602-604
    [118] L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Aarrey and R. Leonhardt, Autocorrelation of ultrashort pulse at 1.5 μ m based on nonlinear response of silicon photodiodes, Elec. Lett., 1996,32 (20): 1922-1923
    [119] T. Feurer, A. Glass, R. Sauerbrey Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses, Appl. Phys. B Lasers and Optics, 1997,65(2):295-297
    [120] T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements, Appl. Phys. Lett., 2002,81(7):1323-1325
    [121] J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni,Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy, Appl. Opt., 1985, 24(9):1270-1282
    [122] H. Schulz, H. Schuler, T. Engers, and D. Von Der Linde, Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,IEEE J. Quan. Elec., 1989, 25(12):2580-2585
    [123] H.Takara, et al, 100Gbit/s optical signal eye diagram measurement with optical sampling using organic nonlinear optical crystal, Elec. Lett., 1996, 32(24):2256-2258
    [124] H. Ohat et al, Highly sensitive optical sampling system using timing-jitter-reduced gain switched optical pulse, Elec. Lett., 1997, 33(25):2142-2144
    [125] P. Sperber and A. Penzkofer, Pulse Shape Determination of Intracavity Compressed Picosecond Pulses by Two Photons Fluorescence Analysis, Opt. Quantum Electron., 1986, 18(1):145-147
    [126] R. Wyatt and E. E. Marinero, Versatile Single-Shot Background-free Pulse Duration Measurement Technique for Pulses of Subnanosecond to Picosecond Duration, Appl. Phys., 1981, 25(2): 297-302
    [127] B. Colombeau, C. Froehly, and M. Vampouille, Autocorrelation of Laser Pulses by Optical Processing of Fabry-Perot Spectrograms, Appl. Opt. 1980, 19(4):534
    [128] 0. E. Martinez, Linear Measurement of Ultrashort Light Pulses by Phase Contrast Optical Sweep, J. Opt. Soc. Am., 1985, B(2):327-329
    [129] P. Yeh, Autocorrelation of Ultrashort Optical Pulses using Polarization Interferometry, Opt. Lett., 1983,8(6):330-332
    [130] A. M. Weiner, Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation, IEEE J. Quan. Elec, 1983, 19(8):1276-1283
    [131] J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, Two-Photon Excition of Fluorescence by Picosecond Light Pulses, Appl. Phys. Lett., 1967, 11(5): 216-218
    [132] D. B. Carlin and W. R. Bennett, Second-order intensity correlations in mode-locked laser pulses by use of the two-quantum photoeffect, J. Appl. Phys., 1978, 49(10): 5124-5129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700