用户名: 密码: 验证码:
青藏高原腹地新生代生态环境演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原以其独特的地形地貌,深深地影响了亚洲乃至北半球的气候与环境,从而造成影响区域内生态环境类型的分异。同时,青藏高原作为良好的地质环境演化过程的记录体,作为公认的气候变化的启动区、全球变化的敏感区域,越来越多地吸引了各学科领域对研究青藏高原的关注,在地质学、地理学、生态学、环境学、气候学等科研领域,青藏高原已经成为国际研究热点。青藏高原腹地,作为长江源区,其生态环境演化过程及未来演化趋势的分析尤具科学与国民经济可持续发展的重要性,而受到科学前沿和政府的重点关注。
     然而,多种原因导致高原腹地研究程度较低海拔地区相对不足,并由此而产生了一些研究盲点和科学争论。本文正是选取了与高原腹地生态环境演化过程及现代生态环境演化趋势相关的空白研究领域及基础研究比较薄弱的领域,开展针对性的研究工作。并综合运用孢粉学、植被生态学、同位素地球化学、环境地球化学、环境磁学、沉积学等研究方法,获取了大量具有创新意义的研究资料,对高原气候变化历史及青藏高原表面隆升过程进行了讨论,尤其是对现代生态环境及生态环境演化趋势分析极为相关的中全新世以来高原腹地气候变化规律进行了典型剖面的重点研究,并建立在高原腹地生态环境历史演化分析的基础上,进一步对现代高原腹地生态环境状况及演化趋势进行了探讨。得出如下结论:
     (1) 采自高原腹地新生代地层中最新的孢粉分析资料并部分结合前人研究资料显示青藏高原自始新世以来共发生了5次具有生态环境改造意义的表面隆升事件,而导致高原面阶段性的抬升至现今的高度。孢粉组合反映,高原腹地植被演化经历了温带阔叶林—山地针叶林—稀树草原—高寒草原、高寒草甸的逆行演替过程。最新孢粉分析资料显示,始新世—渐新世雅西措组地层以山地针叶林植被较发育,推测高原表面隆升高度在1000~15000m;新近系五道梁组植被组成较渐新世中亚热带成分大幅上升,可能与中新世高原表面隆升引发原始高原季风而导致气候温湿有关,并据此推测高原面高度在2000m左右:中更新世孢粉组合以草本植物为主,反映出当时生态环境已不具备大规模发育木本植被水热条件,高原表面隆升高度应在4000米以上:全新世孢粉组合则显示了自中全新世以来稀树草原-荒漠草原-高寒草原的植被演化特征,反映了高原表面隆升导致生态环境变化原因之外的全球气候变化对高原生态环境的控制意义,并表现出两千年周期的气候波动规律。
     (2) 为了更好地认识现代气候过程和预测未来的气候演化趋势,在讨论了高原新生代以来表面隆升导致的气候演化一级旋回后,论文对中晚全新世以来气候演化的次级旋回进行了重点研究。刻莫土壤剖面位于研究区东北部,是一套风成沉积的砂土剖面。其底部~(14)C年龄为6380aBP。因风成堆积体在时间记录的连续性方面尚存争议,高原腹地几乎没有关于风成土壤与气候演化的相关性讨论。但风成砂土粒度特征、有机质碳同位素组成及磁化率特征等指标都能非常直接的与现代进行对比,而避免了经验换算或量度转换过程中的信息失真。
The Qinghai-Tibetan Plateau is a unique tectonic unit whose uplift not only resulted in its own evolvement of environment and ecology, but also influenced and changed the climate and environment of neighboring area and the globe at the same time by giving an impact on the atmospheric circumfluence. The plateau uplift is a staged historic process that is recorded by the sediments through which we can clearly understand the information of plateau development and environmental transition. Because huge high mountains have magnifying action on climate changes, the Qinghai-Tibetan Plateau has also become the main study area of the Quaternary climate, environment and geology. As the background of regionally ecological evolvement, the uplift event of Qinghai-Tibetan Plateau and evolution of environment and ecology caused by uplift are analyzed in this paper, the time of plateau uplift and magnitude are concisely discussed. By using the flora ecological method, isotopic geochemistry, environmental geochemistry, environmental magnetics and sedimentology et al., the process of plateau climatic changes and ecological evolvement are discussed as emphases in the paper; aiming at the global warming and vegetation adapting of the way, extent and evolution-trend in modern times, the accordingly changed environment and ecology are detailed studied and the main conclusions are as follows:(1) Based on the information of sporopollen in Tongtianhe basin stratum profile and contrast study of to neighboring area, there have been 5 times of tectonic uplift in the Qinghai-Tibetan Plateau since the Eocene, which brought about the staged raising of plateau to elevation of present. The analysis of spore and pollen assemblage reflected that vegetation of studied area had undergone a converse process of succession from variable zone-broadleaves t o upland conifers to Savannaand to Alpine Steppe, the Yaxicuo formation stratum of E-Oligocene mainly had upland conifers grown, and presumedly had plateau elevation of 1000— 15000m. Because the primitive plateau monsoon possibly caused by the Miocene tectonic movement had brought about warm and humid climate, the vegetation components of Wudaoliang Formation of Neogene had large rise of semitropical component and presumedly had plateau elevation about 2000m. In the late Pliocene, Tibetan plateau had a herbage blooms such as Chrysanthemun Chenopodium, species were mainly spruce and fir, representing the vegetation characteristics of Savanna, and presumedly had elevation above 3000m. In studied area, spore and pollen assemblage of middle-Pleistocene are mainly composed of herbages, reflecting the plateau elevation should be above 4000m with the approximately similar environment and ecology to that of the present.
引文
Bender, M. M. 1968. Mass spectrometric studies of Carbon-13 variation in corn and other grasses. Radiocarbon, 10:468~472.
    Boltovskoy E. Late Pleistocene-Holocene planktonic foraminifera review of the western equatorial Pacific. Boreas, 1990. 19:119~125
    Cerling T E. Harris J M, Macfadden B J et al. Global vegetation change throught the Miocene/Pliocene boundary. Nature, 1997, 389:153~158;
    Cerling T. E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letter, 1984, 71:229~240
    Chaudhuri. S. and Cullers, R. L.The distribution of rare earth elements in deeply buried gulf coast sediments. Chemical geology. 1979, 24:327~338
    Chen. J., An. Z. S., and Head, J. Variarion of Rb/Sr ratios in the loess paleosol sequences of Central China during the last 130000 years and their implications for monsoon paleoclimatology. Quaternary Geology. 1999, 51: 215~219.
    Cifuentes, L. A., J. H. Sharp & M. L. Fogel. Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnology and Oceanography, 1988, 33: 1102~1115.
    Climate Change. Impacts, Adaptation and Vulnerability. 2001: IPCC Third Assessment Report http://www.ipcc.ch/2003.8.27
    Connor, J. J. Background geochemistry of some rocks, soils, plants and vegetables in the conterminous United States. Washinton: U. S. Government Printing Office, 1975
    Craig, H. The geochemistry of stable carbon isotopes. Geochimica et Cosmochimica Acta, 1953., 3:53~92.
    Craig, H. Carbon-13 variations in plants and the relationship between Carbon-13 and Carbon-14 variations in nature. Journal of Geology, 1954,62: 115~149.
    D. S. Kaufmana, T. A. Agerb, N. J. Anderson et al. Holocene thermal maximum in the western Arctic (0-180W). Quaternary Science Reviews. 2004, 23:529~560
    Damon P E, Sonne C P. Solar and terrestrial components of the atmospheric 14C variation specrum. In C P Sonett et al. ed. The Sun in Time. Tuscon: Arizona University Press, 1991. 360~388
    Dansgaard W, Johnsen S J, Clausen H B, et al. North atlatic climatic oscillations revealed by deep Greenland ice cores. In: Hanson J E, ed. Climate process and climate sensitivity, Amer Geoph Union, Washington D C, 1984, 228~198
    Department of Geography, Northwest Teachers College. Atlas of Physical Geography. Cartographic Publishing House, Beijing, 1984
    Farquhar, G. D. & R. A. Richards. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology. 1984, 11:539~552.
    Farquhar, G. D., J. R. Ehleringer & K. T. Hubick. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989. 40: 503~537.
    Farquhar, G. D., M. H. O'Leary & J. A. Berry. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982.9:121~137
    Farquhar G D, Wong S C. An empirical model of stomatal conductance. Aust. J. Plant Physiol, 1984, 11: 191~210;
    Farquhar G D. Carbon dioxide and vegetation. Science, 1997, 278:1411
    Francey R J, Farquhar G D. An explanation of ~(13)C/~(12)C variations in tree tings. Nature, 1982, 295:28~31
    Frenzel B. Climate at about 7000 to 6500yr BP explanatory note of atlas of paleoclimates and paleoenvironmens of Northern Hemisphere. Budapest: Geography Institute Hungarian Academy of Sciences, 1996, 128~130
    Gasse F, Amold M, Fontes J C, et al. A 13 000year climate record from western Tibet. Nature. 1991, 353
    Hadley Centre. 1995. Modelling Climate Change. United Kingdom Meteorological Office.
    Harrison TM, Copeland P, Kidd WSF et al. Raising Tibet. Science, 1992, 255:1663~1670
    Harwood, K. G., J. S. Gillon, H. Griffiths & M. S. J. Broad meadow. Diurnal variation of ~1δ~3CO_2,δ~(18)O ~(16)O and evaporative site enrichment of δ~(18)O in Piper aduncum under field conditions in Trinidad. Plant, Cell and Environment, 1998,21:269~283.
    Heller, F. and Liu, D. S. Palaeoclimatic and sedimeotary history from magnetic susceptilility of loess in China. Geophys. R. Letters, 1986, 103:1169~1172.
    Heller, F. and Liu, D. S. Magnetism of Chinese loess deposits. Geophys. J. R. Astr. Soc. 1984, 77:125~141.
    Heller, F. et al. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeo-climatic implications. Earth and Planetary Science Letters, 1993, 114: 385-390.
    IPCC Third Assessment Report. Climate change 2001: the Scientific Basis(2.2.7) [EB/OL]. http://www.ipcc.ch, 2003.8.27/2004.1.16
    IPCC Third Assessment Report. Climate Change 2001: Impacts, Adaptation and Vulnerability (11.2.1.3) [EB/OL]. http://www.ipcc.ch,2003.8.27/2004.1.16
    IPCC Third Assessment Report. Climate change 2001: Impacts, Adaptation and Vulnerability(5.2.2) [EB/OL]. http://www.ipcc.ch, 2003.8.27/2004.1.16
    IPCC Third Assessment Report. Climate Change 2001: Impacts, Adaptation and Vulnerability[EB/OL]. http://www.ipcc.ch,2003.8.27/2004.1.16
    Janecek, T. R. et al. Quaternary Fluctuation in Northern Hemisphere trade winds and westerlies. Quaternary Research, 1985, 24:150~163;
    Johnson B J, Miller G H, Fogel M L et al. 65,000 years of vegetation change in central Australia and the Australian summer Monsoon. Science, 1999, 284:1150~1152
    Jollly Dominique, Haxeltine Alex. Effect of low glacial atomospherie CO_2 on tropical African montane vegetation. Science, 1997, 276:786~787;
    Korner C H, et al. Evidence that plants from high altitudes retains their greater photosynthetic efficiency under elevated CO_2. Funct Ecol, 1994, 8:58;
    Korner C H, Farquhar G D et al. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia, 1988, 74:623~632;
    Korner C H, Farquhar G D, Wang S C. Carbon isotope discriminate by plants follows latitudinal and altitudinal trends. Oecologia, 1991, 88:30~40;
    Kukla, G. Loess stratigraphy in Central China. Quaternary Science Review, 1987, 6: 191~219.
    Kukla, G. et al. Pleistocene climatic in China dated by magnetic susceptibility. Geology, 1988, 16:811~814.
    Lamb H H. Climate: Present, Past and Future. Vol. 2, Climate history and the future. London: Methuen & Co. 1977. 376~380
    Lin, G. H. & Y. Ke. Stable isotopetechniques and global change research. In: Li, B. ed. Lectures on modern ecology. Beijing: Science Press. 1995,161~188
    Lin, Z. F. Application of stable carbon isotope in plant physiology and ecology. Plant Physiology Communications 1990, 3 (3): 1~6.
    Liu X. M. et al. Magnetic mineralogy of Chinese loess and its significance. Geophysical Journal International, 1992, 108: 301~325.
    Lu Houyuan, Wang Sumin, Wu Naiqin et al. A new record of the last 2.8Ma from Co Ngoin, central Tibetan Plateau. Science In China(Series D). 2001, 44 Supp.
    Luo Tian-Xiang. Distribution Pattens of Aboveground Biomass in Tibetan Alpine Vegetation Transects. Acta Phytoecologica Sinica. 2002, 26(6)668~676
    Maher, B. A. and Reginald M. T. Formation of ultrafine-grained magnetite in soils, Nature, 1988, 336: 368~370.
    Maher, B. A. and Thompson, R. and Zhou, L. P. Spatial and temporal reconstructions of changes in the Asian pale-omonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters, 1994, 125: 462~471.
    Maher, B. A. and Thompson, R. Mineral magnetic record of Chinese loess and paleosol. Geology, 1991, 19: 3~6.
    Maher, B. A. and Thompson, R. palaeoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Res., 1992, 37:155~1711
    Maher, B. A. and Thompson, R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess an paleosols. Quaternary Rsearch, 1995, 44: 391~393.
    Maher, B A. Comments on "Origin of he magnetic susceptibility singal in chinese loess". Quaternary Science Review. 1999, 18:865~869
    Maher, B A. Magneic properies of modern soils and quaternary loessic paleosols: paleoclimatic implications, Paleogaography, Paleoclimatology, Paleoecology. 1998b, 137:25~54
    Malnar P, England P and Martrinod J. Mantle dynamics, uplift of Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 1993, 31(4):357~396
    Markow, T. A., S. Anwar & E. Pfeiler. Stable isotope ratios of carbon and nitrogen in natural populations of Drosophila species and their hosts. Functional Ecology. 2000, 14: 261~266.
    Meng X M., Derbyshire, E, Kemp, R A. Origin of the magneic susceptibility signal in Chinese loes. Quernary Science Review. 1997, 16:833~839.
    Morecroft M D, Woodward F I, Experimental investigations on the environmental determination of δ ~(13)C at different altitudes. Journal of Experimental botany, 1990, 41:1303~1308
    Nakai, S., Halliday, A. V. and Rea, D. K. Provenance of dust in the Pacific Ocean. Earth Planetary Science Letters, 1993, 119:143~157.
    O'Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry, 1981. 20: 553~567.
    O'Leary M H. Carbon isotopes in photosynthesis. Bioscience, 1988, 38(5):328
    Parkin, D. W. et. al. Trade wind and temperature correlations down a deep-sec vore off the Sahara Coast. Nature, 1973, 245:455~457
    Pate, J. S., M. J. Unkovich, P. D. Erskine & G. R. Stewart.. Australian mulga ecosystems ~(13)C and ~(15)N natural abundances of biota components and their ecophysiologieal significance. Plant, Cell and Environment, 1998, 21: 1231~1242.
    Pecsi, M. Loess is not just the accumulation of dust. Quaternary International, 1990, 7/8:1~21
    Perry C A. Comparison of a solar-luminosity model with paleoclimate data. Ins of Tert Overseas Studies Symposium Series. 1995, 2:25
    Peterson, B. J. & B. Fry. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 1987, 18: 293~320.
    Picon-Cochard, C., A. Nsourou-Obame, C. Collet, J. M. Guehl & A. Ferhi. Competition for water between walnut seedlings (Juglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and δ180 enrichment. Tree Physiology, 2001, 21:183~191.
    Pye. K. Aeolian dust and dust deposits. London: Academic Press, 1987
    Rea, D. K. et al. Geologic approaches to the long-term history of atmospheric circula-tion. Science, 1985,227: 721~725
    Rea, D. K. et al. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Marine Geology, 1982, 49:149~167.
    Sekar B G. Rajagopalan and A. Bhatachyryya. Chemical analysis and 14C dating of a sediment core from Tsokar lake, Ladakh an its implication on climate change, Current Science. 1994, 67:36~38
    Shi Yafeng, Kong Zhaozheng, Wang Suming et al. Mid-holocene climates and environments in china. Global and planet Change, 1993, 7(1/3):291~233
    Smith, B. N. & S. Epstein. Two categories of ~(13)C/~(12)C ra2 tios for higher plants. Plant Physiology, 1971, 47: 380~384.
    Street-Perrott F A, Huang Y S, Perrott R A et al. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science, 1997, 278: 1422~1426;
    Stuiver Minze, Braziunas Thomas F. Tree cellulose 13C/12C isotope ratios and climatic change. Nature, 1987, 328: 58-60;
    Taylor, S. R. and Mclennan. S. M. The continental crust: its composition and evolution. Boston: Blackwell Scientific, 1985.
    Taylor, S. R., Mclennan, S. M. and Mcculioch, M. T. Geochemistry of locss. Continent-tal crustal composition and crustal model ages. Geochimica Acta, 1983. 47:1897~1905.
    Thomson D J. The seasons, global temperature and precession. Science, 1995, 268:59~68
    Tieszen L L, et al. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudeinal and moisture gradient in Kenya. Oecologyia, 1979, 37:337
    Tieszen L L, et al. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudeinal and moisture gradient in Kenya. Oecologyia, 1979, 37:337
    Turner S, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature. 1993, 364:50~54
    Vogel J C. Recycling of carbon in a forest environment. Oecol. Plant, 1978, 13:89~94
    Wang Y., Zheng S. H. Paleosol nodules as Pleistocene paleoclimate indicators, Luochuan, P. R. China. Paleogeography. Paleoclimatology. Paleoecology, 1989, 76:39~44
    Zou Xue-Yong et al. Desertification and control plan in the Tibet Autonomous Region of China-Journal of Arid Environments 2002, 51:183~198
    E.布赖恩特.气候过程和气候变化.北京:科学出版社,2004
    安芷生,Kuklla,G.刘东生.洛川黄土地层学.第四纪研究.1989,(2):155~168.
    安芷生.亚洲季风演化、北半球大冰期的发展与喜马拉雅-青藏高原隆升.中国基础科学 2001,8:9~11
    安芷生等.最近13万年来黄土高原季风变迁的磁化率证据.科学通报:1991,35(7):52~532.
    安芷生等.最近2万年中国古环境变迁的初步研究.见:黄土、第四纪地质、全球变化(2).北京:科学出版社,1991:1~25
    布朗洛,A.H..张湖等译.地球化学.北京:地质出版社.1982
    陈骏等.陕西洛川黄土化学分化程度的地球化学研究.中国科学D.1997.27(5):531~536.
    陈骏等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义第四纪研究.1999,(4):350~365.
    陈世苹,白永飞,韩兴国,稳定性碳同位素技术在生态学研究中的应用.植物生态学报 2002,26(5):549~560
    丁林,钟大赉,潘裕生等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(16):1497~1500
    杜乃秋,孔绍宸,山发寿等.青海湖QH85-14C钻孔孢粉分析及其古气候古环境的初步探讨.植物学报.1989,31(10):803~814
    方修琦.从农业气候条件看我国北方原始农业的衰落与农牧交错带的形成.自然资源学报,1999,4:212~218
    顾兆炎,刘嘉麟,袁宝印等.12000年以来青藏高原季风演化—色林错沉积物地球化学证据.科学通报.1993,38:61~64
    顾兆炎等.灵台红粘土和黄土—古土壤序列的地球化学演化.第四纪研究.1999,(4):357~365.
    关有志.科尔沁沙地的元素、粘土矿物和沉积环境.中国沙漠.1992,12:9~15
    韩家懋,姜文英,褚骏.黄土和古土壤中磁性矿物的力度分布.第四纪研究,1997,3:281~287.
    韩家懋等.黄土碳酸盐中古气候变化的同位素记录.中国科学(D).1996,26(5):399~404.
    韩家懋等.黄土中钙结核的碳氧同位素研究(二)氧同位素及其古环境意义.第四纪研究,1995b,(4):367~377.
    韩家懋等.黄土中钙结核的碳氧同位素研究(一)氧同位素及其古环境意义.第四纪研究,1995a,(2):130~137.
    韩家懋等.马兰黄土与离石黄土的磁学性质.第四纪研究.1994.(4):310~325.
    何元庆,姚檀栋,沈永平等.冰芯与其它记录所揭示的中国全新世大暖期变化特征.冰川冻土.2005,25:12~18
    胡雪峰,龚子同.土壤磁化率—作为气候指标的局限性.土壤.1999,1:39~42.
    黄赐璇,梁玉莲.藏北高原北部地区湖相沉积的孢粉分析.中国科学院青藏高原综合科学考察队编.西藏第四纪.北京:科学出版社,1983.132~144
    黄赐璇.上新世时期昆仑山南北古植被和吉气候比较研究.中国科学(B),1994,24(1):87~93
    贾蓉芬.陕西段家坡黄土剖面超磁菌特征与环境意义.中国科学(D).1996,26(5):411~417
    翦知缗,李保华等.西太平洋晚全新世变冷事件.中国科学D.1996,26:461~466
    孔绍宸,杜乃秋,山发寿等.青海湖全新世植被演变及气候变迁—QH85-14C孔孢粉数值分析[J] 海洋地质与第四纪地质.1990,10:79~90
    李炳元.羌塘高原北部湖泊演化初步探讨.青藏项目专家委员会编.青藏高原形成与演化、环境变迁与生态系统学术论文年刊,1994.北京:科学出版社,261~266
    李吉均,方小敏.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学D.1996,26(4):316~322
    李森,董玉祥,董光荣.青藏高原沙漠化问题与可持续发展.中国藏学出版社.2001,166~167
    李廷栋,吴功建,肖序常.青藏高原岩石圈构造及演化特点再认识.中国青藏高原研究会编,青藏高原与全球变化研讨会论文集.1995.北京:气象出版社,200~208
    李文漪,梁玉莲.札达盆地上新世湖相沉积的孢粉分析.中国科学院青藏高原综合科学考察队编.西藏第四纪.北京:科学出版社,1983.153~161
    李相博,陈践发,张平中等.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息.沉积学报.1999,6:325~329
    李英年,王启基,周兴民等.高寒草甸植物群落的环境特征分异.干旱区研究,1998.3
    李英年.高寒草旬牧草产量和草场载畜量模拟研究及对气候变暖的响应,草业学报 2000,6:77~82
    李勇,王成善,伊海生,等.中生代羌塘前陆盆地充填序列及演化过程地层学杂志,2002,26(1):63~79.
    李勇,王成善,伊海生等.青藏高原中侏罗世—早白垩世羌塘复合型前陆盆地充填模式.沉积学报,2001,19(1):1~8.
    林本海,刘荣谟最近800ka黄土高原季风变迁的稳定同位素证据.科学通报.1992.37(2):178~180
    刘鸿雁.第四纪生态学与全球变化.北京:科学出版社,2002
    刘兰锁.青藏公路沿线上新世—早新世孢粉组合及其意义.青藏高原地质文集(4).北京:地质出版社
    刘清泗,李华章.中国北方农牧交错带全新世环境演变.见:中国北方农牧交错带全新世环境演变及预测,北京:地质出版社 16:50
    刘秀铭.中国黄土磁性矿物特征及其古气候意义.第四纪研究.1993,(3):281~287.
    刘秀铭等.中国黄土磁颗粒分析及其古气候意义.中国科学.1991.(6):639~644.
    刘志飞,王成善.可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义.沉积学报.2000,18:356~361
    吕厚远,顾兆炎,吴乃琴.海拔高度的变化对青藏高原表土δ~(13)Corg的影响.第四纪研究.2001(9)
    吕厚远等.中国现代土壤磁化率分析及其古气候意义.中国科学(B).1994,24(12):1291~1297.
    马玉贞,曹继秀,李吉均.甘肃临夏堡黄土剖面15万年来的孢粉植物群发展及气候演化.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994),103~113,北京科学出版社
    蒲庆余,吴锡浩,钱方.青藏公路沿线唐古拉山地区的第四纪地质问题.青藏高原地质文集(4).北京:地质出版社,1982,19~33
    气候变化对青藏高原的影响[EB/OL].http://www.ami.ac.cn/climatechange2/85/natural/ntrltbt.html2003.9.10/2004.1.16
    青海省区调综合地质大队.1993.《1:20万雁石坪、索加幅区域地质调查报告》.
    青海石油管理局勘探开发研究院,柴达木盆地第三纪孢粉学研究.北京:科学出版社,1985
    邱丹,张国胜.青藏高原气候变化对青南地区高寒草地生态系统的影响[J].青海科技 2000,6:23~25
    三江源自然保护区生态环境编委会.三江源自然保护区生态环境.青海人民出版社.2002.9:53~191
    山发寿,杜乃秋,孔绍宸.青海湖盆地35万年来的植被演化及环境变迁.湖泊科学,1993,5(1):9~17
    沈才明,唐领余.青藏高原全新世古季风变化的花粉证据.微体古生物学报.1996,13(4):433~436
    沈承德等.Be-磁化率模型及黄土中成壤磁性物质通量的估算.第四纪研究.1994(1):75~86
    沈承德等.洛川黄土μm~nm级物质粒度分布特征及10Be、磁化率记录.见:中国第四纪地质与环境.北京:海洋出版社,1997:158~168.
    沈承德等.晚更新世黄土堆积物中的10Be记录.第四纪研究.1989,(2):169~176
    沈吉,吕厚远,王苏民,陈诗越.错鄂孔深钻揭示的青藏高原中部2.8MaBP以来环境演化及其对构造事件响应.中国科学:D辑.2004,34(4):359~366
    施雅风,孔绍宸,王苏民,唐领余,王富葆,姚檀栋,赵希涛等.中国全新世大暖期气候与环境的基本特征.见:中国全新世大暖期气候与环境,施雅风主编.北京:海洋出版社.1~18
    施雅风,李吉均,李炳元..青藏高原晚新生代隆升与环境变化.广州:广东科技出版社,1998.17~157
    施雅风,刘东生.希夏邦马峰地区科学考察初步报告.科学通报.1964,(10):928~938
    施雅风,汤懋苍,马玉贞.青藏高原二期隆升与亚洲季风孕育关系探讨.中国科学,1998,28:263~271.
    施雅风.2004.藏高原大冰盖假说的提出与扬弃.第四纪研究,24:10~18.
    施雅风等,晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54:11~20
    宋之琛,刘耕武.西藏东北部早第三纪孢粉组合及其古地理意义.中国科学院青藏高原综合科学考察队编。西藏古生物.第五分册.北京:科学出版社,1982,165~190
    苏波,韩兴国,李凌浩等.中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应.植物生态学报.2000,24(6)648~655
    汤懋苍,李存强.关于“青藏高原是气候变化启动区”的分析事实.见郑本兴主编青藏高原隆升及其对自然环境的影响中国科学院兰州冰川冻土研究所出版 兰州 1999.12:463~469
    汤懋苍,刘晓东.一个新的划分第四纪的标志.第四纪地质.1995,1:82~88
    汤懋苍等.青藏高原近代气候变化及对环境的影响.广州:广东科技出版社,1998
    唐领余,沈才明.青藏高原南部中新世以来植被与气候的初步研究.青藏项目专家委员会编.青藏高原形成与演化、环境变迁与生态系统学术论文年刊,北京:科学出版社,1995,251~259
    唐领余,沈才明.青藏高原晚新生代植被史及其气候特征.微体古生物学报.1996,13(4):321~337
    唐领余,汪世兰.青海共和盆地共和组孢粉植物群.古生物学报.1988,27(5),583~606
    唐领余,王睿.青藏昆仑山垭口盆地第四纪沉积孢粉组合及其意义.中国科学院兰州冰川冻土研究所集刊,1976(1).北京:科学出版社,106~119
    陶君蓉,横断山区中断—兰坪第三纪植物化石群及其意义.青藏高原研究横断山考察专辑(2),1986:58~65,
    王成善,丁学林.喜马拉雅的隆升及其沉积响应研究新进展.地质科技情报,1998,17(1):1~17
    王富葆,李升峰,申旭辉等.吉隆盆地的形成与演化、环境变迁与喜马拉雅山隆起.中国科学(D),1996,26(4): 329~335
    王富葆.青藏高原全新世气候环境基本特征.中国全新世大暖期气候与环境.海洋出版社.1992,197205
    王开发,杨蕉文,李哲等.根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其地理.地质科学,1975(4):366~374
    王谋,李勇,白宪洲,黄润秋.全球变暖对青藏高原腹地草地资源的影响.自然资源学报.2004,19:331~336
    王谋,李勇,黄润秋,李亚林,张玉修.青藏高原腹地植物碳同位素组成对环境条件的响应.山地学报.2005,vol.23 No.3
    王谋,李勇,黄润秋,李亚林.青藏高原腹地高寒植被对高原气候暖干化的适应.生态学报,2005,vol.25 No.7
    王谋,李勇,潘胜,黄润秋.气候变化对青藏高原腹地可持续发展的影响.中国人口.资源与环境.2004,14:92~95
    王谋,李勇,张玉修,李亚林,黄润秋.青藏高原腹地现代植物δ~(13)C空间分异反映的环境信息.地球科学进展 2004,19(增刊)
    王绍令,赵林,李述训等.青藏高原沙漠化与冻土相互作用的研究.中国沙漠,2002,3:33-39
    王苏民,施雅风.晚第四纪青海湖演化研究析视与讨论.湖泊科学.1992,4(3):1~9
    王永焱等.黄土中石英颗粒表面结构与中国黄土成因.地理学报.1982,37:35~40
    魏明建,王成善,万小樵,伊海生.第三纪青藏高原面高程与古植被变迁.现代地质.1998,12:318~326
    文启忠,余素华.沉积过程中的稀土元素.地质地球化学.1979.(5):55~61.
    文启忠等.黄土堆积过程中元素的演化与古气候的关系.中国第四纪研究.1985,6(2):34~40.
    文启忠等.黄土剖面中古气候变化的地球化学记录.第四纪研究.1995(3):223~231
    文启忠等.陕西洛川剖面中的稀土元素地球化学.1981(2):126~133.
    文启忠等.中国黄土地球化学.北京:科学出版社,1989.
    吴敬禄.RM孔自生碳酸盐稳定同位素组成及其古气候.地理科学,1997,17(1):18~23
    吴艳宏,王苏民,夏威岚.1770年以来青藏高原错鄂地区古气候定量恢复.2003,23(4):115~120
    吴玉虎等.黄河源区植物资源及其环境.青海人民出版社.2001.28
    吴珍汉,藏北多格错仁红层及孢粉组台特征.现代地质 2002.9
    吴征益等.中国植被.科学出版社,1980:1051
    肖序常,王军.1998.青藏高原构造演化及隆升的简要评述.地质论评.44:372~381
    徐钦琦.青藏高原首次出现的古生物证据及其对全球的影响.中国青藏高原研究会编,中国青藏高原研究会第一届会议讨论会议文选.北京:科学出版社,1992,296~301
    徐仁,陶君蓉等.希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义.植物学报.1973,15:103~119
    许靖华.太阳、气候、饥荒与民族大迁移.中国科学 28(4):366~384
    许吟隆.全球变暖后我国自然地理分布变化示意图[EB/OL].http://www.ami.ac.cn/climatechange2/85/natural/zone/2003.8.27
    杨梅学,姚檀栋.近2000a来古里雅冰芯记录及19~20世纪的气候变暖冰川冻土.2004,26(3):289~293
    姚檀栋,Thompson L G,施雅风等.古里雅冰芯末次见冰期以来气候变化记录研究.中国科学D.1997,40:662~668
    姚檀栋,Thompson,LG.青藏高原达索普冰芯2ka来温度与甲烷浓度变化记录.中国科学D辑.2002,32:346~352
    姚檀栋,秦大河,田立德等.青藏高原2Ka来温度与降水变化.1996,24:348~353.
    姚檀栋,杨海学.从古里雅冰芯与祁连山树轮记录看过去2000年气候变化第四纪研究.2001,21(6):514~519
    叶玮.《新疆西风区黄土沉积特征与古气候》.北京:海洋出版社.2001
    殷青军等,见黄河源区草地退化状况及其与气候关系分析.见:陈邦柱主编气候变化与生态环境研讨会文集 2004:379~386
    张国胜,李林,汪青春等.青南高原气候变化及其对高寒草甸牧草生长影响的研究.草业学报,1999,9:1:10
    张虎才.元素表生地球化学特征及理论基础.兰州:兰州大学出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700