用户名: 密码: 验证码:
多元地学空间数据融合及可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在研究遥感、地球化学、地球物理等空间数据特征的基础上,采用关联规则分析方法进行多元数据融合,并进行可视化数据挖掘方法研究,实现研究区基于多元地学空间数据的目标信息提取。这一成果对于多元地学空间信息综合利用的方法和应用研究具有重要应用价值。
    论文研究内容包括:研究多元数据融合的地学信息提取基础;研究遥感图像像元与地球化学数据单元的空间对应关系以及遥感数据空间网格尺度转换方法;研究地球化学数据与遥感数据定量融合的技术方法;多元数据融合和数据挖掘可视化研究。
    主要研究成果:Hough 变换和数学形态学处理方法优化了从遥感数据所提取地物目标的空间特征;地学空间实体及现象的三维可视化提高了对目标空间分布、演化规律的认知能力;提出了遥感数据空间网格尺度转换方法并实现其与地球化学数据的相互融合;探讨了关联规则分析模型与可视化成图方法,分析研究区典型矿床(点)遥感蚀变信息与地球化学异常内在关系,发现Ag、As 元素及(As+Ag)/(Pb+Zn)元素组合形式与遥感蚀变信息、构造格局以及已知矿床(点)在空间上具有良好的对应关系。
With the national economy developed continuously and quickly, many multi-metal mineral resources face to the serious missing situation, which is not only restricted the development of economy, but also endangered the safety of national resources. Our country has already paid much attention about it. Mining exploring is more and more difficult with the mining exploring for a half century. Mine investigate in lie concealed, deeper and jumping-off district will be an important orientation of mining exploring. Therefore, it is necessary to look for a new method for information extracting。This become one of an important way to research the mining exploring by remote sensing 、geology、geochemistry、physical geography and so on. Having the knowledge of multi-geoscience information, we keenly feel that geography model is faulty. Because the complexity of the phenomenon and process in geoscience, how to obtain knowledge from multi-geoscience data become a special attention in academia. Geo science visual is being integrated with spacial analysis, data mining and knowledge discovery, which serve to spacial decision. However, the geoscience informatization plays an important role.
    Globosity spacial data mining, also named knowledge discovery, means finding information that is connotative, unaware and latent from globosity spacial database, extracting interest of spacial models and characteristics and the general relation between space and non-space data and other data characteristics which include in database. It transforms much original data to valuable knowledge. Geoscience visual is a concept from the integration of science calculation and geoscience, which is about visual expression and analysis of geoscience data. So, knowledge discovery of processing to multi-variable data fusion will be a mine investigate emphases to study.
    As more and more information sources and styles, it is necessary to deeply study and analyze the information content that is complex and associated. In order to obtain more enough results than simplex fusion, the technique of data fusion is often used to deal with multi-variable data, which can effectively eliminate uncertain factors of data and improve the expression of object and environment and the veracity of result or explanation analysis.
    Geoscience spacial data put multi-relativity and multidimensional enrich. Multi-relativity of geoscience spacial data put that spacial data of different subjects specialty have a definite relative which is qualitative or quantitative, while multi-space-time scale decided this correlativity of spacial data of different subject specialty put different degree of incertitude and complexity. Multi-relativity is a base of multi-geoscience spacial data fusion and data mining. Multidimensional enrich of geoscience spacial data put that the enrich of multi observation variable in the specialty data of different object field, such as spectrum dimension variable of multi spectrum/spectral in remote sensing data、multi-element variable of geochemistry data、multidimensional characteristic of physical geography and so on. Multi-variable and multidimensional data formed earth observation data volume of space-time dimension of multi-specialty and multi-measure of multi-variable dimension. The correlation of multi-variable geoscience spacial data and the content of integrated information extract for principle、model、method are keystones and difficulty in field of globe system in recent. The thesis is picked from “The crusted curtain action mechanism evolvement and form mine rules research in DaXingAnLing”and “Information extract method research of remote controlled mine based on GIS”. Problems and research contents Comprehensive application study in remote sensing and multi-geoscience information is revealing various ways and different scale from attribution and characteristic belong to the object. Remote sensing makes use of differences between electromagnetism radiation to recognize and distinguish object, which has its good facet but also has limitation. It is proved that work along with the geology the increment of difficulties, remote sensing must learn the information with geology, physical geography, geochemistry, etc and is closely combined the comprehensive application with multi-geoscience information. In that way, we can know essence and its mutual contact of object indeed, acquire the satisfied geology application result. Mineral information has something to do with many metals minerals present diversity, different scale, obvious or obscure text information in the remote sensing image. It is out of place to describe it only use simple qualitative model. There are many problems:1) because of complexity of the mineral condition, differences of earth’s surface overlays and resolution of remote sensing data, it can’t confirm whether it is a significative mineralization only based on the information extracted from remote sensing data. In other words, it is difficult to quantitatively confirm the geology
    information associated with miner information from component of matter, especially in covered and half-covered area. While regional geochemistry technology mainly make use of the element abnormal as direct symbol to explore mine, but because of abnormal intensity and scale are restricted from many geology factors, it is result in some weak and low abnormal information are neglected, some is exaggerate unusually, only according to some indeterminations in mine exploring use geochemistry abnormality. 2) The pure remote sensing data also just extract the information of certain" depth" mostly, so current research mainly limits at parts of geology information in earth's surface flat manifestation, spatial characteristics, but lack of depth research. 3) How choose the comprehensive research of remote sensing image processing method and multi-variable information, thus carry out to convert the two dimension surfaces into three dimension stereoscopic expression method, which has any problems existed. The end target of multi-variable data fusion and visual data mining is to build up the homologous special information reorganization and extraction system, it provide the analysis, transformation ability and extraction multiply theme information for research the complicate and huge system. Geology and geology phenomenon are functions of three dimensions space, and there are always existent multiply answer in abnormal information in remote sensing, geology and geology physical. Therefore adopt the fit evaluation, estimate models, extracting theme information considering many faces seem to be as importance in many ways. The thesis researched the method of multi-variable data fusion and visual data mining according to the data of remote sensing、geology、geochemistry、physical geography and so on. The basic idea is based on the theory and technique method of information fusion、data mining and knowledge discover. We discussed the geologic information extraction for the data of remote sensing、physical geography、geochemistry and so on in the experimental area. The technique route is: ⑴Research the scheme of matching and quantity among the sampling units of multi-variable spacial data according handle characteristic of multi-variable data about different spacial measures. ⑵Made visual data mining by the mathematical methods of multianalysis、principal components analysis、morphomatics、Hough transfer and so on. ⑶Fuse the multi original spacial data using the associate principal model based visual production of data mining. ⑷lidate the result of the visual data mining and data fusion in the experimental area.
    Main results This research carries on data fusion and visual data mining, set the typical silver mineral bed at Xin ba er hu Inner Mongolia for example. Main results from this research are listed as follows: 1. Extracted special feature information from remote sensing data based on Hough transform and morphology; 2. Designed and realized three-dimensional visualization use basic special data geology entity and phenomena such as geology, physical geography according to IDL, MATLAB. 3.Solving the rectify between pixel of remote sensing and geochemistry data sample units and quantity relationship, set up the diverse space data fusion model according to the connection rule method; 4.Build up the inside relation that alteration of remote sensing and the geochemistry abnormality, made use of special information such as alteration, structure extract from spectra data of remote sensing and regional geochemistry abnormal to carry out data fusion, advanced data fusion between geochemistry and remote sensing, even the flow of visual mining. Innovation 1.Solving the rectify between pixel of remote sensing and geochemistry data sample unit and quantity relationship, set up the diverse space data fusion model according to the connection rule method; 2.Build up the inside relation that alteration of remote sensing and the geochemistry abnormality, made use of special information such as alteration, structure extract from spectra data of remote sensing and regional geochemistry abnormal to carry out data fusion, advanced data fusion between geochemistry data and remote sensing even the possibility method for visual mining.
引文
[1] 陈述彭,地学的探索,科学出版社,2003 年第1 版,302-305,53-55。
    [2] 李德仁,空间信息系统的集成与实现,武汉测绘科技大学出版社,2000年第1 版。
    [3] 何国金、李克鲁、胡德永,多卫星遥感数据的信息融合:理论、方法与实践,中国图像图形学报A,1999.9。
    [4] 王润生等,地质勘查图像分析与综合,地质出版社,1999 年第1 版。
    [5] 唐文周,我国遥感地质工作的现状和近期展望,国土资源遥感,1998.2。
    [6] 杨自安等,化探与一个信息在青海两兰地区找矿预测中的应用,地质与勘探,2003.6。
    [7] 蓝国兴、艾国强,信息融合技术,计算机世界,1997.5 月,107-108。
    [8] Costantiti、M.Farina、A.Zirilli F,The fusion of different resolution SAR images,In :Proceeding softhe IEEE,1997,85(1):139-146。
    [9] 唐泽圣,三维数据场可视化,清华大学出版社,1999。
    [10] DASKALAKIS、KOPANASI、COUDARAM,etal,Data Mining for Derision Support on Customer Insolvency in communications Business [J],European Journal of Operational Research,2003,145(2):239-255。
    [11] 王燕、李睿、李明。数据挖掘技术应用研究[J]。甘肃科技,2001,17(1):49-50
    [12] 龚建华、林珲,虚拟地理环境,高等教育出版社,2002,100-101。
    [13] ANANTHANARAYANA V S 、NARASIMHA MURTY M 、SUBRAMAVIAN D K,Tree Structure for Efficient Data Mining Using Rough Sets[J],Pattern Recognition Letters,2003,24(6):851-862。
    [14] ZHONG NING、DONG JU-ZHEN、SETSUO OHSUGA,Mining Data Mining by Cooperatively Using GDT-RS and RSBR[J],Pattern Recognition Letters,2003,24(6):887-894。
    [15] KAO S C、CHANG H C、LIN C H,Decision Support for the Academic Library Acquisition Budget Allocation via Circulation Database Mining[J],Information Processing & Management,2003,39(6):133-147。
    [16] ZHOU ZHI-HUA,Tree Perspectives of Data Mining[J],Artificial Intelligence, 2003,143(1):139-146。
    [17] WoodM.K.Brodlie,ViscANDGIS:Some Fundamental Considera2tions,Visualizationin Geographical Information System , edited by Hi2laryM. Hearnshaw & DavidJ.Urwin,1994,3-8。
    [18] Visvalingam.M. Visualizationin GIS. Cartography and Vics. Visualiza2tionin Geographical Information System. Edited by HilaryM. Hearnshaw & DavidJ. Urwin,1994,18-25。
    [19] Philbrick.A.K. Towardaunity of carto graphicforms and geographical content,Professional Geographer,1953,5(5):11—15。
    [20] McCormickB. H.DefantiM.D.. BrownM.D. Visualization in Sci2entific Computing. SpecialIssueACMSIGGRAPH Computer Graphics,1987,21(6)。
    [21] 江斌、黄波、陆锋。GIS 环境下的空间分析和地学视觉化,高等教育出版社,2000 年第1 版,160。
    [22] 唐泽圣,三维数据场可视化,清华大学出版社,1999。
    [23] 陈述彭、童庆禧、郭华东,遥感信息机理研究,科学出版社,1998,159。
    [24] 秦举礼,遥感和多源地学数据图像处理技术及在地质找矿中的应用,四川地质学报,1996.1。
    [25] 查显节、邢立新等,基于空间形态特征的遥感边缘信息提取方法,吉林大学学报(地球科学版),2004.3。
    [26] 邢立新、潘军等,Hough 变换在线性信息提取中的应用研究,长沙遥感学术会议论文集,2004。
    [27] Ren C luo et al. M ultisenso r Integration and Fusion fo r Intelligent Machines and System s,North Carolina State University,Ables Publishing Corporation,1995。
    [28] 罗森林、王越、周思永,多源信息处理技术——数据融合,系统工程与电子技术,1998。
    [29] 刘宴淼、余金生、李纯杰,基于图像处理技术的矿产预测综合分析系统[J ] ,物化探计算技术,1994,16 (1):22~28。
    [30] Corbley K P. Canad applies new processing technology to“old”data in mining exploration project [J ],Earth Observation,1994,5:34~36。
    [31] PohlC、GenderenJLVan,Multisensor image fusionin remote sensing:concepts , methods and applications[J] , International Journalof Remote Sensing,1998,19(5):823~854。
    [32] Leckie DG.S ynergsim of SAR and visible infrared data for forestty pediscrimination [J],Photogrammetric Engineering and Remote Sensing,1990,56(9):1237-1246。
    [33] ChavezPSJr、SidesSC、AndersonJA,Comparison of three differentme thodstomerge multiresolution and multispectral data : TM & SPOT pan[J],Photogrammetric Engineering and RemoteSensing,1991,57(3):295~303。
    [34] 郁文贤等,多传感器信息融合技术评述,国防科技大学学报,1994。
    [35] 江东、王钰、王建华、兰朝利,多源图像信息融合的理论与技术,甘肃科学学报,2002.1。
    [36] 罗可、蔡碧野、胜贤、谢中科,数据挖掘及其发展研究,计算机工程与应用,2002.14。
    [37] ANANTHANARAYANA V S 、NARASIMHA MURTY M 、SUBRAMAVIAN D K,Tree Structure for Efficient Data Mining Using Rough Sets[J],Pattern Recognition Letters,2003,24(6):851-862。
    [38] ZHONG NING、DONG JU-ZHEN、SETSUO OHSUGA,Mining Data Mining by Cooperatively Using GDT-RS and RSBR[J],Pattern Recognition Letters,2003,24(6):887-894。
    [39] 龚建华、林珲,虚拟地理环境,高等教育出版社,2002。
    [40] 李德仁、程涛,从GIS 数据库中发现知识,测绘学报,1995,24(1):37-43。
    [41] [加]Jiawei Han Micheline Kamber 著,范明、孟小峰译,数据挖掘概念与技术,机械工业出版社,2005 年第1 版,301-313。
    [42] 陈中祥、岳超源,空间数据挖掘的研究与发展,计算机工程与应用,2003.3。
    [43] [美]George M. Marakas 著,敖富江译,数据仓库、挖掘和可视化——核心概念,清华大学出版社,2004,29、93。
    [44] 陈建军、余志强,等. 数据可视化技术及其应用[J],红外与激光工程,2001,30(5) :239 –243。
    [45] 晓梅等,科学计算可视化导论[M],长沙:国防科技大学出版社,1996,1-18。
    [46] 谢东升、李旭祥,可视化技术及其在环境科学中的应用,新疆环境保护,2004,26(1):25-29。
    [47] [美] Tom Soukup Ian Davidson 著,朱建秋、蔡伟杰译,可视化数据挖掘,电子工业出版社,2004 年第1 版,3-4。
    [48] DASKALAKI S、KOPANAS I、COUDARA M,etal。Data Mining for Derision Support on Customer Insolvency in communications Business [J],European Journal of Operational Research,2003,145(2):239-255。
    [49] KAOSC、CHANG H C、LINCH,Decision Support for the Academic Library Acquisition Budget Allocation via Circulation Database Mining[J],Information Processing & Management,2003,39(6):133-147。
    [50] 承继成、林晖、周成虎等,数字地球导论,科学出版社,2000 年1月第1 版。
    [51] 李德仁、龚健雅、朱欣焰、梁宜希,我国地球空间数据框架的设计思想与技术路线,武汉测绘科技学报,1998,Vol.23,No4,297-303。
    [52] 宫鹏、史培军、浦瑞良等,对地观测技术与地球系统,科学出版社,1996.8。
    [53] 李德仁、关泽群,空间信息系统的集成与实现,武汉:武汉测绘科技大学出版社,2003 年3 月第1 版。
    [54] GIS 环境下的空间分析和地学视觉化,汪斌,黄波,陆锋,高等教育出版社,2002.5,P98-99。
    [55] 陈常松、何建邦,面向GIS 数据共享的概念模型设计研究,遥感学报,1999,3(3):230-235。
    [56] 陈军,GIS 空间数据模型的基本问题和学术前言,地理学报,1995,50(增刊):24-32。
    [57] 崔伟宏,空间数据结构研究,北京:中国科学技术出版社,1995。
    [58] 杜清运,空间信息的结构、表达及其理解机制,武汉测绘科技大学学报,1998,23(4):388-392。
    [59]. 地理信息系统与管理决策,科技部国家遥感中心,北京大学出版社,2000.4,P57。
    [60] 空间数据库,Shashi Shekhar,Sanjay Chawla 著,谢昆青,马修军,杨冬青等译,机械工业出版社,2004.1,P28、P32。
    [61] [美] Michael Zeiler 著,张晓祥、张峰、姚静等译,为我们的世界建模—ESRI 地理数据库设计指南,人民邮电出版社,2004 年12 月第1 版。
    [62] 地理信息系统基本原理及应用,朱光,李晓燕,戎兵,测绘出版社,1997.6,P30。
    [63] 地理信息系统,汤国安,赵牡丹,科学出版社,2000.10,P32-39、P90-107。
    [64] 多维地学数据处理技术与方法,杨毅衡等,科学出版社,2002.3。
    [65] 空间数据发掘与知识发现,邸凯昌,武汉大学出版社,2000.12,P3-4。
    [66] 赵英时等,遥感应用分析原理与方法,科学出版社,2003,273-276。
    [67] 周成虎、骆剑承、杨晓梅等,《遥感影像地学理解与分析》,科学出版社,2001。
    [68] 曹五丰、秦其明,基于知识的卫星数字图像公路信息提取研究,北京大学学报(自然科学版),1998 年,34(2-3),P254-263。
    [69] 刘素红、马建文、蔺启忠、陈广浩,利用L2 空间正交分解方法提取遥感数据中的地质信息,大地构造与成矿学,1999 年23(2),P186-189。
    [70] 王今飞,遥感卫星图像中线性地质特征的自动提取,第四纪研究,2000 年,20(3),P252-258。
    [71] 袁捷、胡正仪、王延平,用Hough 变换的方法提取图像拐点,武汉大学学报,1998。
    [72] 严超华、刘高航、黎明等,灰度图象的直接Hough 变换方法,南昌航空工业学院学报,2000。
    [73] Oakes.G.,Automatic Lineament Analysis Techniques for Remotely Sensed Imagery,Journal of University of London,1987, 521-532。
    [74] Cross,A.and G.Wadge,Gological lineament detection using the Hough transform,IGARSS’88 proceedings,1988, 1779-1782。
    [75] Wang,J. and P.J.Howarth,Edge following as graph searching and Hough transform algorithms for lieament detection,IGRASS’89 proceedings,1989,93-96。
    [76] Amon Karmlell、Amnon Melsels、Leonld Flsher and Yaacov Arkln,“Automatic Extraction and Evaluation of Geological Linear Features from Digital Remote Sensing Data Using a Hough Transform”,Photogrammetric Engineering & Remote Sensing,1996,62(5), 525-531。
    [77] 韩春明、郭华东、王长林(Han Chunming、Guo Huadong、Wang Changlin),一种新型雷达图像边缘提取技术(A new SAR Image Edge Detection Technique) [J],遥感学报(Journal of Remote Sensing),2002, 6(6),P485-489。
    [78] 李晶晖、戚飞虎(Li Jinghui、Qi Feihu),基于数学形态学的强鲁棒性边缘检测方法研究(Development of Robust Edge Detection Based on Morphology)[J],上海交通大学学报(Journal of ShangHai JiaoTong University),1995,29(6),P96-101。
    [79] B. S. Daya Sagar、M. B. R. Murthy、C. Babu Rao and Baldev Raj, Morphological approach to extract ridge and valley connectivity networks from Digital Elevation Models,INT.J.Remote Sensing,2003,Vol.24,No. 3,P573–581。
    [80] 龚涛,基于数学形态学变换的数字影像分析算法研究,西南交通大学学报,1995。
    [81] Jon Atli Benediktsson,Martino Pesaresi and Kolbeinn Arnason ,Classification and Feature Extraction for Remote Sensing Images from Urban Area Based on Morphological Transformations , IEEE Transactions on Geoscience and remote sensing,vol.41,No.9,1940-1949。
    [82] 梁勇、李天牧(Liang Yong,Li Tianmu),多方位形态学结构元素在图像边缘检测中的应用(The Application of Image Edge Detection with Multidirectional Morphological Structuring Elements ),云南大学学报(Journal of YunNan University),1999,21(5),392-394。
    [83] 张英琦、何洪涛,一种基于数学形态学的灰度图象边缘检测方法,西南交通大学学报,1996。
    [84] 方洪宾、李志中,遥感化探信息综合分析在地质找矿中的应用研究,国土资源遥感,1998.4,33-36。
    [85] 何金国、胡德永、陈志军、雷莉萍,从TM 图像中直接提取金矿化信息,遥感技术与应用,1995。
    [86] 张满郎,金矿蚀变信息提取中的主成份分析,遥感技术与应用,1996。
    [87] Zhou Zhenwu、Zhang Jianshu、Wang Weidong,The Probing of Remote Sensing Information in Large Scale Porphyry Copper.Remote Sensing For
    Land & Resources,1996。
    [88] Zhang Yuanfei、Wu Jiansheng,Extraction of Mineralization And Alteration Information from Remote Sensing Images , Geological Exoploration for Non-Ferrous Metals,1999。
    [89] Zhang Jinkai、Cui Chengyu、Zi Yiqiao,A New Method for Alteration Extraction in Mid-vegetated Areas Using TM Data —Combined Technique of Vegetation Masking and Mode Filtering(CTVMMF) Based on Principal Component Analysis(PCA),China Joural of Image and Graphics,1996。
    [90] Shi Junfeng,Geological Characteristics and Minerogeneic Mechanism of the XiaoXiNanCha Gold-Copper Deposit,Joural of Precious Metallic Geology,1998。
    [91]W.P.Loughlin,Principl Component Analysis for Alteration Mapping,Presented at the Eigth thematic Conference on Geological Remote Sensing,Denver,Coloardao,USA,1991。
    [92] 潘龙驹、付金德、孙恩守、李占鳌,满洲里—新右旗铜银多金属矿带大型矿床地质特征,中国有色金属工业总公司地质勘查总局,中国有色地质资料馆。
    [93] 王晓鹏,谢志清,伍跃中,ETM 图像数据中矿化蚀变信息的提取———以西昆仑塔什库尔干地区为例,地质与资源,2002 年6 月,第11 卷第2 期,119-122。
    [94] 张佩民,黄林日,鲍巨才等,辽西肖家营子地区金矿遥感信息提取及成矿预测,国土资源遥感,2000,(45)3:31-37。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700