用户名: 密码: 验证码:
沙堆模型复杂性现象及自组织临界性系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着沙堆模型复杂性现象,展开了以自组织临界性理论为主的复杂性理论及应用的研究。在已有成果的基础上,具体工作如下:
     1、我们先前的实验表明,散粒体呈现自组织临界性与系统的组构特征和组织原则有关,作为组织原则之一的颗粒非均匀性是影响因素。为进一步深入研究,探讨其它组构特征和组织原则以及其它外界因素对散粒体自组织临界性的影响,我们开展了如下实验:
     (1)人工碎石材料的均匀沙和非均匀沙单面坡沙堆实验。碎石材料的沙堆表现的规律属性与河沙材料的一致。散粒体颗粒的磨圆度虽然是散粒体的组构特征之一,但不是影响散粒体自组织临界性的因素。
     (2)坡面插桩和增设坡脚平台的沙堆实验。这些人为对沙堆系统施加影响的办法会影响沙堆落沙的量值,但不能改变沙堆原有的规律属性。
     (3)多尺度的米堆单面坡模型实验。表明颗粒形状对散粒体自组织临界性的影响不显著。
     2、在实验基础上,开展沙堆模型复杂性理论专题研究:
     (1)在论述、分析自组织临界性理论特征和内涵的基础上,结合散粒体实验,探讨了沙堆模型的时空长程相关性,采用R/S分析法确定非均匀沙堆具有正的长程相关性,而均匀沙堆不具备。
     (2)引入多重分形理论和方法,分析非均匀沙堆自组织临界状态的空间和时间上的多层次分形结构;建立简化的多重分形动力模型,分析了散粒体自组织临界状态的多重分形动力行为。进而,确定了散粒体自组织临界性的多重分形特征。表明非均匀沙堆比均匀沙堆具有更高的复杂性。
     3、采用复杂性研究方法分析几类自然灾害的规律属性,探讨自组织临界性的普适性。
     (1)斜坡灾害是沙堆模型直观表象的自然现象。在对滑坡、崩塌和泥石流的空间分布和时间序列分析时,证明这三种斜坡灾害幂率分布的共性和自组织临界性特征。
     (2)临界状态下,许多差异很大的物理系统具有极大的相似性。基于此,分析洪水和沙尘暴的实测资料:
     a、介绍趋势消除波动分析法,分析实测最大洪峰流量时间序列,证明序列具有长程相关性。
This paper focuses on complexity in sandpiles and studies the complexity theory and application of self-organized criticality. Base on the fruit had been taken the main work and conclusions are as follows:1、 By experiments we have discovered that self-organized criticality in granular mixtures is strongly influenced by the fabric characteristics and the organizing structure principle. The non-uniform degree of granular material, as an organizing structure principle, is a factor affecting SOC. For finding the other factor of the fabric characteristics and the organizing structure principle or others affecting SOC, we carried on the follow experiments:(1)Uniform and non-uniforn sandpiles of single slope experiments with the stuffs of artifical broken stone are done. The sandpiles of artifical broken stone have same law with the sandpiles of fluvial sand. The psephicity of granular is one of the fabric characteristics but is not a factor affecting SOC.(2)The experiment of pitching of pile on the slope of the sandpiles and the experiment of mountting a platform at toe of slope of the sandpiles are done. The means such as pitching of pile on the slope of the sandpiles and mountting a platform at toe of slope of the sandpiles can affect the quantity of falling sandpiles but these do not change the law of sandpiles.(3)Multi-scale single slope rice-piles experiments are done. The experiments indicate the effect to granular SOC of the shape is not marked.2、 Base on sandpiles experiments, we research granular complexity theory.(1)Discussing the characteristic and meaning of self-organization criticality theory and analyzing granular experiments, we research long range spatial-temporal correlation o f s andpiles. With the rescaled r ange analysis method, we ensure that non-uniform sandpiles has positive long range correlation but uniform sandpiles has not.(2)Multi-fractal theory and method is introduced. Multiple course of fractal structure of sliding size serial and sliding interval time serial are analyzed. And simplified multi-fractal dynamic model is set up, with which dynamic action of granular SOC is researched. Multi-fractal feature indicates non-uniform sandpiles
    is more complex than uniform.3 > The field data of some kinds of natural disaster are analyzed with different complexity analysis means. The universality of SOC is discussed.(1) The slope disaster is natural phenomenon that it is presentational by the sandpiles. Spatial and temporal distribution series of landslide, avalanche and debris flow are researched, it is proved that the three slope disasters have common property such as power distribution and the other characteristic of SOC.(2) In the critical state many very different physical systems are very similar. So we analyzed the field data of the flood and severe duststorm:a> Detrended fluctuation analysis method is introduced and used to analyze maximum-recorded flood peak time series. It is proved that the series has long range correlation.b .. Multi-fractal detrended fluctuation analysis method is introduced and used to analyze severe duststorm series. It is showed that the series has long range correlation and multi-fractal structure. Multi-fractal singularity exponent spectrum of the series is educed.c^ The methods study demonstrates the results with three kinds of means are comparable.Research discovers that flood, slope disaster and severe duststorm, which are three kinds of natural disaster systems of very different physical property and genesis, have some internal regularity.4> Fresh thinking and means for two kinds of complex disaster forecast having the attribute of SOC or quasiperiod are presented. Considering the reliability design for engineering, applying statistics of extremes directed by complexity theory is researched, and extreme value distribution of power distribution is deduced to graduating distribution of extremum type I. And an example is given. Direction of complexity theory such as SOC theory can provide fresh thinking for disaster forecast, project planning and design.5 , Considering interaction and compatibility between communication engineering and environment is a new task for road location design. The cellular automata is one of primary means for complexity research. The paper assumes generalized leading line location means and the cellular automata model for road location. The idea is a new means for road location design for compatibility
    between communication engineering and environment.6>. At critical state, granular has the property both solid and fluid. We research the complex mechanism of granular in the two respects:(l)The paper researches the complex characteristics of granular including the cumulate texture, density and stress distribution. Moreover by means of the relative density of large-scale coarse grained soil test, we make know non-uniform sandpiles being banked has greater randomness, which makes for complexity of the structure space and the density. Researching exposure degree and intergranular acting at the slope of sandpiles, we conclude complexity of the fabric inside and surface of granular leads to complexity of critical activity. Non-uniform sandpiles is more complex than uniform inside and surface.(2)Under the thought of turbulence and laminar flow theory, we put forward turbulent motion layer and laminar motion layer hypothesis for granular critical fluid state. The hypothesis is used to explain the complex behavior mechanism and phenomena of granular SOC.
引文
[1] 曾广荣,易可军,欧阳旭清等.系统论 控制论 信息论与哲学[M].中南工业大学出版社.1988,1.
    [2] 王雨田.控制论 信息论 系统科学与哲学(第二版)[M].中国人民大学出版社,1988,3.
    [3] 张道民.软科学基础[M].青岛海洋大学出版社.1992,9.
    [4] 苗东升.系统科学原理IM].中国人民大学出版社.1990,5.
    [5] (美)米歇尔.沃尔德罗普著,陈玲译.复杂——诞生于秩序与混沌边缘的科学[M].三联书店.1997,8
    [6] 中国科学院《复杂性研究》编委会.复杂性研究(论文集).科学出版社.1993,7.
    [7] 王寿云,于景元,戴汝为等.开放的复杂巨系统 浙江科学技术出版社.1996,12.
    [8] 魏宏森,宋永华等.开创复杂性研究的新学科——系统科学纵览tM].四川教育出版社.1991,12.
    [9] 钱学森,于景元,戴汝为.一个新的学科领域——开放的复杂巨系统及其方法论[J].自然杂志.1990,1
    [10] 成思危.复杂性科学探索(论文集)[M].民主与建设出版社.1999,8
    [11] Mandelbrot B.B. The Fractal Geometry of Nature[M]. Freeman, Califormia, 1982.
    [12] (法)曼德尔布洛特.分形对象——形、机遇和维数tM].世界图书出版公司北京公司:1999,12.
    [13] 李后强、汪富泉著.分形理论及其在分子科学中的应用[M].科学出版社,1993
    [14] 赵年松.非线性科学——它的内容、方法和意义[M].科学出版社.1994,2.
    [15] 谢和平.分形—岩石力学导论[M].北京:科学出版社,1996
    [16] 张济中.分形[M].清华大学出版社,1995,8
    [17] 普里戈金,斯唐热.从混沌到有序——人与自然的新对话[M].上海译文出版社,1987.
    [18] 郝柏林.从抛物线谈起—混沌动力学引论[M].上海:上海科技教育出版社,1995.
    [19] 吴祥兴,陈忠.混沌学导论[M].上海:上海科学技术文献出版社,1996.
    [20] 仪垂祥.非线性科学及其在地学中的应用[M].北京气象出版让,1995.
    [21] 尼科里斯,普里高津著.探索复杂性[M].成都:四川教育出版社,1986
    [22] Per Bak, Chao Tang, Kurt Wiesenfeld. Self—organized Criticality: an explantion of 1/f noise[J].Phys Rev Lett, 1987, 59(4): 381-384
    [23] Per Bak, Chao Tang, Kurt Wiesenfeld. Self-organized criticality[J]. Physical Review A, 1988, 38(1): 364-374.
    [24] 冯端,金国钧,凝聚态物理学新论[M].上海:上海科学技术出版社,1992:354-398
    [25] Bak P and Chen K Self-organized criticality[J]. Sci. American. 1991. 264(1): 26-33
    [26] 谷超豪.别有洞天——非线性科学[M].湖南科学技术出版社.2001:114-145.
    [27] 郭爱克,孙海坚.生命与思维——在混沌的边缘演化[J].科技导报,1998,1:13-17
    [28] P.Evesque, D.Fargeix, P.Habib, M.P.Luong and P.Porion. Pile density is a control parameter of sand avalanches. Physical Review E. 1993, 7(4): 2326-2332
    [29] Hernan A.Makse, Shlomo Havlin, Peter R.King & H.Euggene Stanley. Spontaneous stratification in granular mixtures. Nature. 1997, 386(27): 379-382
    [30] Hendrik J.Blok and Birger Bergersen. Effect of boundary conditions on scaling in the "game of Life". Physical Review E. 1997, 55(5): 6249-6252
    [31] J.M.Carlson, J.T.Chayes, E.R.Crannan and G.H.Swindle. Self-organized criticality in sandpiles: nature of critical phenomenon. Physical Review A. 1990, 42(4): 2467-2470
    [32] Imre M.Janosi.Effect of anisotropy on the self-organized critical state. Physical Review A. 1990, 42(2): 769-774
    [33] Brigita Urbanc and Luis Cruz.Order parameter and segregated phases in a sandpile model with two partical sizes. Physical Review E, 1997, 56(2): 1571-1579.
    [34] Parthapratim Biswas and Arnad Majumdar.Smoothing of sandpile surfaces after intermittent and continuous avalanches: Three models in search of an experiment. Physical Review E. 1998, 58(2): 1266-1285
    [35] Carmen P.C.Prado and Zee Olami. Inertia and break of self-organized criticality in sandpile cellular-automata models. Physical Review A, 1992, 45(2): 665-669
    [36] D.A.Head and G.J.Rodgers. Crossover to self-organized criticality in an inertial sandpile model. Physical Review E. 1997, 55(3): 2573-2579
    [37] Anita Mehta, G.C.Barker.J.M.Luck, .R.J.Needs. The dynamics of sandpiles: The competing roles of grains and clusters. Physical A. 1996, 224: 48-67
    [38] Stefan Boettcher. Aging exponents ini self-organized criticality. Physical Review E, 1997, 56(6): 6466-6474
    [39] Maxim Vergeles. Self-organization at nonzero temperatures. Physical Review Letters. 1995, 75(10): 1969-1972
    [40] Maxim Vergeles. Mean-field theory of hot sandpiles. Physical Review E. 1997, 55(5): 6264-6265
    [41] Luis A.Nunes Amaral and Kent Baekgaard Lauritsen. Self-organized criticality in a rice pile model. Physical Review E.1996, 54(5): R4512-R4515
    [42] J.Krug; J..E.S.Socolar, and G.Grinstein.Surface fluctuations and criticality in a class of one-dimensional sandpile models. Physical Review A, 1992, 46(8): R4479-R4482
    [43] H. M. Jaeger, Chu-heng Liu, and Sidney R.Nagel. Relaxation at the angle of repose. Physical. Review Letters.1989, 62(1): 40-42
    [44] Kim Christensen, Alvaro Corral, Vidar Frette, Jens Feder, and Torstein Jφssang. Tracer dispersion in a self-organized critical system. Physical Review Letters. 1996, 77(1): 107-110
    [45] Deepak Dhar. Self-organized critical state of sandpile automaton models.Physical Review Letters. 1990, 64(14): 1613-1616
    [46] V.B.Priezzhev.Structure of two-dimensional sandpile. I.Height Probabilities.Jounal of Statistical Physics. 1994, 74(5/6): 955-979
    [47] Pui-Man Lam and Fereydoon Family. Mode-coupling theory and simulation results for the "running-sandpile" model of self-organized Criticality. Physical Review E.1993, 47(3): 1570-1576
    [48] Antal Karolyi and Janos Kertesz.Lattice-gase model of avalanches in a granular pile. Physical Review E. 1997, 57(1): 852-856
    [49] H.F.Chau.Abelian sandpile model.Physical Review E. 1993, 47(6): R3815-3817
    [50] T.Elperin and A.Vikhansky.Numerical solutions of the variations equations for sandpile dynamics. Physical Review E. 1997, 55(5): 5785-5791
    [51] M.V.Medvedev and P.H.Diamond.Self-organized states in cellular automata: Exact.solution. Physical Review E.1998, 58(5): 6824-6827
    [52] Afshin Montakhab and J.M.Carlson.Avalanches, transport, and local equilibrium in self-organized criticality.Physical Review E. 1998, 58(5): 5608-5619
    [53] D.V.Ktitarev and V.B.Priezzhev.Expansion and contraction of avalanches in the two-dimensional Abelian sandpile.Physical Review E, 1998, 58(3): 2883-2888
    [54] S.S.Manna.Large-sccale simulation of avalanche cluster distribution in sand pile model. Jounal of Statistical Physics. 1990, 59(1/2): 509-521
    [55] M.G.Shnirman and Y.A.Tyurina.Generalized hierarchical model of defect development and self-organized criticality. Physical Review E. 1998, 57(4): 3804-3813
    [56] F.Bagnoli, P.Palmerini, and R.Rechtman.Algorithrnic mapping from criticality to self-organized criticality. Physical Review E.1997, 55(4): 3970-3976
    [57] Henrik Jeldtoft Jensen, Kim Christensen and Hans C.Fogedby. 1/f noise, distribution of lifetime, and a pile of sand. Physical Review B.1989, 40(10): 7425-7427
    [58] Vidar Frette.Sandpile models with dynamically varying critical slopes. Physical Review Letters. 1993, 70(18): 2762-2765
    [59] Luis A.Nunes Amaral, Kent Baekgaard Lauritsen.Energy avalanches in a rice-pile model. Physica A. 1996, 231: 608-614
    [60] M.Bengrine, A.Benyoussef, F.Mhirech, S.D.Zhang.Disorder-indueed phase transition in a one-dimensional model of rice pile. Physica A. 1999, 272: 1-11
    [61] S.Lubeck and K.D.Usadel.Numeric determination of the avalanche exponents of the Bak-Tang-Wiesenfeld-model. Physical Review E. 1997, 55(4): 4095-4099
    [62] Shu-Dong Zhang. On the universality of a one-dimensional model of rice pile.Physics Letter A, 1997, 233: 317-322
    [63] S.S.Manna.Critical exponents of the sand pile models in two dimensions. Physica A. 1991, 179: 249-268
    [64] L.Pietronero, A. Vespignani, and S.Zapperi.Renormalization scheme for self-organized criticality in sandpile models. Physical Review Letters. 1994, 72(11): 1690-1693
    [65] Chao Tang and Per Bak. Critical exponents and scaling relations for self-organized critical phenomena. Physical Review Letters. 1988, 60(23): 2347-2350
    [66] Yi-Cheng Zhang. Scaling theory of self-organized criticality. Physical Review Letters. 1989, 63(5): 470-473
    [67] Asa Ben-Hut and Ofer Biham.Universality in sandpile models.Physical Review E. 1996, 53(2): R1317-R1320
    [68] Alessandro Vespignani, Stefano Zapped, and Luciano Pietronero. Renormalization approach to the self-organized critical behavior of sandpile models. Physical Review E. 1995, 51(3): 1711-1724
    [69] Sergei Maslov and Maya Paczuski. Scaling theory of depinning in the Sneppen model. Physical Review E. 1994, 50(2): R643-R646
    [70] S.D.Edney, P.A.Robinson, and D.Chisholm.Scaling exponents of sandpile-type models of self-organized criticality. Physical Review E.1998, 58(5): 5395-5402
    [71] Luis A.Nunes and Kent Baekgaard Lauritsen. Universality classes for rice-pile models. Physical Review E. 1997, 56(1): 231-234
    [72] Maria de Sousa Vieira. Simple deterministic self-organized critical system. Physical Review E. 2000, 61(6): R6056-R6059
    [73] Maria.Markosova.Universality classes for the ricepile model with absorbing properties. Physical Review E.2000, 61(1): 253-260
    [74] Stefan Hergarten and Horst J.Neugebauer. Self-organized criticality in two-variable models. Physical Review E,2000,61(3):2382-2385
    [75]S.N.Dorogovtsev,J.F.F.Mendes,and Yu.g.Pogorelov.Bak-Sneppen model near zero dimension.Physical Review E,2000,62(1):295-298
    [76]Terence Hwa and Mehran Kardar.Dissipative transport in open system:an investigation of self-organized criticality. Physical Review Letters,1989,62(16):1813-1816
    [77] Alexei Vazquez and Oscar Sotolongo-Costa.Universality classes in the random-storage sandpile model. Physical Review E,2000,61(1): 944-947
    [78]S. Lubeck.Large-scale simulations of the Zhang sandpile model. Physical Review E,1997, 56(2): 1590-1594
    [79]Hiizu Nakanishi and Kim Sneppen.Universal versus drive-dependent exponents for sandpile models. Physical Review E,1997,55(4):4012-4016
    [80]S.S.Manna.Critical exponents of the sand pile models in two dimensions. Physica A.1991, 179:249-268
    [81]Stefano Lise and Maya Paczuski.Self-organized criticaliry and universality in a nonconservative earthquake model. Physical Review E,2001,63(3):036111-036115
    [82]Albert Diaz-Gullera.Noise and dynamics of self-organized criticality phenomena. Physical Review A, 1992,45(12):8551-8558
    [83]Chao Tang and Per Bak.Mean-field theory of self-organized critical phenomena. Jounal of Statistical Physics.l988,51(5/6):797-802
    [84]Kim Christensen,Zeev Olami.Sandpile models with and without an underlying spatial structure. Physical Review E.1993,48(5):3361-3372
    [85]Henrik Flyvbjerg,Kim Sneppen and Per Bak.Mean field theory for a simple model of evolution. Physical Review Letters.l993,71(24):4087-4090
    [86]Stcfano Zapperi,Kcnt Baekgaard Lauritssen,and Eugene Stanley.Self-organizedbranching processes:mean-field theory for avalanches. Physical Review Letters. 1995,75(22):4071-4074
    [87]Makoto Katori,Hirotsugu Kobayashi.Mean-field theory of avalanches in self-organized critical states.Physica A.1996,229:461-477
    [88]Maxim Vergeles,Amos Maritan,and Jayanth R.Banavar.Mean-field theory of sandpile. Physical Review E.1997,55(2):1998-2000
    [89]Terence Hwa and Erwin Frey.Exact scaling function of interface growth dynamics. Physical Review A. 1991,44(12):R7873-7876
    [90]Ashvin B.Chhabra,Mitchell J.Feigenbaum,Leo P.Kadanoff,Amy J.Kolan and Itamar Procaccia.Sandpiles,avalanches,and the statistical mechanics of nonequilibrium stationary states. Physical Review E. 1993, 47(5): 3099-3121
    [91] V.B.Pfiezzhev and K.Sneppen.Muitiple scaling in a one-dirnensional sandpile. Physical Review E. 1998, 58(6): 6959-6963
    [92] Romualdo Pastor-Satorras and Alessandro Vespignani.Correetions to sealing in the forest-fire model. Physical Review E.2000, 61(5): 4854-4859
    [93] Terence Hwa and Mehran Kardar. Avalanches, Hydrodynamics, and discharge events in models of sandpiles. Physical Review A. 1992, 45(10): 7002-7023
    [94] Per Bak, Kan Chen.A.forest-fire model andsome thoughts on turbulence. Physics Letter A. 1990, 147(5.6): 297-300
    [95] Barbara Drossel.Scaling behavior of the Abelian sandpile model. Physical Review E.2000, 61(3): R2168-R2171
    [96] L.Pietronero and W.R.Schneider.Fixed scale transformation approach to the nature of the relaxation clusters in self-organized criticality. Physical Review Letters. 1991, 66(13): 2336-2339
    [97] Maya Paczuski, Sergei Maslov, and Per Bak.Avalanche dynamics in evolution, growth, and depinning models.Physical Review E. 1996, 53(1): 414~443
    [98] Stefano Lise and Maya Paczuski.Scaling in a nonconservative earthquake model of self-organized criticality.Physical Review E.2001, 64(4): 046111-046115
    [99] S.T.R.Pinho, C.P.C.Prado, and S.R.Salinas.Complex behavior in one-dimensional sandpile models. Physical Review E.1997, 55(3): 2159-2165
    [100] Leo P.Kadanoff, Sidney R.Nagel, Lei Wu, and Su-min Zhou.Scaling and universality in avalanches. Physical Review A.1989, 39(12): 6524-6537
    [101] M.De Menech, A.L.Stella, and C.Tebaldi.Rare events and breakdown of simple scaling in the Abelian sandpile model.Physical Review E. 1998, 58(3): R2677-R2680
    [102] Kim Christensen, Zeev Olami, and Per Bak. Deterministic 1/f noise in nonconservative models of self-organized criticality. Physical Review Letters. 1992, 68(16): 2417-2420
    [103] Henrik Jeldtoft Jensen. Lattice gas as a model of 1/f noise.Physical Review Letters. 1990, 64(26): 3103-3106
    [104] B.Kaulakys and T.Meskauskas.Modeling 1/f noise. Physical Review E.1998, 58(6): 7013-7019
    [105] G.Grinstein arid D.-H.Lee, Subir Sachdev.Conservation laws, Anisotropy, and "self-organized criticality" in noisy nonequilibrium systems. Physical Review Letters. 1990, 64(16): 1927-1930
    [106] V.N.Skokov, A. V.Reshetnikov, V.P.Koverda, A.V.Vinogradov.Self-rganized criticality and 1/f-noise at interacting nonequilibrium phase transitions. Physica A.2000, 293: 1-12
    [107] Henrik Flyvbjerg.Simplest possible self-organized critical system. Physical Review Letters. 1996, 76(6): 940-943
    [108] Hans-Henrik Stφlum. Flutuations at the serf-organized critical states. Physical Review E. 1997, 56(6): 6710-6718
    [109] Kurt Wiesenfeld, James Theiler and Bruce McNamara.Self-organized criticality in a deterministic automaton. Physical Review Letters. 1990, 65(8): 949-952
    [110] A.Alan Middleton and Chao Tang.Self-organized criticality in nonconserved systems. Physical Review Letters. 1995, 74(5): 742-745
    [111] Per Bak, Stefan Boettcher.Self-organized criticality and Punctuated equilibria.Physica D, 1997, 107: 143-150
    [112] Per Bak and Kim Sneppen.Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters, 1993, 71(24): 4083-4086
    [113] Emma Montevecchi and Attilio L.Stella. Boundary spatiotemporal correlations in a self-organized critical model of punctuated equilibrium. Physical Review E.2000, 61(1): 293-297
    [114] C.Adami.Selff-organized criticality in living systems. Physics Letters A. 1995, 203: 29-32
    [115] Tomoko Tsuchhiya and Makoto Katori. Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model. Physical Review E.2000, 61(2): 1183-1188
    [116] Per Bak. Self-organized criticality in non-conservative models. Physica A, 1992, 191: 41-46
    [117] Peyman Ghaffari, Stefano Lise, and Henrik Jeldtoft Jensen. Nonconservative sandpile models. Physical Review E.1997, 56(6): 6702-6709
    [118] D.L.Turcotte, B.D.Malamud, G.Morein, W.I.Newman. An inverse-cascade model for self-organized critical behavior.Physica A. 1999, 268: 629-643
    [119] M.E.J.Newman and Kim Sneppen.Avalanches, scaling, and coherent noise. Physical Review E. 1996, 54(6): 6226-6231
    [120] Y.Moreno, J.B.Gomez, A.F.Pacheco. Self-organized criticality in a fibre-bundle-type model. Physica A. 1999, 274: 400-409
    [121] Pratip Bhattacharyya. Critical phenomena in an one-dimensional probabilistic cellular automaton. Physica A. 1996, 234: 427-434
    [122] Sergei Maslov, Yi-Cheng Zhang, Self-organized critical directed percolation. Physica A. 1996, 223: 1-6
    [123] Zoltan.Fodor and Imre M.Janosi. Results on the continuous-energy sef-organized critical model in One dimension. Physical Review A. 1991, 44(2): 1386-1389
    [124] Alvaro Corral, Conrad J.Perez, Albert Diaz-Guilera, and Alex Arenas. Self-organized criticality and synchronization in lattice model of integrate-and-fire oscillators. Physical Review Letters. 1995, 74(1): 118-121
    [125] Gongwen Peng. Self-organized criticality in vector-state automata. Physica A. 1993, 201: 573-580
    [126] Gerald Baumann and Dietrich E.Wolf.Self-organized criticality in a two-dimeensional rotating dmm model.Physical Review E. 1996, 54(5): R4504-4511
    [127] E.N.Miranda and H.J.Herrmann. Self-organized criticality with disorder and frustration. Physica A.1991, 175: 339-344
    [128] A.Malthe-Sφrenssen. Kinetic grain modelfor sandpiles. Physical Review E. 1996, 54(3): 2261-2265
    [129] Horatio Ceva and Roberto P.J.Perazzo. From self-organized criticality to first-order-like behavior: A new type of percolation transition. Physical Review E. 1993, 48(1): 157-160
    [130] A.M.Alencar, J.S.Andrade, and L.S.Lucena. Self-organized percolation. Physical Review E.1997, 56(3): R2379-R2382
    [131] Kim Christensen, Henrik Flyvbjerg and Zeev Olami. Self-organized critical forest-fire model: mean-field theory and simulation results in 1 to 6 dimensions. Physical Review Letters. 1993, 71(17): 2737-2740
    [132] C.Vanderzande and F.Daerden. Dissipative Abelian sandpiles and random walks. Physical Review E.2001, 63(3): 030301-030304
    [133] K.I.Hopcraft, E.Jakeman, and R.M.Tanner. Characterization of structural reorganization in rice piles. Physical Review E.2001, 64(1): 016116-016125
    [134] Eric Bonabeau, Journal of the Physical Society of Japan.64(1): 327-328
    [135] R.R.shcherbakov, VI.V.Papoyan, and A.Mpovolotsky.Critical dynamics of self-organizing Eulerian walkers. Physical Review E. 1997, 55(3): 3686-3688
    [136] R.Vilela Mendes. Characterizing self-organization and coevolution by ergodic invariants. Physica A.2000, 276: 550-571
    [137] E.M.Blanter and M.G.Shnirman. Simple hierachical systems; Stability, self-organized criticality, and catastrophic behavior. Physical Review E.1997, 55(6): 6397-6403
    [138] J.Rosendahl.M.Vekic, and J.E.Rutledge. Predictability of large avalanches on a sandpile. Physical Review Letters. 1994, 73(4): 537-540
    [139] Peter Bantay and Imre M.Janosi. Avalanche Dynamics from anomalous diffusion. Physical Review Letters. 1992, 68(13): 2058-2061
    [140] J.E.S, Socolar and G.Grinstein. On self-organized criticality in nonconserving systems. Physical Review E. 1993, 47(4): 2366-2376
    [141] N.Vandewalle, H.Puyvelde, and M.Ausloos. Self-organized criticality can emerge even if the range of interactions is infinite. Physical Review E. 1998, 57(1): 1167-1170
    [142] L.Pietronero, P.Tartaglia and Y.-C.Zhang.Theoretical studies of self-organized criticality.Physical A. 1991, 173: 22-44
    [143] Sergei Maslov, Maya Paczuski, and Per Bak. Avalanches and 1/f noise in evolution and growth models. Physical Review Letters. 1994, 73(16): 2162-2165
    [144] Alvaro Corral and Albert Diaz-Guilera. Symmetries and fixed point stability of stochastic differential equations modeling self-organized self-organized criticality. Physical Review E. 1997, 55(3): 2434-2445
    [145] J.M.Carlson, J.T.Chayes.E.R.Grannan, and G.H.Swindle.Self-organized criticality and singular diffusion. Physical Review Letters. 1990, 65(20): 2547-2550
    [146] S.P.Obukhov. Self-organized criticality: goldstone modes and their interactions.Physical Review Letters. 1990, 65(12): 1395-1398
    [147] 李仕雄.沙堆演化动态特性及自组织临界现象研究[L].西南交通大学博士研究生学位论文,2004,12
    [148] Held G A, Solina ⅡD H, Keane D T et al. Experimental study of critical-mass fluctuation in an evolving sandpile[J]. Phys.Rev.Lett, 1990; 65(9): 1120-1123.
    [149] Frette V, Malthe-Sφressen K C A. Jφssang J F T et al. Avalanche dynamics in a pile of rice[J]. Nature, 1996, 379(27): 49-52.
    [150] Bretz M, Cunningham J B, Kurczvnski P L, etal. Imaging of avalanches in Granular materials [J]. Physical Review Letters. 1992, 69(16): 2431-2434.
    [151] E.Morales-Gamboa, J.Lomnitz-adler and V.Romero-Rochin, R.Chicharro-Serra and R.Peralta-Fabi. Two-dimensional avalanches as stochastic Markov processes[J]. Physical Review E. 1993, 47(4): 2229-2232
    [152] J.Rosendahl, M.Vekic, and J.Kelley. Persistent self-organization of sandpiles[J]. Physical Review E. 1993.47(2): 1401-1404
    [153] YAO Lingkan, FANG Duo. On the Self-organized criticality of non-uniform sands[J]. International Journal of Sediment Research, 1998, 13(3): 19-24
    [154] 姚令侃,方铎.非均匀沙自组织临界性及其应用研究[J].水利学报,1997,(3):26-32
    [155] 李远富,姚令侃,邓域才.单面坡沙堆模型自组织临界性实验研究[J].西南交通大学学报,2000,35(2):121-125.
    [156] 蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J].岩石力学与工程学报.2004.23(18):3178-3184.
    [157] 李仕雄,姚令侃,蒋良潍.影响沙堆自组织临界性的内因与外因[J].科技通报,2003,19(4):278-281
    [158] 李仕雄、姚令侃、蒋良潍.灾害研究中的自组织临界性与判据[J].自然灾害学报,2003,12(4):82-87
    [159] 李仕雄,姚令侃,蒋良潍.松散边坡演化特征及其应用[J].四川大学学报(工程科学版) 2004,2:7-11
    [160] 蒋良潍,姚令侃,李仕雄.溜砂坡防治工程安全系数实验探索[J].中国地质灾害与防治学报,2004,15(2).74-77
    [161] 李仕雄、姚令侃、蒋良潍.临界状态下沙堆大规模坍塌机制分析[J].西南交通大学学报,2004,39(3):366-370
    [162] 姚令侃,李仕雄,蒋良潍.自组织临界性及其在散粒体研究中的应用[J].四川大学学报,2003,35(1):8-14
    [163] Yao Lingkan, Huang, Yuan, Lu Yang. Self-organized criticality and its application in the slope disasters under gravity[J]. Science in China Ser. E Technological Sciences, 2004, vol46 (1): 10-21.
    [164] 於崇文.地质作用的自组织临界过程动力学[J].地学前缘,2000;7(1):13-42
    [165] 於崇文.地质作用的自组织临界过程动力学(下)[J].地学前缘,2000,7(2):555-585
    [166] 赫尔曼·哈肯.协同学—大自然构成的奥秘[M].上海世纪出版集团,2001,10
    [167] [美]欧阳莹之.复杂系统理论基础[M].上海科技教育出版社 2002,10
    [168] 于渌,郝柏林.相变和临界现象[M].科学出版社1986
    [169] (美)霍根J.科学的终结.孙雍君等译.呼和浩特远方出版社,1997.
    [170] Leo P, Kadannoff, Sidey R.Nagel, Lei Wu and Su-min Zhou.P.R.A39, 12, 1989, PP6524
    [171] R.Badii. "Complexity and Unpredictable Scaling of Hierarchical Structures", In Chaotic Dynamics, Theory and Practic, edited by T.Bountis (Plenum, New York)
    [172] Langton CG.Studying artificial life with cellular automata[J].Physica, 1986, 22D: 120-149.
    [173] Packard N. Adaptation toward the edge of chaos[A].In: Technical Report, Center for Complex Systems Research[R]. Illinois: University of Illinois, CCSR-85-5.1988.
    [174] Kauffman SA. Antichaos and adaptation[J].Sci Am, 1991, 8: 64-70.
    [175] Kauffman SA. Origins of Order: Self Organization and Selection in Evolution[M].Oxford: Oxford University Press, 1993: 1-709
    [176] Kauffman SA. At Home in the Universe[M]. (The Search for Laws of Self Organization and Complexity).Oxford: Oxford University Press, 1995, 1-321.
    [177] 於崇文.固体地球系统的复杂性与自组织临界性[J].地学前缘,1998;5(3):159-182,347-368
    [178] 姜振寰.软科学方法[M].黑龙江教育出版社.1994,12
    [179] 黄登仕,李后强.分形几何学、R/S分析与分式布朗运动[J].自然杂志.1990,13(8):477-482.
    [180] [美]埃德加·E·彼得斯.分形市场分析——将混沌理论应用到投资与经济理论上[J].经济科学出版社.2002,7.
    [181] Per Bak[著].李炜,蔡勖[译].大自然如何工作[M].华中师范大学出版社.2001,6.
    [182] LovejoyS, Schertzer D.Multifractals, universality classes, and satellite and radar measurements of cloud and rain fields[J].Jour Geophys Res, 1990, 95(D3): 2021-2034.
    [183] Stanley HE, Meakin P. Multifractal phenomena in physics and chemistry [J]. Nature, 1998, 335(6189): 405-409.
    [184] 李后强,汪富泉.多重分形:热力学类比、相变和子波变换[J].大自然探索.Vol.10(36)1991,2:55-58
    [185] Leo P.Kadanoff, Sidney R.Nagel, Lei Wu, and Su-min Zhou. Scaling and universality in avalanches. Physical Review A. 1989, 39(12): 6524-6537
    [186] Victor.B.Sapozhnikov and Efi.Foufoula-Georgiou. Experimental evidence of dynamic scaling and indications of self-organized criticality in braided rivers. Water Resource Research. 1996, 33(8): 1983-1991
    [187] Ignacio Rodriguez-iturbe, Marco Marani, Riccardo Rigon and Rinaldo. Self-organized river basin landscapes: fractal and multifractall characteristics. Water Resource Research. 1996, 30(12): 3531-3539
    [188] 孙霞,吴自勤,黄畇.分形及其应用[M].中国科技大学出版社.2003,10.54-74
    [189] 郝柏林.复杂性的刻画与“复杂性科学”[J].科学.1999,(51)3:3-8
    [190] 陈时军,David Harte,王丽风,马丽.广义地震应变能释放的多重分形特征[J].地震学报.2003,25(2):182-190
    [191] 谢嘉琼,易顺民.滑坡活动空间分布的多重分形特征及其预测意义[J].四川大学学报(工程科学版).2000,32(6):4-6
    [192] Qiuming Cheng. Multifractality and spatial statistics[J]. Computers & Geosciences. 1999, 25: 949-961
    [193] 何建敏,常松.中国股票市场多重分形游走及其预测[J].中国管理科学.2002,10(3):11-17
    [194] D.I.Iudin, D.B.Gelashvily. Multifractality in ecological monitoring[J]. Nuclear Instruments and Methods in Physics Research A, 2003, 502: 799-801
    [195] [美]William J.Petak,Arthur A.Atldsson.自然灾害风险评价与减灾政策[M].地震出版社,1993,2.
    [196] 魏一鸣.自然灾害复杂性研究[J].地理科学.1998,1:25-29.
    [197] D.L.特克特(著).陈顒,郑捷,季颖(译).分形与混沌——在地质学和地球物理学中的应用[M].地震出版社,1993,4:193-203
    [198] Ole Peters, Christop Herhertlein, Kim Christensen. A complexity view of rain fall[J]. Phys. Rev. Lett, 2002, 88(5): 054303
    [199] 国家统计局《'93中国环境统计》编委组.’93中国环境统计[M].1994,8
    [200] 国家统计局《’99中国环境统计》编委组.’99中国环境统计[M].2000,8
    [201] 中国灾害防御协会铁道分会.中国铁路自然灾害及其防治[M].中国铁道出版社.2000,7:418-422
    [202] 易顺民,晏同珍.滑坡定量预测的非线性理论方法[J].地学前缘.1996,3:77-85
    [203] 易顺民,唐辉明.滑坡分维特征及其预测意义[J].工程地质学报.1994,2:48-53
    [204] 吴积善等.云南蒋家沟泥石流观测研究[M].北京科学出版社,1990.2:120-146
    [205] 蒋忠信,姚令侃,艾南山,崔之久.铁路泥石流非线性研究与防治新技术[M].四川科学技术出版社.1999,9:176-184
    [206] 王裕宜,詹钱登,陈晓清,韩文亮.泥石流体的应力应变自组织临界特性[J].科学通报.2003,5:976-980
    [207] 金德生,陈浩,郭庆伍.河道纵剖面分形-非线性形态特征[J].地理学报,1997,52(2):154-160
    [208] 梁虹,卢娟.喀斯特流域水系分形、熵及地貌意义[J].地理科学,1997,17(4):310-315
    [209] 汪富泉,曹叔尤,丁晶.河流网络的分形与自组织及其物理机制[J].水科学进展,2002,13(2):367-375
    [210] Victor B.Sapozhnikov and Efi Foufoula-Georgiou.Do the current landscape evolution models show self-rganized criticality? Water Resource Research. 1996, 32(4): 1109-1112
    [211] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E, Goldberger A L.Mosaic organization of DNA nucleotides[J].Phys.Rev.E, 1994, 49: 1685-1689.
    [212] Peng C K, Havlin S, Stanley H E, et al. Quntification of scaling exponents and crossove phenomena in nonstationary heartbeat time series[J]. Chaos, 1995, 5(1): 82-87.
    [213] K. Ivanova, M. Ausloos. Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking[J]. Physica A 274 (1999) 349-354.
    [214] Luciano Telesca, Maria Macchiato. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis investigated by the detrended fluctuation analysis of interevent time series [J]. Chaos, Solitons and Fractals,2004,19: 377-385.
    [215] 庄新田,黄小原.证券市场的标度理论及实证研究[J].系统工程理论与实践,2003,(3):1-8.
    [216] 朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展.2003,14(6):731-735
    [217] 徐启运,胡敬松.我国西北地区沙尘暴天气时空分布特征[J].应用气象学报.1996,7(4):479-482.
    [218] 徐建芬,牛志敏,陈伟民,王强,高凤荣.我国西北地区4·5沙尘暴天气研究[J].中国沙漠.1996,9:282-287.
    [219] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationarytime series[J]. Physica A, 2002, 316:87-114.
    [220] K. Ivanova, H. N. Shirer, E. E. Clothiaux, N. Kitovab, M. A. Mikhalev, T. P. Ackerman, M. Ausloos. A case study of stratus cloud base height multifiactal fluctuations[J]. Physica A 308 (2002) 518-532.
    [221] 周自江,章国材.中国北方的典型沙尘暴事件(1954~2002)[J].科学通报,2003,48.11(6):1224-1228.
    [222] 张存杰,宁惠芳.甘肃省近30年沙尘暴、扬沙、浮尘天气空间分布特征[J].气象.2001,28(3):28-32.
    [223] 许强,黄润秋.地质灾害发生频率的幂律规则[J].成都理工学院学报.1997,24(增):91-96
    [224] 吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉大学出版社.2002,1:93-109
    [225] 蒋良潍,姚令侃,蒋忠信,李仕雄.溜砂坡动力学特性实验及防治初探[J].山地学报.2004,1:97-103
    [226] AHS, Tng WH Probability Concepts in Engineering Planning and D esign[M]Volume Ⅱ John Wileyand Sons, New York, 1984:284-341
    [227] 孙遇祺等.铁路公路灾害防治[M].中国铁道出版社,俄罗斯运输出版社.1998,12.
    [228] 阳友奎.崩塌落石的SNS柔性拦石网系统[J].中国地质灾害与防治学报1998,11,9增刊:313-321.
    [229] Franz:-Josef Elmer. Self-organized criticality with complex scaling exponents in the train models[J]. Physical Review E. 1997,56(6):R6225-R6228
    [230] Takashi Nagatani. Self-organized criticality and Scaling in lifetime of traffic james[J]. Jounal of the Physical Society of Japan. 1995,61(1):31-34
    [231] Takashi Nagatani. Self-organized criticality in 1D traffic flow model with inflow or outflow[J]. Journal of Physics A-Mathematical & General. 1995,28(40): L119-L124
    [232] 汪秉宏,毛丹,王雷,许伯铭.交通流中的自组织临界性研究[J].广西师范大学学报,2002,20(1):15-21
    [233] A. W. Burks. Von Neumann's self-reproducing automata. In A. W. Burks, editor, Essays on Cellular Automata[D]. University of Illinois Press, 1970:pp.3-64.
    [234] U. Pesavento. An implementation of von Neumann's self-reproducing machine. Artificial Life,1995,2:337-354.
    [235] Bastien Chopard, Michel Droz. Cellular Automata Modeling of Physical Systems[M].Cambridge University Press, 1998.
    [236] 周成虎等.地理元胞自动机研究tM].科学出版社.2001:26-74
    [237] B. Drossel and F. Schwabl. Self-Organized Critical Forest-Fire Model. Physical Review Letters.1992, 69 (11) : 1629-1992
    [238] S. Clar, K. Schenk, and F. Schwabl. Phase transitions in a forest-fire model. Physical Review E. 1997,55(3):2174-2183
    [239] Hans-Martin BrOker and Peter Grassberger. Anomalous scaling in the Bak-Chen-Tang forest fire model. Physical Review E. 1997,56(5):R4918-4921
    [240] Brace D, Malamud, Gleb Morein, Donald,Turcotte. Forest Fire: An Example of Self-organized Critical Behavior. Science. 1998, 281: 1840-1841
    [241] 宋卫国,范维澄,汪秉宏.中国森林火灾的自组织临界性.科学通报.2001,46(6):521-525
    [242] Song W, Fan W, Wang B. Self-Organized Criticality and Wildfires. Ecological Modeling. 2001, 145: (1) 61-68
    [243] 何振宁.论铁路地质选线[J].成都理工学院学报.2001,28:293-295.
    [244] 周国华,曾学贵,张耀平.铁路选线设计中的环境考虑[C].中国交通研究与探讨.1997:421-423
    [245] 郑顺义,曾学贵.交通建设中的土地适宜性评价[J].中国公路学报.2001.10:96-99
    [246] 郝瀛.铁路选线设计[M].中国铁道出版社.1990.
    [247] 易思蓉,张家铃,邓域才.生成线路初始平面的自动优化方法[J].西南交通大学学报.2002,2:1-5
    [248] 冯端,师吕绪,刘治国.材料科学导论——融贯的论述[M].化学工业出版社材料科学与工程出版中心.2002.5
    [249] Γ.К.克列因著.陈万佳译.散粒体结构力学[M].中国铁道出版社,1983
    [250] 郭庆国.粗粒土的工程特性及应用[M].黄河水利出版社,1998:11-16
    [251] 中华人民共和国行业标准.土工试验规程(SL237-1999)[M].中国水利水电出版社,1999:418-423,447-453
    [252] 吴爱祥,孙业志,刘湘平.散体动力学理论及其应用[M].冶金工业出版社,2000.
    [253] S. F. Ewards and R. B. Oakeshott 1989 physica d 38 88.
    [254] Loic Vanel, Daniel Howell, D. Clark, R. P. Behringer, and Eric Clement. Memories in sand: Experimental tests of construction history on stress distributions under Sandpiles[J], PHYSICAL REVIEW E NOVEMBER, 1999,60(5): R5040-R5043
    [255] 何文社,杨具瑞,方铎,曹叔尤.泥沙颗粒暴露度与等效粒径研究[J].水利学报.2002,11:44-48.
    [256] Yalin, M. S, Mechanics of Sediment Transport, 2nd Edi. Pergamon Press, 1977, P. 290.
    [257] 孙志林,谢鉴衡,段文忠等.非均匀沙分级起动规律研究[J].水利学报,1997,10:25-32.
    [258] 韩其为,何明民.泥沙起动标准的研究[J].武汉水利电力大学学报.1996,29(4):1-5
    [259] 刘兴年.非均匀沙推移质输沙率及其粗化[D].成都科技大学,1986
    [260] 曲祖元.工程研究基础[M].武汉理工大学出版社.2002,12:1-86.
    [261] 陈式刚.映象与混沌[M].国防工业出版社.1995,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700