用户名: 密码: 验证码:
卫星跟踪卫星测量确定地球重力场的理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测定地球重力场,确定高分辨高精度的地球重力场模型和大地水准面,是大地球测量学的主要任务之一,也是与相关地球学科交叉研究的重要领域。卫星技术的出现和迅速发展,使物理大地测量学家有了进行全球重力测量的有效工具,卫星的轨道运动主要受制于地球重力场,可视为承载地球重力场信息的一种传感器,研究利用卫星轨道跟踪观测数据恢复地球重力场的理论和方法,形成了卫星重力学这一新的学科分支,已经历了40余年的发展,从上世纪60年代开始,利用地面站对卫星的激光测距(SLR)跟踪数据,至今建立了近百个不同序列的长波重力场模型,可确定分米级精度的全球大地水准面,上世纪末研制成功能在高动态条件下接收和处理GPS导航信号的星载GPS接收机,实现了高轨GPS卫星对低轨专用重力卫星的精密跟踪测轨,精度达到厘米级,同时突破了两颗低轨卫星之间的同轨跟踪测距和星载加速度计测定大气阻力等非保守力的技术,以及制成星载重力梯度仪,据此,本世纪初实施了新一代国际卫星重力探测计划,发射了GHAMP和GRACE卫星,2006年预计发射重力梯度测量卫星GOCE,研究利用新一代卫星重力观测数据建立高精度地球重力场模型,提出新方法,发展新技术,研制新软件,是当前物理大地测量学者高度关注的研究前沿,也是本论文选题的研究方向。本文的研究目标是,在消化总结国内外研究成果的基础上,比较全面地掌握利用GHAMP和GRACE数据恢复地球重力场的实用计算模型和算法细节,重点研究发展其中的能量守恒法,研制计算软件系统,利用GRACE实测数据,完成一个有应用价值的GRACE重力场模型的研制,并对模型的可靠性和精度进行检验分析和评价,提出需进一步研究的问题和建议。
     本文的主要工作包括以下几方面:
     1.评述精化地球重力场模型在现代大地测量发展及其与相关地球科学交叉研究中的作用;对实现确定1cm级精度大地水准面及相应地球重力场模型可能存在的问题和困难提出作者的思考;总结卫星重力技术的发展阶段和现有研究成果,概括理解表述各种卫星重力技术和方法的一般原理和共性,根据作者的研究实践提出目前面临的有待解决的关键性技术问题。
     2.从卫星重力学的角度出发,研究总结卫星轨道理论,给出涉及的不同时空参考系统的精确定义和数学表述及互相转换的实用计算模型,研究总结解开普勒轨道的实用算法,总结各种摄动力的数学模型,重点作详细的数值分析。该项工作在为低轨卫星星载GPS动力法定轨作准备和提供选择模型的依据。
     3.研究总结星载GPS精密动力法定轨所涉及的概念和实用计算模型,重点是卫星状态转移矩阵和参数敏感矩阵的结构和数学表述以及基于此两类矩阵的变分方程的建立,用于确定卫星观测方程线性化所需偏导数矩阵;详细研究现有轨道数值积分方法,给出可供实用计算的计算公式及其系数值,以及并行积分器的设计;给出动力法定轨的详细计算模型和流程,作为软件编制的依据。
     4.总结研究现有的基于GPS精密定轨的三类求解重力场模型的方法和实用算法,即动力法,能量法和加速度法,重点研究能量守恒法,导出改进的严密计算模型,对该法进行误差分析。
     5.研究总结重力场模型现有各种数值解法及优化算法技巧,包括时域法和空域法,重点
Gravity field measurements and determination of geopotential model and global geoid are one of the main tasks of geodesy, and it is also an important domain for cross research between geodesy and various related earth science discipline. With the coming and development of satellite technique, they provide the efficient tools for physical geodesists to map the global gravity field. Because satellite orbital motion is dominated by the field, a satellite orbit can be taken as a sensor carrying gravity information of the earth. The study of the theory and methology for earth's gravity field recovery with satellite tracking data constitutes a new discipline branch, named satellite gravimetry which has experienced a development period for more than forty years. Since the 60s of the last century, by use of SLR tracking data from ground stations, about hundred of long wave geopotential models with different series names have been released from some institutes and universities in the world. The accuracy of geoid determined by the models has a decimeter order. In the late last century, satellite borne GPS receiver was successfully invented which can receive GPS navigation signal under moving state with high speed, consequently, the orbit of gravity satellite can be precisely measured by GPS positioning technique with accuracy of a few centimeter order. In addition, the breakthrough of some crucial techniques for supporting new satellite gravimetry strategy and mission was made after study and experiment of long period efforts about 20 decades, including K-band microwave ranging between two satellites with micron(μ) accuracy, on-board accelerometer for measuring non-conservative forces like air-drag with 10~(-8)~10~(-9) accuracy and satellite gradiometer with 10~(-1)~10~(-2)E accuracy. Based on these advanced technique achievements, the international satellite gravity exploring missions of a new generation were performed in the early part of this century, which included launching projects of CHAMP and GRACE satellites for HL-SST and LL-SST gravimetric modes respectively. According to a complete satellite gravimetric plan, GOCE satellite for SGG will be launched into its orbit in the next year (2006). Therefore, the study of new methods, techniques and software for determination of geopotential models using satellite observation data of the new generation has been a front research area to which physical geodesists pay high attention at present, and it is just the selected main subject of this dissertation. The research objects include: based on understanding and summarizing the research results from the domestic-oversea literatures, being more completely familiar with the practical computation models and algorithm details for gravity field recovery using CHAMP and GRACE data by various methods, particularly, by energy method as a stress one to be investigation in this dissertation; developing a software system for computation as well as completing a GRACE gravity model comparable to other existing similar models.The main research work in this dissertation comprises the following aspects:Comment on the roles of refined earth's gravity model in development of contemporary geodesy and cross research with related earth's science disciplines; thinking about the problem and
    difficulty possible arising from the intent to realize an ambitious task of geoid determination with one centimeter accuracy and corresponding gravity model; summarizing the developing stages of satellite gravimetry technique and the existing study results; generalizing and understanding the common principle of various different satellite gravimetry technique and method; presenting some crucial technical problems to be addressed in gravity model solution according to author's research experience.From the point of view of satellite gravimetry, studying and summarizing the theory of satellite orbit; presenting the strict definition and mathematical expressions of associated different time/ space reference systems and practical computation models for mutual transformation; investigating the applied algorithm for solving Keplerian orbit; summarizing mathematical models of various perturbation forces laying stress on the detail numerical analyses about the models. The purpose of all above mentioned work in this item is to prepare necessary base for orbit determination of low-orbiting satellite by dynamic method.Studying and summarizing the concepts and computational models for practical uses associated with precise orbit determination of spaceborne GPS by dynamic method putting stress on the construction and mathematical expressions of satellite state transition matrix and parameter sense matrix, and on establishing variational equation according to the two matrices used for providing the needed partial derivatives in linearization of observation equations; investigating existing numerical integration approach of orbit determination in detail, and giving the computational formulas with corresponding coefficient values for practical use and the design of parallel integrator; presenting the detail computation models and flow chart for orbit determination with dynamic method used in software programming.Studying and summarizing, from the point of view of practical use, the existing three kinds of methods and algorithm for solving geopotential model, i. e. dynamic method, energy method and acceleration method, laying stress on the second one in which the strict computation model will be derived for modification, and the error analyses will also performed.Investigating and summarizing the existing various numerical solution method and optimization skill for estimating geopotential coefficients as unknown parameters including the methods of time-wise and space-wise modes, laying stress on the practical algorithm and its modification of preconditioned conjugate gradient method used in solving normal equation with respect to geopotential coefficient unknowns; and discussing the parallel algorithm and computational technique of solving for geopotential model using a super-computer with parallel calculation function.Studying the algorithm of GRACE data preprocessing and related technical problems including the data of accelerometer, KBR and orbit determination from on-board GPS kinematic positioning, the editing and creating of data files, the designing of software system for computation of geopotential model in terms of energy conservation method emphasizing the design of functional module, and solving for geopotential models with 90 degree and 120'degree respectively using GRACE in situ data of eighteen months.
    Studying the strategy and method of examination and evaluation on the quality of satellite geopotential models resulting from satellite tracking data only, making a complete comparison, test and a preliminary assessment on the global geopotential models presented in this dissertation.The main research achievements and contributions are as follows:With the purpose of practical uses, according to author's study, realization and summarization, a complete set of formulas are systematically presented which can be used for computation of geopotential model based on dynamic method using satellite tracking data, and a detailed algorithm descriptions for each computation step are given with some related numerical analyses; the program modules for executing some key computation step or calculation of some special functions are also presented in which the computation of epochs and coordinates and mutual transform between different systems, spherical harmonic function, Keplerian orbit elements with some numerical analyses, various perturbation forces with numerical analyses, orbit integrator with numerical analyses, the formation of variational equation and numerical integral solution, and so on, are included.Based on the principle of energy conservation and analytical mechanics, the detailed mathematical model for earth's gravity field recovery are derived in which a strict expression of the difference of kinetic energy between two satellite on the same orbit by KBR observation of range-rate is firstly presented instead of an approximate expression published in Journal of Geodesy in 1999, and the theory formulas for error analyses of this method and their numerical analysis results are also given, consequently, some related conclusions are reached as well.The problem on accelerometer data preprocessing is investigated in detail. Based on energy conservation principle, a strict formula (6-3-14) for solving the scale and bias parameters of accelerometer data is firstly presented adopting cross-over point method using orbital data and accelerometer observations. The formula can be used for precise correction to accelerometer data instead of current method which is based on an a priori geopotential model.The application of preconditioned conjugate gradient method in the solution of the normal equation with geopotential coefficient unknowns is investigated in detail. A precondition matrix with the most high speed convergence is proposed, which is successfully used in the development of WHU-GM-05 models. Therefore, the key problem to solve the geopotential coefficients of degree 120 on GS80 server taking acceptable consuming time is overcome. In real solution operation, it takes 96 hours for solving the normal equation with 14 637 geopotential coefficients corresponding to geopotential model of degree 120, using GRACE data of one month with 30 seconds of sampling intervals that implies 86 400 observation equations.The application technique of parallel algorithm running on supercomputer like GS80 in solution of satellite gravimetry geopotential model is investigated. This advanced computational technique will provide possibility of directly solution for inverse of high dimension normal matrix with full elements, that means, our computational technique in this area will approach to international advanced level by one step.
    A software system with multi-function for computing satellite gravimetric models is developed which is tentatively named "SATGRAS" (implied satellite gravimetry software). The software system can be used for establishing the earth's gravity model by use of the methods of "dynamic", "energy" and "acceleration excluding p" under both modes of HL-SST and LL-SST. Whencomplementing a program module for gravity gradient data processing into the software system, it can also be used for GOCE mission to solve geopotential model using SGG data.The method of GRACE data processing is investigated in detail, including accelerometer data, KBR range-rate data and orbit data of GPS tracking, etc.. The module for the data processing is created with an interface to SATGRAS, which has several functions including blunder/gross error detection and deletion, calibration and correction, and smoothing and interpolation, etc. A series of geopotential models are successfully developed that each one is expanded to degree 60, 90 and 120 using total eighteen months GRACE data by single satellite energy method and double satellites one respectively, which are tentatively named WHU-GM-S05 (for single satellite) and WHU-GM-D05 (for double satellites) (implied Wuhan University Gravity model of year 2005). The comparisons between WHU-GM-05 series and several analogous international geopotential models with corresponding geoidal heights are performed by use of GPS leveling data in the areas of U.S and China (some regions), and the RMS of the differences about 0.28m and 0.42m.
引文
[1] Arsov K. and R. Pail. Assessment of two methods for gravity field recovery from GOCE GPS-SST orbit solutions. Advances in Geosciences, 1, 121-126, 2003
    [2] Bae S. and B. E. Schutz. Geoscience Laser Altimeter System (GLAS) Precision Attitude Determination, Center for Space Research, The University of Texas at Austin, 2001.2
    [3] Balmino, G. Orbit Choice and the Theory of Radial Orbit Error for Altimetry. In: Rummel, R. and Sanso (Eds.) Satellite Altimetry in Geodesy and Oceanography. Lecture Notes in earth Sciences. Berlin Heidelberg New York: Springer-Verlag, 1994, 244~317
    [4] Bertiger W. I., J. T. Wu and S. C. Wu. Gravity Field Improvement Using Global Positioning System Data From TOPEX/Poseidon: A Covariance Analysis. Journal of Geophysical Research, 1992, 97(B2), 1965~1971
    [5] Beyerle, G, K. Hocke, J. Wickert, T. Schmidt, C. Marquardt and C. Reigber. GPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D24, 4802, doi: 10. 1029/2001JD001402, 2002
    [6] Biancale, R., G. Balmino, J.-M Lemoine, et al. A new global Earth's gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys. Res. Letters, 27, 3611-3614, 2000
    [7] Bjerhammar A. A New Approach to Satellite Geodesy. Research Institute for Geodetic Sciences, 701 Prince Street, Alexandria, Virginia, 22314, USA, 1967
    [8] Bminsma, S., S. Loyer, J. M. Lemoine, F. Perosanz, D. Tamagnan. The impact of accelerometry on CHAMP orbit determination. Journal of Geodesy, 77, 86-93, 2003
    [9] Byun, S. H. and B. E. Schutz. Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode. Journal of Geodesy, 75, 533-543, 2001
    [10] C. Hwang, C. Shum, J. Li. Satellite Altimetry for geodesy, Geophysics and oceanography, Intemational association of geodesy symposia Volume 126, 2002.
    [11] Chen, J. L., C. K. Shum, C. R. Wilson, D. P. Chambers and B. D. Tapley. Seasonal sea level change from TOPEX/Poseidon observation and thermal contribution. Journal of Geodesy (2000) 73:638-647
    [12] Chen, J.Y., J.C. Li, J.S. Ning and D.B. Chao. (1997). Testing and Evaluation of the GSFC/DMA EGM in China. 《International Geoid Service》 Bulletin Special Issue.
    [13] Cheng, M. K. Gravitational perturbation theory for intersatellite tracking. Journal of Geodesy, 76, 169-185, 2002
    [14] Cheng, M. K., B. Gunter, J. C. Ries, D. P. Chambers and B. D. Tapley. Temporal variation in the earth's gravity field from SLR and CHAMP GPS data.
    [15] Chovitz B. H.(Eds.) The Use of Artificial Satellites for Geodesy. American Geophysical Union Washington, D. C.: 1972,
    [16] Colombo, O. L. Global geopotential modeling from satellite-to-satellite tracking. 1981, Rep. 317, Dept. Geod. Sci. Surv., The Ohio State Univ., Columbus
    [17] Colombo, O. L. Numerical Methods for Harmonic Analysis on the Sphere. Department of Geodetic Science Report No. 310, Ohio State University, Columbus, 1981.3
    [18] Colombo, O. L. The global Mapping of Gravity with Two Satellites. Netherlands Geodetic Commission, Publications on Geodesy New Series 7(3), 1984
    [19] Cui, Ch. and D. Lelgemann. On non-linear low-low SST observation equations for the determination of the geopotential based on an analytical solution. Journal of Geodesy (2000) 74:431 -440
    [20] Cullen, R. A. and P. Moore. A spectral optimally interpolated mean sea surface from satellite radar altimetry. Journal of Geodesy (2001) 75:188 - 198
    [21] Deng, X.L., D.B. Chao and J.C. Li. (1997). A preliminary estimate of the mean sea level variations in China Sea from TOPEX/POSEIDON data. International Symposium On Current Crustal Movement and Hazard Reduction, in east Asia and southeast Asia Proceedings. IUGG IAG, pp. 506-519
    [22] Determination and Use of the Earth's Gravity field. ESA Report (Part), 1996
    [23] Dias, F. J. S. S., and I. P. Escobar. A model for adjustment of differential gravity measurements with simultaneous gravimeter calibration. Journal of Geodesy (2001) 75: 151-156
    [24] Ding, X., D. Zheng, Y. Chen, J. Chao and Z. Li. Sea level change in Hong Kong from tide gauge measurements of 1954-1999. Journal of Geodesy (2001) 74: 683-689
    [25] Ditmar, P., A. A. van Eck van der Sluijs. A technique for earth's gravity field modeling on the basis of satellite accelerations, manuscript submitted to the Journal of Geoedsy, 2003
    [26] Ditmar, P., R. Klees, F. Kostenko. Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. Journal of Geodesy, 76, 690-705, 2003
    [27] Douglas, B. C, C. C. Goad and F. E. Morrison. Determination of the geopotential from satellite-to-satellite tracking data. 1980, NOAA Technical Memorandum NOS NGS 24.
    [28] ESA. Gravity Field and Steady-State Ocean Circulation Mission. Report for assessment. ESA SP-1196(1), 1996.
    [29] ESA. Gravity Field and Steady-State Ocean Circulation Mission. Report for assessment. ESA SP-1233(1), 1999.
    [30] Experiment (GRACE) Mission. AAS/AIAA Space Flight Mechanics Conference, 1999
    [31] Experiment (GRACE) Spacecraft. NASA/TM-2000-210095, 2000.4
    [32] Fei, Z. L. and M. G. Sideris. A new method for computing the ellipsoidal correction for Stokes's formula. Journal of Geodesy (2000) 74: 223-231
    [33] Forsberg, R. and O. C. D. Omang. How to handle topography in practical geoid determination: three examples. Journal of Geodesy (2000) 74: 458-466
    [34] Frank Flechtner. GRACE AODIB product description document. Geoforschungszentrum Potsdam, 2003
    [35] Freeden, W. and S. Pereverzev. Spherical Tikhonov regularization wavelets in satellite gravity gradiometry with random noise. Journal of Geodesy (2001) 74: 730-736
    [36] Garmier, R. and J. Barriot. Modeling of the Eros gravity field as an ellipsoidal harmonic expansion from the NEAR Doppler tracking data. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 8,10, 1029/2001GL013768, 2002
    [37] Gelderen, M. and R. Rummel. The solution of the general geodetic boundary value problem
    ??by least squares. Journal of Geodesy (2001) 75: 1-11
    [38] Gerlach, Ch., N. Sneeuw, P. Visser, and D. S vehla. CHAMP gravity field recovery using the energy balance approach. Advances in Geosciences, 1, 73-80, 2003
    [39] Grafarend, E. W. The spherical horizontal and spherical vertical boundary value problem - vertical deflections and geoidal undulations - the completed Meissl diagram. Journal of Geodesy (2001) 75: 363 - 390
    [40] Grafarend, E., J. Engels and P. varga. The temporal variation of the spherical and Cartesian multipoles of the gravity field: the generalized MacCullagh representation. Journal of Geodesy (2000) 74: 519 - 530
    [41] Gropp, W., E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing interface, MIT Press, Cambridge, MA, 1994
    [42] Gropp, W., E. Lusk, R. Thakur, Using MPI-2: Advanced features of the Message-Passing interface, MIT Press, 1999
    [43] Gruber Thomas, Identification of Processing and Product Synergies for Gravity Missions in View of the CHAMP and GRACE Science Data System Developments. GFZ-Potsdam, 2001
    [44] Gruber, T. High-resolution gravity field modeling with full variance-covariance matrices. Journal of Geodesy, 75, 505-514,2001
    [45] Gruber, T. High-resolution gravity field modeling with full variance-covariance matrices. Journal of Geodesy (2001) 75: 505-514
    [46] Gruber, Th., Bode, A., Ch. Reigber, et. GRIM5-C1: Combination solution of the global gravity field to degree and order 120. Geophys. Res. Letters, 27,4005-4008,2000
    [47] Han, S. -C., Ch. Jekeli and C. K. Shum. Efficient gravity field recovery using in site disturbing potential observable from CHAMP. Geophysical Research Letters, 29(16), 2002
    [48] Heise, S., N. Jakowski, A. Wehrenpfennig, Ch. Reigber and H. Luhr. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results. Geophysical Research Letters, Vol. 29, No. 14, 2002
    [49] Heise, S., N. Jakowski, A. Wehrenpfennig, Ch. Reigber, and H. Luhr. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 14, 10.1029/2002GL014738, 2002
    [50] Holmes, S. A. and W. E. Featherstone. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy (2002) 76: 279-299
    [51] Horemuz, M. and L. E. Sjoberg. Rapid GPS ambiguity resolution for short and long baselines. Journal of Geodesy (2002) 76: 381-391
    [52] Hotine, M., and F. Morrison. First Integrals of the Equations of Satellite Motion. 41-45.
    [53] Howe E. and C. C. Tscherning. Preliminary analysis of CHAMP state vector and accelerometer data for the recovery of the gravity potential.
    [54] Howe, E., L. Stenseng, and C. C. Tscherning. Analysis of one month of CHAMP state vector and accelerometer data for the recovery of the gravity potential. Advances in Geosciences, 1,1-4,2003
    [55] Hvidegaard, S. M. and R. Forsberg. Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 20, 1952, doi:10.1029/2001GL014474, 2002
    [56] Hwang, C. Gravity recovery using COSMIC GPS data: application of orbital perturbation theory. Journal of Geodesy (2001) 75: 117 - 136
    [57] Hwang, C, H.-Y. Hsu and R.-J. Jang. Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of de.ection-geoid and inverse Vening Meinesz formulae. Journal of Geodesy (2002) 76: 407-418
    [58] Ilk, K.H., A. Locher. The use of energy balance relations for validation of gravity field models and orbit determination results.
    [59] Jakowski, N., A. Wehrenpfennig, et. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 29, NO. 10, 1029/2001GL014364, 2002
    [60] JAN KRYNSKI. Possibilities of low-low satellite tracking for local geoid improvement. der geodatischen insititute der technishen universitat Graz, 1978
    [61] Jekeli, Ch. and J. H. Kwon. Geoid profile determination by direct integration of GPS inertial navigation system vector gravimetry. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B10, 2217, doi:10.1029/2001JB001626,2002
    [62] Jekeli, Ch. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mechanics and Dynamical Astronomy, 75, 85-101, 1999
    [63] Jeongrae Kim, B. S., M.S.. Simulation study of a low-low satellite-to-satellite tracking mission, The University of Texas at Austin, 2000.
    [64] Jiang, W.P., J.C. Li and Z.T. Wang. (2002). Determination of Global Mean Sea Surface WHU2000 Using Multi-satellite Altimetric Data. Chinese Science Bulletin, 47(19), pp. 1,664-1,668.
    [65] Kaula, W. M., Theory of Satellite Geodesy. Waltham-London : Blaisdell publishing Company, 1966
    [66] Kelley Case, Gerhard L. H. Kruizinga, Sien-Chong Wu. GRACE level 1B data product user handbook. Jet propulsion laboratory, 2004
    [67] Kendall, R. and J. X. Mitrovica. Lithospheric thickness inferred from Australian post-glacial sea-level change: The influence of a ductile crustal zone. GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 9, 1461, doi:10.1029/2003GL017022, 2003
    [68] Kim J. R., Roesset P. J., Bettadpur S. V, Tapley B. D. And Watkins M.M., Error Analysis of the Gravity Recovery and Climate Experiment (GRACE) Mission. AAS/AIAA Space Flight Mechanics Conference, 1999
    [69] Kim, M. C. and B. D. Tapley. Formation of surface spherical harmonic normal matrices and application to high-degree geopotential modeling. Journal of Geodesy (2000) 74: 359-375
    [70] Klees, R., M. van Gelderen, C. Lage and C. Schwab. Fast numerical solution of the linearized Molodensky problem. Journal of Geodesy (2001) 75: 349-362
    [71] Klees, R., R. Koop, P. Visser, J. van den Ijssel. Effcient gravity field recovery from GOCE gravity gradient observations. Journal of Geodesy, 74,561-571, 2000
    [72] Klokocnik, J., Ch. Reigber, P. Schwintzer, C. A. Wagner and J. Kostelecky. Evaluation of
    ??pre-CHAMP gravity models 'GRIM5-S1' and 'GRIMS-C1' with satellite crossover altimetry. Journal of Geodesy (2002) 76: 189-198
    [73] Knudsen P. and O. Andersen. Correcting GRACE gravity field for ocean tide effects. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 8, 10.1029/2001GL014005, 2002
    [74] Koch, K. R., J. Kusche. Regularization of geopotential determination from satellite data by variance components. Journal of Geodesy, 76, 259-268,2002
    [75] Konig R., Format Description: The CHAMP Orbit Format CHORB. GFZ-Potsdam, 2001.6
    [76] Krynski, J. Possibilities of low-low satellite tracking for local geoid improvement. 1978, Folge 31, Der geodatischen institute der Technischen Universitat Graz.
    [77] Kuang, D., Y. Bar-Server, W. Bertiger, et al. Precise orbit determination for CHAMP using GPS data from BLACKJACK receiver. In 2001 ION National Technical Meeting Proceedings, Session E1: Scientific Applications, Timing, and Frequency, Long Beach, California, January, 2001
    [78] Kuhn, M. Geoid determination with density hypotheses from isostatic models and geological information. Journal of Geodesy (2003) 77: 50 - 65
    [79] Kusche, J. A Monte-Carlo technique for weight estimation in satellite geodesy. Journal of Geodesy (2003) 76: 641 - 652
    [80] Kusche, J. and R. Klees. Regularization of gravity field estimation from satellite gravity gradients. Journal of Geodesy (2002) 76: 359 - 368
    [81] Kusche, J. Implementation of multigrid solvers for satellite gravity anomaly recovery. Journal of Geodesy, 74, 773-782,2001
    [82] Kusche, J. Implementation of multigrid solvers for satellite gravity anomaly recovery. Journal of Geodesy (2001) 75: 773-782
    [83] Kusche, J., R. Klees. Regularization of gravity field estimation from satellite gravity gradients. Journal of Geodesy, 76, 359-368,2002
    [84] Lacy, M. C, F. Sanso, G. Rodriguez-Caderot and A. J. Gil. The Bayesian approach applied to GPS ambiguity resolution. A Mixture model for the discrete-real ambiguities alternative. Journal of Geodesy (2002) 76: 83-94
    [85] Le Grand, P., E. J. O. Schrama and J. Tournadre. An inverse estimate of the dynamic topography of the ocean. GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 2, 1062, doi:10.1029/2002GL014917,2003
    [86] Lehmann, R. A new type of non-uniquenness for the scalar geodetic boundary value problem. Journal of Geodesy (2001) 75: 527-532
    [87] Lemoine, F. G, S. C. Kenyon, J. K. Factor, et al.The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA, July 1998
    [88] Lerch F. J., Marshall J. A. Klosko S. M., Pavlis N. K., and Williamson R. G, The Joint Gravity Model 3. Journal of Geophysical Research, 1996,101(B12), 28 029- 28 049
    [89] Lerch F. J., Marshall J. A. Klosko S. M., Pavlis N. K., and Williamson R. G, The Joint Gravity Model 3. Journal of Geophysical
    [90] Li, J. A formula for computing the gravity disturbance from the second radial derivative
    ??of the disturbing potential. Journal of Geodesy (2002) 76: 226 - 231
    [91] Li, J.C., C.K. Shum and B. Taplay. (1994). Recovery of the Orthogonality of High Degree Geopotential Coefficient Model by Fourier Analysis. Presented at the American Geophysical Union Fall Meeting, 5-9 December, San Francisco, California
    [92] Li, J.C, J.S. Ning and D.B. Chao. (1995). Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20(4), pp. 265-277
    [93] Li, J.C, J.S. Ning and D.B. Chao. (1997). Comments on two dimensional convolutions of the geodetic problems in planar and spherical coordinates. IAG97, 3-9 September, Brazil, Proceeding of Scientific Assemble of the International Association of Geodesy, 118, pp. 219-224
    [94] Lisano, M. E. and B. E. Schutz. Arcsecond-level pointing calibration for ICESat laser altimetry of ice sheets. Journal of Geodesy (2001) 75: 99 - 108
    [95] Losch, M., B. M. Sloyan, J. Schroter and N. Sneeuw. Box inverse models, altimetry and the geoid: Problems with the omission error. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C7, 10.1029/2001JC000855,2002
    [96] Luhr, H., S. Maus and M. Rother. First in-situ observation of night-time F region currents with the CHAMP satellite. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 10, 10.1029/2001GL013845, 2002
    [97] Marchenko, A. N. and P. Schwintzer. Estimation of the Earth' s tensor of inertia from recent global gravity field solutions. Journal of Geodesy (2003) 76: 495 - 509
    [98] Martinec, Z. Green' function solution to spherical gradiometric boundary-value problems. Journal of Geodesy (2003) 77: 41-49
    [99] Maus, S., M. Rother, R. Holme, H. Luhr, N. Olsen and V. Haak. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 14, 10.1029/2001GL013685, 2002
    [100] Mazanek D. D., Kumar R. R., Qu M. and Seywald H., Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft. NASA/TM-2000-210095, 2000.4
    [101] McCarthy D., IERS Convention (1996). USA: U.S. Naval Observatory, 1996.7
    [102] Montenbruck O, Gill E. Satellite Orbits: Models, Methods, and Applications. Berlin: Springer, 2000
    [103] Moore, P. The ERS-2 altimetric bias and gravity field enhancement using dual crossover between ERS and TOPEX/Poseidon. Journal of Geodesy (2001) 75: 241-254
    [104] Moreaux, G. and G. Balmino. Impact of some land hydrological phenomena on GOCE mission. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 8, 10.1029/2001GL013568, 2002
    [105] Moritz, H. Advanced physical geodesy. Herbert Wichmann Verlag Gmbh, Karlsruhe, 1989.
    [106] Nagy, D., G. Papp and J. Benedek. The gravitational potential and its derivatives for the prism. Journal of Geodesy (2000) 74: 552-560
    [107] Nahavandchi, H. and L. E. Sjoberg. Precise geoid determination over Sweden using the Stokes-Helmert method and improved topographic corrections. Journal of Geodesy (2001)
    ??75: 74 - 88
    [108] Nahavandchi, H. and L. E. Sjoberg. Two different views of topographical and downward-continuations corrections in the Stokes-Helmert approach to geoid computation. Journal of Geodesy (2001) 74:816 - 822
    [109] Nahavandchi, H. Two different methods of geoidal height determinations using a spherical harmonic representation of the geopotential, topographic corrections and the height anomaly-geoidal height difference. Journal of Geodesy (2002) 76:345 - 352
    [110] Neumayer, K., S. Zhu, Ch. Reigber, et. CHAMP orbit recovery - Algorithmic Approaches and Preliminary results. Eos Trans. AGU, 81(48), Fall Meet. Suppl., G61A-01,2000
    [111] Ning, J.S., D.B. Chao and J.C. Li. (1994). The spherical convolution form of the Vening-Meinesz formula. ACTA GEODAETICA et CARTOGRAPHICA SINICA, pp. 11-16.
    [112] Ning, J.S., J.C. Li and D.B. Chao. (1998). Application of the Hartley transform in the computation of the geoid in China. JOURNAL OF WUHAN TECHNICAL UNIVERSITY OF SURVEYING AND MAPPING, 1(1), pp. 1-6
    [113] Novak, P. and B. Heck. Downward continuation and geoid determination based on band-limited airborne gravity data. Journal of Geodesy (2002) 76: 269 - 278
    [114] Novak, P., M. Kern, K.-P. Schwarz and B. Heck. Evaluation of band-limited topographical effects in airborne gravimetry. Journal of Geodesy (2003) 76: 597 - 604
    [115] Novak, P., M. Kern, K.-P. Schwarz, M. G. Sideris, B. Heck, S. Ferguson, Y. Hammada, M. Wei. On geoid determination from airborne gravity. Journal of Geodesy (2003) 76: 510 - 522
    [116] Novak, P., P. Vanicek, Z. Martinec and M. Veronneau. Effects of the spherical terrain on gravity and the geoid. Journal of Geodesy (2001) 75: 491 - 504
    [117] Novak, P., P. Vanick, M. Veronneau, S. Holmes, W. Featherstone. On the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination. Journal of Geodesy (2001) 75: 644 - 654
    [118] O'Keefe, J. An application of Jacobi's integral to the motion of an earth satellite. The Astronomical Journal, 62 (1252), 265-266, 1957
    [119] Omang, O. C. D. and R. Forsberg. How to handle topography in practical geoid determination: three examples. Journal of Geodesy (2000) 74: 458-466
    [120] Omang, O. C. D. and R. Forsberg. The northern European geoid: a case study on long-wavelength geoid errors. Journal of Geodesy (2002) 76: 369 - 380
    [121] Pail, R. and G Plank. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. Journal of Geodesy (2002) 76: 462 - 474
    [122] Papp, G. and J. Benedek. Numerical modeling of gravitational field lines - the effect of mass attraction on horizontal coordinates. Journal of Geodesy (2000) 73: 648-659
    [123] Petrovskaya, M. S., A. N. Vershkov and N. K. Pavlis. New analytical and numerical approaches for geopotential modeling. Journal of Geodesy (2001) 75: 661-672
    [124] Reigber Ch., Bock R., Forste Ch, Grunwaldt L., Jakowski N., Luhr H., Schwintzer P. and Tilgner C, CHAMP Phase B Executive Summary. Scientific Technical Report STR96/13, GFZ-Potsdam, 1996
    [125] Reigber, Ch., G. Balmino, P. Schwintzer and R. Biancale. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, Vol. 29, No. 14, 2002
    [126] Reigber, Ch., G. Balmino, P. Schwintzer, et. Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. In Space Sciences Series of ISSI, Vol. 18, ed. G. Beutler, M. Dringwater, R. Rummel and R.v. Steiger, Kluwer Academic Publishers, Dordrecht, NL, 2002c
    [127] Reigber, Ch., G. Balmino, P. Schwintzer, R. Biancale, A. Bode, J. Lemoine, R.Konig, S. Loyer, H. Neumayer, J. Marty, F. Barthelmes, F. Perosanz and S. Y. Zhu. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (eigen-1s). Geophysical Research Letter, 29 (14), 2002
    [128] Reigber, Ch., Gravity field recovery from satellite tracking data. In Theory of satellite geodesy and gravity field determination. Ed. F. Sanso, R. Rummel, Lecture Notes in Earth Sciences, Vol. 25, Springer, Berlin, Heidelberg, New York, 197-234, 1989
    [129] Reiner Rummel, et al. Spherical harmonic analysis of satellite gradiometry. Netherlands publications on Geodesy, 1993
    [130] Rim H. J., Schutz B. E., Geoscience Laser Altimeter System (GLAS) Precision Orbit Determination, Center for Space Research, The University of Texas at Austin, 2001. 2
    [131] ROCSAT-2 and COSMIC Missions. Computers & Geosciences, 2002, 28, 357~367
    [132] Rodell, M. and J. S. Famiglietti. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). WATER RESOURCES RESEARCH, VOL. 37, NO. 5, PAGES 1327-1339, MAY 2001
    [133] Rowlands, D. D., R. D. Ray, D. S. Chinn and F. G. Lemoine. Short-arc analysis of intersatellite tracking data in a gravity mapping mission. Journal of Geodesy (2002) 76: 307-316
    [134] Rowlands, D. D., R. D. Ray, D. S. Chinn, F. G. Lemoine. Short-arc analysis of intersatellite tracking data in a gravity mapping mission. Journal of Geodesy, 76, 307-316, 2002
    [135] Rummel, R. Downward continuation of gravity information from satellite to satellite tracking or satellite gradiometry in local areas. 1975, Rep. 221, Dept. Geod. Sci. Surv., The Ohio State Univ., Columbus
    [136] Rummel, R. Geoid heights, Geoid height differences, and mean gravity anomalies from "low-low" satellite-to-satellite tracking-an error analysis. 1980, Rep. 306, Dept. Geod. Sci. Surv., The Ohio State Univ., Columbus
    [137] S.W., Mancini A. and Chovitz B. H.(Eds.) The Use of Artificial Satellites for Geodesy. American Geophysical Union
    [138] Sabadini, R., G. Di Donato, L. L. A. Vermeersen, R. Devoti, V. Luceri and G. Bianco. Ice mass loss in Antarctica and stiff lower mantle viscosity inferred from the long wavelength time dependent gravity field. GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 10, 10.1029/2001GL014016, 2002
    [139] Satellite gravity and the geosphere. National Research Council, National Academy Press, Washington, D.C., 1997
    [140] Schuh W. D., Tailored Numerical Solution Strategies for the Global Determination of the Earth's Gravity Field. Technical University Graz Technical Report, Graz, 1996. 4
    [141] Sjoberg, L. E. A solution to the downward continuation effect on the geoid determined by Stoke' formula. Journal of Geodesy (2003) 77:94 - 100
    [142] Sjoberg, L. E. and A. Hunegnaw. Some modifications of Stokes' formula that account for truncation and potential coeffcient errors. Journal of Geodesy (2000) 74: 232-238
    [143] Sjoberg, L. E. The effect of downward continuation of gravity anomaly to sea level in Stokes' formula. Journal of Geodesy (2001) 74: 796-804
    [144] Sjoberg, L. E. Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one. Journal of Geodesy (2001) 75: 283 - 290
    [145] Sjoberg, L. E. Topographic effects by the Stokes-Helmert method of geoid and quasi-geoid determinations. Journal of Geodesy (2000) 74: 255 - 268
    [146] Smit, J. M. GOCE end-to-end closed loop simulation, ECLS, Final Report, 2000
    [147] Smith, D. A. and D. R. Roman. FEOID99 and G99SSS: 1-arc-minute geoid models for the United States. Journal of Geodesy (2001) 75: 469 - 490
    [148] Smith, D. A. Computing components of the gravity field induced by distant topographic masses and condensed masses over the entire Earth using the 1-D FFT approach. Journal of Geodesy (2002) 76: 150-168
    [149] Sneeuw N., A Semi-Analytical Approach to Gravity Field Analysis from Satellite Observations: Ph. D. Dissertation, der Technischen Universitat Munchen, 2000.6
    [150] Sneeuw, N., Ch. Gerlach, D. Svehla, Ch. Gruber. A first attempt at time-variable gravity recovery from CHAMP using the energy balance approach, in: IN Tziavos (ed.) Gravity and Geoid 2000, pp 237-242, Proc. 3rd Meeting of the International Gravity and Geoid Commission, Thessaloniki, 26-30 August 2002
    [151] Sun, H. P., S. Takemoto, H. T. Hsu, T. Higashi and A. Mukai. Precise tidal gravity recorded with superconducting gravimeters at stations Wuhan (China) and Kyoto (Japan). Journal of Geodesy (2001) 75: 720 - 729
    [152] Sun, W. A formula for gravimetric terrain corrections using powers of topographic height. Journal of Geodesy (2002) 76: 399 - 406
    [153] Sunkel, H. From Eotvos to Milligal. Final Report. ESA, 2002
    [154] Svehla, D., M. Rothacher. Kinematic and reduced-dynamic precise orbit detemination of low earth orbits. Adv. Geosciences, 1,47-56, 2003a
    [155] Svehla, D., M. Rothacher. Kinematic and reduced-dynamic precise orbit determination of CHAMP satellite over one year using spaceborne GPS phase zero-differences only. Paper presented at EGS-AGU-EUG Joint Assembly, Nice, France, 2003b
    [156] Swenson, S. and J. Wahr. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B9, 2193, doi: 10.1029/2001JB000576, 2002
    [157] Tapley B. D. and Schutz B., Fundamentals of Orbit Determination. New York and London: Academic Press, 2001
    [158] Tapley B. D., Fundamentals of Orbit Determination. Lecture Notes in Earth Sciences 25, 235-260, 1987
    [159] Tapley, B. D., Chambers, M. Cheng, et al. The TEG-4 Earth Gravity Model. Paper presented at 25th EGS General Assembly, Nice, France, 2000
    [160] Thomas, J. B. An analysis of gravity-field estimation based on intersatellite Dual-1-Way biased ranging, jet propulsion laboratory, Pasadena, California, 1999
    [161] Tscherning, C. C. Computation of spherical harmonic coefficients and their error estimates using least-squares collocation. Journal of Geodesy (2001) 75: 12-18
    [162] Tscherning, C. C, Awar Radwan, A. A. Tealeb, et. Local geoid determination combing gravity disturbances and GPS/leveling: a case study in the Lake Nasser area, Aswan, Egypt. Journal of Geodesy (2001) 75: 343-348
    [163] Tscherning, C. C, E. Howe and L. Stenseng. CHAMP gravity field models using precise orbits.
    [164] Velicogna, I. and J. Wahr. Postglacial rebound and Earth's viscosity structure from GRACE. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2376, doi:10.1029/2001JB001735, 2002
    [165] Vermeer, M., J.C. Li and C.X. Guo. (1997). Geoid Determination by FFT Techniques and MGM in the Western China Test Area. Finnish Geodetic Institute.
    [166] Visser P. N. A. M. and IJssel J. van den, GPS-based Precise Orbit Determination of the Very Low Earth-orbiting Gravity Mission GOCE. Journal of Geodesy, 2000, 74, 590-602
    [167] Visser, P. N. A. M., J. van den IJssel, R. Koop, R. Klees. Exploring gravity field determination from orbit perturbations of the European gravity mission GOCE. Journal of Geodesy, 75, 89-98, 2001
    [168] Visser, P. N. A. M., N. Sneeuw, C. Gerlach. Energy integral method for gravity field determination from satellite orbit coordinates. Journal of Geodesy, 77, 207-216,2003
    [169] Vossepoel, F. C, G. Burgers and P. J. v. Leeuwen. Effects of correcting salinity with altimeter measurements in an equatorial Pacific ocean model. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C12, 8001, doi: 10.1029/2001JC000816, 2002
    [170] Wagner C. A., Direct Determination of Gravitational Harmonics From Low-Low GRAVSAT Data. Journal of Geophysical Research, 1983, 88(B12), 10 309-10 321
    [171] Wagner C. A., Improved Gravitational Recovery From a Geopotential Research Mission Satellite Pair Flying en Echelon. Journal of Geophysical Research, 1987, 92(B8), 8 147-8 155
    [172] Wagner, C. A. Direct determination of gravitation harmonics from low-low gravsat data. Journal of Geophysical Research, 88 (B12), 10 309-10 321, 1983
    [173] Wang, Z.T., J.C. Li and J.G. Hu. (2002). Sea level changes detected by using satellite altimeter data and comparing with tide gauge records in China Sea. Accepted by Scientific Assemble of the International Association of Geodesy, IAG2002, 9-13 September, Wuhan, China.
    [174] Wickert, J., G. Beyerle, et al. GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space-based single difference technique. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 29, NO. 8, 1029/2001GL013982,2002
    [175] Wolff, M. Direct measurements of the earth's gravitational potential using a satellite pair. Journal of Geophysical Research, 74 (22), 1969
    [176] Wu, S. C, G. Kruizinga and W. Bertiger. Algorithm Theoretical Basis Document for GRACE Level-1B Data Processing V1.1. Jet Propulsion Laboratory. California Institute of Technology, 2004
    [177] Wu, X. P., M. M. Watkins, E. R. Ivins, R. Kwok and P. Wang. Toward global inverse solutions for current and past ice mass variations: Contribution of secular satellite gravity and topography change measurements. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B11, 2291, doi: 10.1029/2001JB000543, 2002
    [178] Yu, J., C. Jekeli and M. Zhu. Analytical solutions of the Dirichlet and Neumann boundary-value problems with an ellipsoidal boundary. Journal of Geodesy (2003) 77: 653-667
    [179] Zhu, S. Y., F. H. Massmann, Y. Yu and Ch. Reigber. Satellite antenna phase center offsets and scale errors in GPS solutions. Journal of Geodesy (2003) 76:668-672
    [180] Ziebart, M. and P. Dare. Analytical radiation pressure modeling for GLONASS using a pixel array. Journal of Geodesy (2001) 75:587-599
    [181] D.布劳威尔,G M.克莱门斯著.刘林,丁华译.易照华校.天体力学方法.北京:科学出版社,1986.1
    [182] Gunter Seeber著.赖锡安,游新兆,邢灿飞等译.卫星大地测量学.北京:地震出版社,1998.1
    [183] W A.海斯卡涅,H.莫里斯.物理大地测量学.卢福康,胡国理译.北京:测绘出版社,1979
    [184] 安德森 A.J.,卡泽纳夫 A.,空间大地测量与地球动力学.1990,解放军出版社
    [185] 安德森.A.J.,(法国)卡泽纳夫.A.,胡国理等译.空间大地测量与地球动力学.北京:解放军出版社,1990.2
    [186] 暴景阳,晁定波,李建成.南中国海TOPEX/POSEIDON轨迹交叉点测高数据的潮汐调和分析.测绘学报,2000,29(1):17~34
    [187] 暴景阳,晁定波,李建成.由卫星测高数据建立南中国海潮模型的初步研究.武汉测绘科技大学学报,1999,24(4):341~345
    [188] 边少锋.大地测量边值问题数值解法与地球重力场逼近[博士论文].武汉:武汉测绘科技大学,1992
    [189] 蔡大用,白峰杉编著.现代科学计算(清华大学).北京:科学出版社,2000
    [190] 晁定波,李建成.南海海盆测高数据反演的重力异常场特征及构造解释.投武汉大学学报(已接收),2000
    [191] 晁定波.关于Stokes公式的球面卷积和平面卷积的注记.武汉大学学报信息科学版,2003,28(S1):52~54
    [192] 晁定波.关于我国似大地水准面的精化及有关问题.武汉大学学报信息科学版,2003,28(6):651~654
    [193] 陈春明,李建成.利用地球重力场模型确定南极大地水准面.极地研究,2000,20(1):10~17
    [194] 陈国良.并行计算—结构 算法 编程,高等教育出版社,北京,1999.
    [195] 陈俊勇,李建成,晁定波.利用计算机图形跟踪扫描系统推估平均重力异常.测绘学报,1995,24(3):239~241
    [196] 陈俊勇,李建成,晁定波.用Topex/Poseidon测高数据确定中国海域及邻海的海面高及海面地形.武汉测绘科技大学学报,1995,20(4):321~326
    [197] 陈俊勇,李建成,宁津生,张骥,张燕平.我国大陆高精度高分辨率大地水准面的研 究和实施.测绘学报,2001,30(2):95~100
    [198] 陈俊勇,李建成,宁津生,张燕平,张骥.中国新一代高精度高分辨率大地水准面的研究和实施.武汉大学学报,2001,26(4):283~299
    [199] 陈俊勇,李建成.推算我国高精度和高分辨率似大地水准面的若干技术问题.武汉测绘科技大学学报,1998,23(2):95~99
    [200] 陈俊勇,魏子卿,胡建国,杨元喜,李建成等.即将迈入新千年的大地测量学.测绘学报,2000,29(2):95~101
    [201] 陈俊勇,文汉江,程鹏飞.中国大地测量学发展的若干问题.武汉大学学报信息科学版,2001,26(6):475~482
    [202] 陈俊勇,李建成,晁定波.用Topex/Poseidon测高数据确定中国海域及邻海的海面高及海面地形.武汉测绘科技大学学报,1995,20(4)
    [203] 陈俊勇,李建成.推算我国高精度和高分辨率似大地水准面的若干技术问题.武汉测绘科技大学学报,1998,23(2):95-99
    [204] 陈俊勇,魏子卿,胡建国,杨元喜,李建成等.迈入新千年的大地测量学——第22届IUGG大会有关大地测量部分的技术总结.测绘学报,2000,29(1):1-11
    [205] 陈俊勇.我国大地测量学的进展和展望.测绘科学,2000,25(2):1-6
    [206] 陈松安,黄金维.利用Topex/Poseidon人造卫星测高仪侦测台湾四周海水位变化.测量工程(台湾),1994,36(4)
    [207] 陈松安,黄金维.利用人造卫星测高仪侦测西太平洋海水位变化.第十三届测量学术及应用研讨会,1994
    [208] 党亚民,陈俊勇,晁定波.大地测量反演模型优化问题的研究,地壳形变与地震,1998(02),P38-43
    [209] 管泽霖,李建成,晁定波,宁津生.WZD94中国大地水准面研究.武汉测绘科技大学学报,1994,19(4):292~297
    [210] 管泽霖,宁津生编.地球形状及外部重力场(上、下).北京:测绘出版社,1981.12
    [211] 郭俊义.物理大地测量学基础.1994,武汉测绘科技大学出版社
    [212] 郭俊义编著.地球物理学基础.北京:测绘出版社,2001.1
    [213] 郭俊义编著.物理大地测量学基础.武汉:武汉测绘科技大学出版社,1994.11
    [214] 国家测绘局.中华人民共和国大地测量图集.1986,国家测绘局出版
    [215] 何光渝,高永利编著.Visual Fortran常用数值算法集.北京:科学出版社,2002.4
    [216] 赫尔墨特.兹莫里著.宁津生,管泽霖译.陈俊勇校.高等物理大地测量学.北京:测绘出版社,1984.11
    [217] 胡明城,鲁福编著.现代大地测量学(上,下).北京:测绘出版社,1994.12
    [218] 胡明城.跨世纪的大地测量(续).1997,国家测绘科技信息研究所
    [219] 胡明城.跨世纪的大地测量.1994,国家测绘科技信息研究所
    [220] 黄大山,黄金维.利用人造卫星测高仪资料推算海深.测量工程(台湾),1996,33-51
    [221] 黄维彬.近代平差理论及其应用.北京:解放军出版社,1992.7
    [222] 姜卫平,李建成,王正涛.联合多种测高数据确定全球平均海面WHU2000.科学通报,2002,47(15),1,187~1,191
    [223] 姜卫平,刘经南.大坝变形监测系统GPS数据处理软件的实现.武汉测绘科技大学学报,1998,23(增刊):23-25
    [224] 姜卫平.卫星测高技术在大地测量学中的应用:[博士论文].武汉:武汉大学,2001
    [225] 李洪涛,许国昌,薛鸿印,赵洪,陈晶,王广运著.GPS应用程序设计.北京:科学 出版社,1999.5
    [226] 李建成,姜卫平,章磊.联合多种测高数据建立高分辩率中国海平均海面高模型.武汉大学学报(信息科学版),2001,26(1):40~45
    [227] 李建成,宁津生,晁定波.卫星测高在物理大地测量应用中的若干问题.武汉测绘科技大学学报,1996,21(1):9~14
    [228] 李建成,宁津生,陈俊勇,晁定波.联合Topex/Poseidon、ERS2和Geosat卫星测高资料确定中国南海重力异常.测绘学报,2001,30(3):197~201
    [229] 李建成,宁津生.局部大地水准面精化的理论和方法.陈永龄院士九十寿辰专辑(测绘出版社),1999,71~83
    [230] 李建成,王正涛,胡建国.联合多种卫星测高数据分析全球和中国海海平面变化.武汉测绘科技大学学报,2000,25(4):343~347
    [231] 李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定,武汉大学出版社,武汉,2003.
    [232] 李建成,姜卫平,章磊.联合多种测高数据建立高分辨率中国海平均海面高模型.武汉大学学报(信息科学),2001,26(1):40-45
    [233] 李建成,王正涛,胡建国.利用Topex/Poseidon和ERS-2以及Geosat卫星测高数据分析全球和中国海平均海面变化.武汉测绘科技大学学报,2000,25(4):343-347
    [234] 李建成.华北地区大地水准面起伏及其构造意义.地震与地壳形变,1998,18(2):9~19
    [235] 李建成.物理大地测量现代近展.祝贺方俊院士九十寿辰论文集(测绘出版社),1994,164~177
    [236] 李建成.物理大地测量中的谱方法:(博士论文).1993,武汉测绘科技大学
    [237] 刘大杰,施一民,过静琚编著.全球定位系统(GPS)的原理与数据处理.上海:同济大学出版社,1997.8
    [238] 刘基余,李征航等.全球定位系统原理及其应用.北京:测绘出版社,1993.10
    [239] 刘经南,罗志才,李建成.从第22届IUGG大会看现代大地测量的进展.武汉测绘科技大学学报,2000,25(1):12-17
    [240] 刘林编著.人造地球卫星轨道力学.北京:高等教育出版社,1992.8
    [24l] 刘林著.航天器轨道理论.北京:国防工业出版社,2000.6
    [242] 陆仲连,吴晓平编著.人造地球卫星与地球重力场.北京:测绘出版社,1994.6
    [243] 罗佳,宁津生,晁定波,徐晓华.CHAMP星载加速度计数据(0.1Hz)处理与分析.武汉大学学报信息科学版,2004,29(5):380~384
    [244] 罗佳.利用卫星跟踪卫星确定地球重力场的理论和方法:[博士论文]_武汉:武汉大学,2003
    [245] 罗纳德 N.布拉斯维尔著,杨燕昌等译.傅里叶变换及其应用.1986,人民邮电出版社
    [246] 罗志才,晁定波,宁津生.重力梯度张量的球谐分析.武汉测绘科技大学学报,22(4):346~349
    [247] 罗志才,宁津生,晁定波.关于卫星重力梯度边值问题的准解的若干注记.武汉测绘科技大学学报,21(4):315~319
    [248] 罗志才,晁定波,宁津生.卫星重力梯度边值问题的准解,武汉测绘科技大学学报,1996(01),P1-8
    [249] 罗志才,宁津生,晁定波.卫星重力梯度向下延拓的频域最小二乘配置法.测绘学院 学报,1996(03),P161-165
    [250] 罗志才,宁津生,晁定波.卫星重力梯度向下延拓的谱方法.测绘学报,1997(02),76-83
    [251] 罗志才.利用卫星重力梯度数据确定地球重力场的理论和方法:[博士论文].武汉:武汉测绘科技大学,1996
    [252] 莫里斯,H.高等物理大地测量学.1984,测绘出版社
    [253] 宁津生,晁定波,李建成.计算Stokes公式的快速Hartley变换(FHT)技术.武汉测绘科技大学学报,1993,18(3):3~10
    [254] 宁津生,晁定波,李建成.由一维和二维FHT技术计算大地水准面高和垂线偏差的比较.测绘遥感信息工程国家重点实验室1992-1993年报(武汉测绘科技大学),1993,99~104
    [255] 宁津生,陈军,晁定波著.数字地球与测绘.北京:清华大学出版社,广州:暨南大学出版社,2001.1
    [256] 宁津生,李建成,晁定波.Vening-Meinesz公式的球面卷积形式.测绘学报,1994,23(3):161~166
    [257] 宁津生,李建成,晁定波.由地面重力数据确定扰动位径向二阶梯度.武汉测绘科技大学学报,21(3):201~206
    [258] 宁津生,李建成.地球重力场研究的进展.海峡两岸测绘学术交流会论文集,1998,336~345
    [259] 宁津生,李建成.局部重力场的最大熵谱分析.第六届重力和固体潮年会,无锡,1992,39~40
    [260] 宁津生,罗志才,晁定波.卫星重力梯度测量的研究现状及其在物理大地测量中的应用前景.武汉测绘科技大学学报,1996(04):3-8
    [261] 宁津生,李建成,晁定波,管泽霖.WDM94 360阶地球重力场模型研究.武汉测绘科技大学学报,1994,19(4):283-291。
    [262] 宁津生,李金文,晁定波.各向异性局部重力场计算的谱方法.武汉测绘科技大学学报,1998(03),41-43
    [263] 宁津生,邱卫根,陶本藻.地球重力场模型理论.1990,武汉测绘科技大学出版社
    [264] 宁津生.跟踪世界发展动态致力地球重力场研究.武汉大学学报信息科学版,2001,26(6):471~474
    [265] 邵占英,李建成.中国东南陆缘大地水准面的确定.地震与地壳形变,1999
    [266] 申文斌,晁定波,金标仁.广义扰动位公式.武汉测绘科技大学学报,1994(04),298-303
    [267] 申文斌,宁津生,李建成,晁定波.论相对论重力位及相对论大地水准面.武汉大学学报信息科学版,2004,29(10):897~900
    [268] 申文斌,宁津生,刘经南,晁定波.关于动态航空重力测量中的理论模型的研究.测绘与空间地理信息,2004,27(5):1~5
    [269] 申文斌,宁津生,刘经南,晁定波.关于运动载体引力与惯性力的分离问题.武汉大学学报信息科学版,2003,28(S1):57~59
    [270] 沈云中.应用CHAMP卫星星历精化地球重力场模型的研究:[博士论文].武汉:中国科学院测量与地球物理研究所,
    [271] 施闯著.大规模高精度GPS网平差与分析理论及其应用.北京:测绘出版社,2002.7
    [272] 数学手册编写组.数学手册.北京:人民教育出版社,1979
    [273] 孙海燕,李斐,晁定波.国家重力基本网的优化设计.武汉大学学报信息科学版,2000, 25(6):496~499
    [274] 王海瑛.中国近海卫星测高数据处理与应用研究:(博士论文).1999,中国科学院测量与地球物理研究所
    [275] 王解先著.GPS精密定轨定位.上海:同济大学出版社,1997.5
    [276] 王昆杰,李建成.摄影测量和GPS观测数据联合平差的数学模型.大地测量综合年会,成都,1991,108~111
    [277] 王昆杰,李建成.一种消除Stokes积分卷积化近似误差影响的有效方法.武汉测绘科技大学学报,1993,18(4):34~39
    [278] 王昆杰,王跃虎,李征航.卫星大地测量学.北京:测绘出版社,1990.5
    [279] 王正涛,李建成,晁定波.海洋重力似大地水准面与区域测高似大地水准面的拟合问题.武汉大学学报信息科学版,30(3):234~237
    [280] 王正涛,李建成,晁定波,姜卫平.利用卫星测高数据研究海面高月异常变化与厄尔尼诺现象的相关性.武汉大学学报信息科学版,2004,29(8):699~703
    [281] 肖峰编著.人造地球卫星轨道摄动理论.长沙:国防科技大学出版社,1997.9
    [282] 肖士殉.理论力学简明教程.1979,人民教育出版社
    [283] 徐士良编.FORTRAN常用算法程序集.北京:清华大学出版社,1992.9
    [284] 徐燕侯,郭长铭,周凯元.理论力学.2000,中国科学技术大学出版社
    [285] 杨嘉墀主编.航天器轨道动力学与控制(上).北京:宇航出版社,1995.12
    [286] 杨嘉墀主编.航天器轨道动力学与控制(下).北京:宇航出版社,2002.6
    [287] 叶世榕.GPS非差相对精密单点定位理论与实现:[博士论文].武汉:武汉大学,2002
    [288] 易照华等.天体力学引论.1978,科学出版社
    [289] 于锦海.物理大地测量边值问题的理论:[博士论文].武汉:中国科学院测量与地球物理研究所,1992
    [290] 於宗俦,于正林.测量平差原理.1990,武汉测绘科技大学出版社
    [291] 翟国君.卫星测高数据处理的理论与方法:(博士论文).1998,武汉测绘科技大学
    [292] 张传定,吴晓平,陆仲连.全张量重力梯度数据的谱表示方法.测绘学报,2000,29(4 ),297~304
    [293] 张传定.卫星重力测量—基础、模型化方法与数据处理算法:[博士论文].郑州:解放军信息工程大学,2000
    [294] 章传银,李建成,晁定波.联合卫星测高和海洋物理数据计算近海平均海面地形.武汉测绘科技大学学报,1999,25(6):500-504
    [295] 章传银,高永泉,晁定波.联合卫星测高和海洋物理数据计算近海稳态海面地形的可行性分析.测绘科学,2000,25(4):34~36
    [296] 周衍伯.理论力学教程(第二版).北京:高等教育出版社,1985
    [297] 周忠谟,易杰军.GPS卫星测量原理与应用.北京:测绘出版社,1992.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700