用户名: 密码: 验证码:
醛的不对称烯丙基化反应及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了醛的不对称烯丙基化反应,以光学纯酒石酸为原料,研究了不同构型手性配体在醛的烯丙基化反应中的立体选择性,全文共分三部分十个章节:
     第一部分(一~二章)对当前手性药物和手性技术进行了概述,并由此展开了本文的研究背景和任务;
     第二部分(三~六章)为有机合成部分,对醛的不对称烯丙基化反应进行了深入探讨,以苯甲醛为原料对反应条件进行优化,在优化的反应条件下对制备的七种可回收手性酰胺配体(N-苄基酒石酸二酰胺、N-对甲苯基酒石酸二酰胺、N-邻甲苯基酒石酸二酰胺、N-邻氯苯基酒石酸二酰胺、N-a-萘基酒石酸二酰胺、N-环己基酒石酸二酰胺和N-苯基酒石酸二酰胺)进行筛选,优化配体回收实验条件,最终确定出N-苄基酒石酸二酰胺在苯甲醛的不对称烯丙基化反应中具有较大优越性,结晶回收的手性配体光学纯度保持不变。然后,将上述几种配体用于3-溴丙醛(由丙烯醛与溴化氢气体加成得到)的烯丙基化反应,发现N-苄基酒石酸二酰胺同样具有较高的立体选择性(94.1%e.e.),产物经氧化和碘加成内酯化反应得到阿伐他汀中间体(3R,5S)-3-羟基-5-碘甲基戊内酯(10);将N-苄基酒石酸二酰胺用于邻氯苯甲醛的不对称烯丙基化反应以较高光学收率得(R)-甲基烯丙基-2-氯苯基-甲基醇(87.7%e.e.),产物经S_N2反应得瑞格列萘中间体(S)-甲基烯丙基-2-氯苯基-叠氮甲烷(17);同时,将筛选出的新型手性配体N-苄基酒石酸二酰胺用于其他几种醛(正丁醛,异戊醛和环己醛)的不对称烯丙基化反应,并与广泛应用的Roush配体(22)和Brown配体(27)相比较,发现其立体选择性优于Roush配体,并接近Brown配体,但明显具有可回收利用的优势。
     第三部分(七~十章)为计算化学部分,运用密度泛函理论B3LYP方法在Gaussian03软件上对已经报道的几种手性配体参与的醛不对称烯丙基化反应过程进行模拟计算,基于相对反应速率理论找出两种构型过渡态间活化能的差异与产物光学收率之间的关系;并以此为基础,用AM1和MNDO方法对上述合成的几种配体控制的反应过程进行量化计算,从而在理论上证实了N-苄基酒石酸二酰胺配体在醛的不对称烯丙基化反应中具有较高的立体选择性。
This work, concentrated on the asymmetric allylation of aldehydes controlled by different chiral auxiliaries prepared from rotational pure tartaric acid, can be divided into three parts.The first part aims to review the developments of chiral drugs and asymmetric synthesis, from which derived the present research topic backgrounds and works.Synthesis and applications of allylation from aldehydes are the second part of the thesis. By optimizing the reaction conditions, such as solvents, temperature, time and chiral auxiliaries like N,N'-dibenzyl tartamide, N,N'-p-dimethylphenyl tartamide, N,N'-o-dimethylphenyl tartamide, N,N'-o-dichlorophenyl tartamide, N,N'-a-dinaphyl tartamide, N,N'-dicyclohexyl tartamide and N,N'-diphenyl tartamide, ideal experimenttal conditions are obtained according to HPLC monitoring, as well as the auxiliaries' recoveries experiments. Starting from benzaldehyde and 3-bromopropaldehyde, N,N'-dibenzyl tartamide is considered the best auxiliary in this reaction. The homoallylic alcohol product, (4R)-4-hydroxy-6-bromo-1-hexylene, can be easily synthesized into (3R,5S)-3-hydroxy-5-iodomethyl-d-valerolactone, a very important intermediate of Atorvastatin, in excellent enantiomeric excess (94.1%e.e.). In a similar way, using N,N'-dibenzyl tartamide as auxiliary, (S)-(2-methyl)allyl-2-chloro-phenyl-methyl azide, a vital intermediate of Repaglinide, can be prepared via asymmetric allylation of o-chlorobenzaldehyde in 87.7%e.e. The auxiliary can be recovered in high yield (81%) only by filtering and recrystallization. Besides, some other aldehydes have been chosen to test the enantioselectivity of N,N'-dibenzyl tartamide, in comparison with two other allylaborates reagents developed previously by Roush and Brown, respectively. The results show that %e.e. of homoallylic alcohol is superior to that of the former, and approaches the Brown reagent.The third part of this thesis is reactive simulating calculation In this section, some well-known auxiliaries are selected to compute in density functional theory B3LYP on Gaussian 03, from which the relationship between reaction active energies of transition states and enantiomeric excess of chiral products homoallylic alcohols is
    obtained based on relative reactive ratio theory. Using this relationship, calculations on the reaction of more than eight auxiliaries with four other aldehydes are carried out in AMI and MNDO, proving that N,N'-dibenzyl tartamide has higher enantioselectivity than others in this reaction.
引文
1. IUPAC, Tentative Rules for the Nomenclature of Organic Chemistry, Section E: Fundamental Stereochemistry, J. Org. Chem., 1970, 35(9), 2849-2867.
    2.尤启冬,林国强,手性药物-研究与应用,化学工业出版社,2004,P3.
    3. Kirchner, G.; Scollar, M. P.; Klibanov, A. M., Resolution of Racemic Mixtures via Lipase Catalysis in Organic Solvents, J. Am. Chem. Soc., 1985, 107(24), 7072-7076.
    4. Whitersides, G. M.; Wong, C. H., Enzymes as Catalysts in Synthetic Organic Chemistry New Synthetic Methods, Angew. Chem., Int. Ed. Engl., 1985, 24(8), 617-638; Chen, C. S.; Sih, C. J., General Aspects and Optimization of Enantioselective Biocatalysis in Organic Solvents: The Use of Lipases New Synthetic Methods, Angew. Chem. Int. Ed. Engl., 1989, 28(6), 695-707; Santaniello, E.; Ferraloship, P.; Grisentip, P.; Manzocchi, A., The Biocatalytic Approach to the Preparation of Enantiomedcally Pre Chiral Building Blocks, Chem. Rev., 1992, 92(5), 1071-1140; Johnson, C.R., Biotransformations in the Synthesis of Enantiopure Bioactive Molecules, Acc. Chem. Res., 1998, 31(6), 333-341.
    5.王普善,手性药物(一),精细与专用化学品,2002,1,3-6.
    6.徐泽昌,新ACE抑制剂赖诺普利,国外医药:合成药.生化药.制剂分册,1991,12(2),99-101;杨佩琨,非那甾胺的临床进展,国外医药:合成药.生化药.制剂分册,1994,15(6),331-334;李效军,王静,王晓季,陈立功 治疗良性前列腺增生药物非那甾胺的合成,河北工业大学学报 2003,32(6),35-38.
    7.徐俊冕,SSRI类抗抑郁药的临床应用经验,国外医药:合成药.生化药.制剂分册,2001,22(4),207;文熙 胡惟孝,杨忠愚抗抑郁药舍曲林的合成进展,合成化学,2003,11(5),391-398.
    8.胡圣榆,孔庆芬,神经系统药物,国外药讯,1991,5,20-23;Dech.,KL;徐积恩,抗抑郁药帕罗西汀的药理和临床应用,国外医药:合成药.生化药.制剂分册,1992,13(5),284-285.
    9.周本宏,蔡鸿生,大环内酯抗生素新药—甲红霉素,中国医院药学杂志 1994,14(12),57-572.
    10.Ring,D.G.;阮龙喜,抗癌药紫杉醇的化学,国外医药:植物药分册,1991,6(5),205-209;梁敬钰,国外紫杉醇研究进展,生物工程进展,1993,13(4),19-20;付焱,顾吉顺,郭毅,紫杉烷类化合物研究进展,天然产物研究与开发,2004,16(3),258-264.
    11.苗华,郭惠元,左氟沙星合成路线图解,中国医药工业杂志,1994,25(4),185-188;张伦,左氟沙星市场透析,中国药房,2003,14(4),198-199.
    12.姚婉贞,赵鸣武,司巴沙星治疗细菌性感染疾病临床研究,中国新药杂志,1998,7(5),371-374.
    13.董荔,何礼贤,胡必杰,王葆青,陈雪华,李华茵,殷少军,张海平,阿齐霉素对生物膜铜绿假单胞菌的头孢他啶敏感性的作用,中国抗生素杂志 2004,29(6),366-370.
    14.徐积累,抗生素劳拉头孢,国外医药:合成药.生化药.制剂分册,1994,15(1),49-50;王明贵,第一个碳头孢烯类抗生素Loracarbef,国外医药:抗生素分册,1995,16(3),183-186.
    15. Wilson, H.; Camp, D. E., Chiral Drugs: the FDA Perspective on Manufacturing and Control, J. Pharm. Biomed Anal., 1993, 11(12), 1167-1168.
    16.蒋光祖,对我国开发手性药物的思考,药学进展 1997,21(4),226-228.
    17.王普善,加速手性技术的开发,迎接世界制药工业的手性挑战,中国医药情报,1998,4(1),9-19.
    18.戴立信,朱光美,手性技术的兴起,化学通报,1995,6,15-22.
    19.张梦军,廖春阳,兰玉坤,李声时,对催化不对称合成的重大贡献—2001年诺贝尔化学奖,化学教育,2002,23(1),5-13.
    20. Lin, G. Q.; Li, Y. M., Principles and Applications of Asymmetric Synthesis, John Wiley & Sons, Inc., 2001, pp. 1-7.
    21. Lin, GQ.; Li, Y. M., Principles and Applications of Asymmetric Synthesis, John Wiley & Sons, Inc., 2001, pp. 47-56.
    22.蒋兴锦,汪浩勇,抗坏血酸与铜离子协同杀灭微生物效果及其机理的研究,中国消毒学杂志 1994,11(3),140-144;Boudr,J.;刘红,L—抗坏血酸的微生物生产方法,湖南微生物学通讯,1991,1,49-52.
    23.陈泮成,卢文玉,郭亚文,王敏,杜连祥,底物加料方式对氢化可的松发酵的影响,中国医药工业杂志,2004,35(4),206-209.
    24.张玉彬,生物催化的手性合成,化学工业出版社,2002;R.N.帕特尔,立体选择性生物合成,化学工业出版社,2004.
    25. Chan, T. H.; Li, C. J., A Concise Synthesis of (+)-Muscarine, Can. J. Chem., 1992, 70(11), 2726-2729.
    26. Brown, H. C.; Kulkarni, S. V.; Racherla, U. S., Chiral Synthesis via Organoboranes. 39. A Facile Synthesis of ?-Substituted ?-butyrolactones in Exceptionally High Enantiomeric Purity, J. Org. Chem., 1994, 59(2), 365-369.
    27. Dinh, T. Q.; Du, X. H.; Armstrong R. W., Synthesis and Conformational Analysis of the Multidrug Resistance-Reversing Agent Hapalosin and Its Non-N-methyl Analog, J. Org. Chem., 1996, 61(19), 6606-6616.
    28. Loh, TP.; Cao, GQ.; Jian, P., Studies Towards Total Synthesis of Antillatoxin: Investigation of the Indium-mediated Allylation Reactions of Carbonyl Compounds with β-Bromocrotylbromide in Water, Tetrahedron. Lett., 1998, 39(11), 1453-1456.
    29.Avalos, M.; Babiano R.; Cintas, P.; Jime nez, J. L; Palacios, J.C., Synthetic Variations Based on Low-Valent Chromium: New Developments, Chem. Soc. Rev., 1999, 28(3), 169-177.
    30. Machajewski, T.D.; Wong, C.H., Chemoenzymatic Synthesis of Key Epothilone Fragments, Synthesis, 1999, sup. 1, 1469-1472.
    31.Zhu, Bin; Panek, James S, Enzymatic Resolution of Thiazole-Containing Vinyl Carbinols. Synthesis of the C12-C21 Fragment of the Epothilones, Tetrahedron. Lett. 2000,41(12), 1863-1866.
    32.Wessjohann, L.A.; Scheid, G, Recent Advances in Chromium(II)- and Chromium(III)-Mediated Organic Synthesis, Synthesis, 1999, 1, 1-36.
    33.Cossy, J.; Willis, C; Bellosta, V.; Bouzbouz, S., Enantioselective Allyltitanation. Synthesis of (+)-Sedamine, Synlett, 2000, 10, 1461-1463;
    34.Felpin, F.X.; Girard, S.; Vo-Thanh, G; Robins, R. J.; Villie ras, J.; Lebreton, J., Efficient Enantiomeric Synthesis of Pyrrolidine and Piperidine Alkaloids from Tobacco, J. Org. Chem. 2001, 66(19), 6305-6312.
    35.Felpin, F.X.; Vo-Thanh, G; Robins, R.J.; Villieras, J.; Lebreton, J., Total Synthesis of (5)-Anabasine and (S)-Anatabine, Synlett, 2000, 11, 1646-1648.
    36.Loh, T.P.; Hu, Q.Y.; Ma, L.T., Formation of Tetrahydrofuran from Homoallylic Alcohol via a Tandem Sequence: 2-Oxonia [3,3]-Sigmatropic Rearrangement or Cyclization Catalyzed by In(OTf)_3, J. Am. Chem. Soc. 2001,123(10), 2450-2451.
    37.Adamczyk, M.; Johnson, D.D.; Reddy, R.E., Bone Collagen Cross-Links: A Convergent Synthesis of (+)-Deoxypyrrololine, J. Org. Chem , 2001, 66(1), 11-19.
    38.Girard, S.; Robins, RJ.; Villieras, J.; Lebreton, J., A Short and Efficient Synthesis of Unnatural (R)-Nicotine, Tetrahedron. Lett. 2000, 41(48), 9245-9249.
    39.Nair, V.; Pillai, A.N.; Menon, R.S.; Suresh, E., Pyridine-Catalyzed Addition of Diaryl-1,2-diones to Dimethyl Butynedioate Leading to the Formation of 1,2-Diaroyl Dimethyl Maleates via an Unprecedented Rearrangement, Org. Lett. 2002, 4(7), 1189-1191.
    40.Samir, B.B.; Janine, C, Enantioselective Synthesis of syn- and anrt-1,3-Diols via Allyltitanation of Unprotected B-Hydroxyaldehydes Org. Lett. 2000,2(4), 501-504.
    41.Roush, W.R.; Palkowitz, A.D.; Ando, K., Acyclic Diastereoselective Synthesis Using Tartrate Ester-Modified Crotylboronates. Double Asymmetric Reactions with a-Methyl Chiral Aldehydes and Synthesis of the C(19)-C(29) Segment of Rifamycin S, J. Am. Chem. Soc. 1990,112(17), 6348-6359.
    42.Roush, W.R.; Walts, A.E.; Hoong, L.K., Diastereo- and Enantioselective Aldehyde Addition Reactions of 2-Ally-1,3,2-dioxaborolane-4,5-dicarboxylic Esters, a Useful Class of Tartrate Ester Modified Allylboronates, J. Am. Chem. Soc. 1985, 107(26), 8186-8190;
    Brown, H.C.; Bhat, K.S., Chiral Synthesis via Organoboranes. 7. Diastereoselective and Enantioselective Synthesis of Erythro- and Threo-β-Methylhomoallyl Alcohols via Enantiomeric (Z)- and (E)-Crotylboranes, J. Am. Chem. Soc. 1986,108(19), 5919-5923.
    43.Denmark, S.E.; Fu, J.P., Catalytic Enantioselective Allylation with Chiral Lewis Bases, Chem. Commun., 2003, 2, 167-170; Denmark, S.E.; Coe, D.M.; Pratt, N.E.; Griedel, B.D., Asymmetric Allylation of Aldehydes with Chiral Lewis Bases, J. Org. Chem., 1994, 59(21), 6161-6163.
    44.Shing, T.K.M.; Li, L.H., Asymmetric Hosomi-Sakurai Reaction of Allylsilanes Containing Arabinose-Derived Alcohols as Chiral Auxiliaries, J. Org. Chem. 1997, 62(5), 1230-1233.
    45.Yamamoto, Y.; Naoki, A., Selective Reactions Using Allylic Metals, Chem. Rev., 1993, 93(6), 2207-2293.
    46.Roush, W.R.; Park, J.C., Asymmetric Allylborations of 3-Decynal Dicobalt Hexacarbonyl: Cobalt Induced Reversal of Enantioselectivity and Applications to Highly Diastereoselective Intramolecular Pauson-Khand Reactions, Tetrahedron. Lett., 1991, 32(44), 6285-6288.
    47.Gung, B.W.; Xue, X.X.; Roush, W.R., The Origin of Diastereofacial Control in Allylboration Reactions Using Tartrate Ester Derived Allylboronates: Attractive Interactions between the Lewis Acid Coordinated Aldehyde Carbonyl Group and an Ester Carbonyl Oxygen, J. Am. Chem. Soc, 2002,124(36), 10692-10697.
    48.陈志达,量子化学的第二次革命,大学化学 1999,14(3),3-6;王志中,1998年诺贝尔化学奖通报,高等学校化学学报,1999,20(1),159-164.
    49. Earl, D. J.; Wilson, M. R., Predictions of Molecular Chirality and Helical Twisting Powers: A Theoretical Study, J. Am. Chem. Soc., 2003, 119(19), 10280-10288.
    50. Gaussian 98 (Revision A. 1), Frisch, M. J. G.; Trucks, W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AI-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1998.
    51. Gaussian 98 User's Reference, Gaussian, Inc., Pittsburgh, 1998, pp25-29.
    52. Gaussian 98 User's Reference, Gaussian, Inc., Pittsburgh, 1998, pp24-25.
    53. Gaussian 98 User's Reference, Gaussian, Inc., Pittsburgh, 1998, pp61-65.
    54. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals, J. Am. Chem. Soc. 1980, 102(24), 7211-7218.; Reed, A. E.; Weinhold, F., Rate-Controlling Processes in the Creep of Polycrystalline Ice, J. Chem. Phys., 1983, 7(21), 4066-4074; Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 1988, 88(6), 899-926.
    55. Terry, R.; Watanabe, M.; Clayton, H. H., A Convenient Assay for the Optical Purity of Monomethyl 3-Hydroxypentanedioate, J. Org. Chem., 1984, 49(19), 3657-3659; Terry, R.; Clayton, H. H., Synthetic and Biological Studies of Compactin and Related Compounds. 4. Total Synthesis of (+)-Compactin, J. Am. Chem. Soc. 1985, 107(12), 3731-3733; Peter, D. T.; Clayton, H. H., Improved Procedure for Preparation of Optically Active 3-Hydroxyglutarate Monoesters and 3-Hydroxy-5-oxoalkanoic Acids, J. Org. Chem., 1988, 53(10), 2374-2378.
    56 Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D., Catalytic Asymmetric Hydrogenation, J. Chem. Soc, Chem. Comm., 1972, 1, 10-11.; Homer, H.; Siegel, H.; Buthe, H., Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution, Angew. Chem. Int. Ed. Engl, 1968, 7(12), 942.
    57.Chan, A.S.C.; Huang, T.T.; Wagenknecht, J.H.; Miller, R.E., A Novel Synthesis of 2-Aryllactic Acids via Electrocarboxylation of Methyl Aryl Ketones, J. Org. Chem. 1995, 60(3), 742-744; Brunei, J. M., BINOL: A Versatile Chiral Reagent, Chem. Rev., 2005,105(3), 857-897.
    58.Masahiro, T.; Koichi, M.; Takeshi, N., Enantioselective Hetero-Diels-Alder Reaction with Glyoxylate Catalyzed by Chiral Titanium Complex: Asymmetric Synthesis of the Lactone Portion of Mevinolin and Compactin, Tetrahedron. Lett., 1991, 32(7), 935-938.
    59.Katsuhiko, I.; Yoshichika, K.; Takahashi, M.; Kobayashi, Y., Asymmetric Allylation of Aldehydes Catalyzed by Substoichiometric Amounts of Chiral Phosphoramides, Tetrahedron. Lett., 1996, 37(29), 5149-5150.
    60.Jauch, J., A Short Total Synthesis of Kuehneromycin A, Angew. Chem. Int. Ed., 2000, 39(15), 2764-2765; Aron, Z.D.; Overman, L.E., Total Synthesis and Properties of the Crambescidin Core Zwitterrionic Acid and Crambescidin359, J. Am. Chem. Soc, 2005,127(10), 3380-3390.
    61. Brunei, J.M., BINOL: A Versatile Chiral Reagent, Chem. Rev. 2005, 105(3), 857-897; Braunschweig, H.; Radacki, K.; Scheschkewitz, D.; Whittell, GR, Boron as a Bridging Ligand, Angew. Chem. Int. Ed, 2005,44,1658-1660.
    62. 李月明,范有华,陈新滋,不对称有机反应-催化剂的回收和再利用,化学工业出版社,2003.
    63.Roush, W.R.; Walts, A.E.; Hoong, L.K., Diastereo- and Enantioselective Aldehyde Addition Reactions of 2-Allyl-1,3,2-dioxaborolane-4,5-dicarboxylic Esters, a Useful Class of Tartrate Ester Modified Allylboronates, J. Am. Chem. Soc, 1985, 107(26), 8186-8190; Jadhav, P.K.; Bhat, K.S.; Perumal, P.T.; Brown, H.C., Chiral Synthesis via Organoboranes. 6. Asymmetric Allylboration via Chiral Allyldialkylboranes. Synthesis of Homoallylic Alcohols with Exceptionally High Enantiomeric Excess, J. Org. Chem., 1986, 51(4), 432-439.
    64.Bartlett, P.A.; Johnson, W.S.; Elliott, J.D., Asymmetric Synthesis via Acetal Templates. 3. On the Stereochemistry Observed in the Cyclization of Ciral Acetals of Polyolefinic Aldehydes; Formation of Optically Active Homoallylic Alcohols, J. Am. Chem. Soc, 1983,105(7), 2088-2089; Coppi, L.; Mordini, A.; Taddei, M., C-centred Optically Active Organosilanes, 1. Synthesis of New Silylated Chiral Auxiliaries, Tetrahedron Lett., 1987, 28(9), 965-968.
    65.Brown, H.C.; Desai, M.C.; Jadhav, P.K., Hydroboration. 61. Diisopinocampheylb- orane of High Optical Purity. Improved Preparation and Asymmetric Hydroboration of Representative cis-Disubstituted Alkenes, J. Org. Chem., 1982, 47(26), 5065-5069; Brown, H.C.; Jadhav, P.K., Asymmetric Carbon-Carbon Bond Formation via β-Allyldiisopinocampheylborane. Simple Synthesis of Secondary Homoallylic Alcohols with Excellent Enantiomeric Purities, J. Am. Chem. Soc, 1983, 105(7), 2092-2093.
    66.Roush, W.R.; Palmer, M.A.J.H.; Park, J.C. Asymmetric Synthesis Using Tartrate Ester Modified Allylboronates. 2. Single and Double Asymmetric Reactions with Alkoxy-Substituted Aldehydes, J. Org. Chem. 1990, 55(13), 4117-4126; Vulpetti, A.; Gardner, M.; Gennari, C; Bernardi, A. Goodman, J.M.; Paterson, I., Origins of Stereoselectivity in the Addition of Chiral Allyl- and Crotylboranes to Aldehydes: the Development and Application of a Force Field Model of the Transition State, J. Org. Chem., 1993, 58(7), 1711-1718.
    67.Brown, H.C.; Randad, R.S.; Bhat, K.S.; Zaidlewicz, M.; Racherla, U.S., Chiral Synthesis via Organoboranes. 24. B-AlIylbis(2-isocaranyl)borane as a Superior Reagent for the Asymmetric Allylboration of Aldehydes, J. Am. Chem. Soc, 1990, 112(6), 2389-2392.
    68.Roush, W.R.; Adam, M.A.; Harris, D.J., Stereochemistry of Crotylboronate Additions to a-, β-Dialkoxy Aldehydes, J. Org. Chem., 1985, 50(11), 2000-2003.
    69. Racherla, U. S.; Brown, H. C., Chiral Synthesis via Organoboranes. 27. Remarkably Rapid and Exceptionally Enantioselective (Approaching 100%e. e.) Allylboration of Representative Aldehydes at-100. degree. under New, Salt-Free Conditions, J. Org. Chem., 1991, 56(1), 401-404.
    70. Hoffmann, R. W.; Herold, T., Stereoselective Synthesis of Alcohols. Ⅶ. Optically Active Homoallyl Alcohols via Addition of Chiral Boronates to Aldehydes, Chem., Ber., 1981, 114(1), 375-383.
    71. Roush, W. R.; Palmer, M. A. J. H.; Park, J. C. Asymmetric Synthesis Using Tartrate Ester Modified Allylboronates. 1. Factors Influencing Stereoselectivity, J. Org. Chem., 1990, 55(13), 4109-4117.
    72. Roush, W. R; Banfi, L., N, N'-Dibenzyl-ethylenetartramide: A Rationally Designed Chiral Auxiliary for the Allylboration Reaction, J. Am. Chem. Soc. 1988, 110(12), 3979-3982.
    73.谭万会,张三奇,张生勇,冯锐,手性酒石酸二酰胺配体的合成及其锡络合物与苯甲醛的不对称加成,有机化学 1994,14,181-184.
    74. Hehre, W. J., Ab initio Molecular Orbital Theory, John Wiley & Sons, Inc, New York, 1986;陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨工业大学出版社,2002.
    75. Koch, W.; Holthausen, M. C., A Chemist's Guide to Density Functional Theory (Second Edition), Wiley-VCH Verlag GmbH, 2001.
    76. Levine,. I. N., QuantumChemistry, Allyn & Bacon, London, 1974;宁世光等译,量子化学,人民教育出版社,1980.
    77. Pople, J. A.; Nesbet, R. K., Serf-Consistent Orbital for Radicals, Self-Consistent Orbitals for Radicals, J. Chem. Phys., 1954, 22(3), 571-572; McWeeny, R.; Dierksen, G., Self-Consistent Perturbation Theory. Ⅱ. Extension to Open Shells, J. Chem. Phys., 1968, 49(11), 4852-4856.
    78. Becke, A. D. Density-Functional Thermochemistry. Ⅲ. The Role of Exact Exchange, J. Chem. Phys., 1993, 98(12), 5648-5652.
    79.Dewar, M.J.S.; Thiel, W., Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters, J. Am. Chem. Soc, 1977, 99(15), 4899-4908; Dewar, M.J.S.; Healy, E.F., Ground States of Molecules. 64.MNDO Calculations for Compounds Containing Bromine, J. Comp. Chem., 1983, 4(4), 542-551; Dewar, M.J.S.; Reynolds, C.H., An Improved Set of MNDO Parameters for Sulfur, J. Comp. Chem. 1986, 7(2), 140-143.
    80.Davis, L.P.; Guidry, R.M.; Williams, J.R.; Dewar, M.J.S.; Rzepa, H.S., MNDO Calculations for Compounds Containing Aluminum and Boron, J. Comp. Chem., 1981, 2(4), 433-445; Dewar, M.J.S.; Zoebisch, E.G; Healy, E.F.; Stewart, J.JP., Development and Use of Quantum Mechanical Molecular Models. 76. AM1: a New General Purpose Quantum Mechanical Molecular Model, J. Am. Chem. Soc, 1985, 107(13), 3902-3909.
    81.Hehre, W.J.; Stewart, R.F.; Pople, J.A., Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals, J. Chem. Phys., 1969, 51(6), 2657-2664; Collins, J.B.; Schleyer, P.V.R; Binkley, J.S.; Pople, J.A., Self-Consistent Molecular Orbital Methods. XVII. Geometries and Binding Energies of Second-Row Molecules. A Comparison of Three Basis Sets, J. Chem. Phys., 1976, 64(12), 5142-5151.
    82.Hehre, W.J.; Ditchfield, R.; Pople, J.A., Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys., 1972, 56(5), 2257-2261; Binning, J. R. C.; Curtiss, L. A. Compact contracted basis sets for third-row atoms, J. Comp. Chem., 1990, 11(10), 1206-1216.
    83.Petersson, G.A.; Bennett, A.; Tensfeldt, T.G; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J., A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements, J. Comp. Chem., 1988, 89(4), 2193-2218; Petersson, GA;Al-Laham, M.A., A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms, J. Comp. Chem., 1991, 94(9), 6081-6090.
    84. Foresman, J. B.; Frisch, E., Exploring Chemistry with Electronic Structure Method (second edition), Gaussian, Inc, USA, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700