用户名: 密码: 验证码:
新型低载钛负载型Z-N催化剂的一釜球磨法制备及催化烯烃聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ziegler-Natta(Z-N)催化剂在整个聚烯烃的工业生产中起着主导作用,虽然它的发现已有50年的历史了,但由于Z-N催化剂的复杂性及多样性,许多问题依然有待解决,例如:如何改进Z-N催化剂的制备方法以调控催化剂中活性中心的种类及分布?聚合物链是如何增长的?一些特定体系的聚合动力学是如何的?等等诸多方面还不是很清楚,进一步弄清这些问题对开发具有独特结构和性能的聚烯烃材料具有深远的理论意义和重大的应用价值。
     本论文发展了一种MgCl_2负载的低载钛Z-N催化剂的—釜球磨法制备新工艺,成功地制备了系列MgCl_2负载的低载钛Z-N催化剂:TiCl_4(0.4%)/MgCl_2和TiCl_4(0.8%)/MgCl_2。该制备方法工艺简单、操作方便、钛含量易控、稳定性好、易于工业化生产,所得催化剂催化丙烯聚合能获得应用领域广阔的新型低等规聚丙烯。用所制得的MgCl_2负载的低载钛Z-N催化剂催化丙烯聚合,发现较好的聚合条件为:钛含量0.8(wt)%;聚合温度40℃;[Al]/[Ti]=40。改变聚合条件,用此催化体系成功地制得了系列新型低等规及立体嵌段聚丙烯。将所得系列新型低等规及立体嵌段聚丙烯用作沥青改性,发现所得改性沥青的主要技术指标及经济指标达到或超过同类进口产品的指标,具有明显的应用前景。
     聚丙烯的微结构主要取决于Z-N催化剂活性中心的性质及其分布。本论文采用多元Flory函数分峰拟合聚合产物分子量分布曲线的方法,研究了—釜球磨法制备的MgCl_2负载的低载钛Z-N催化剂的活性中心种类及分布,发现该催化体系中可能存在6种不同的聚合物链增长方式。对各种不同链增长方式所产生的聚合物的分子量Mi及所占的百分比f_i的模拟计算表明,计算值和实验值吻合得很好,这表明体系中存在6种链增长方式是可能的。
     根据所得聚合物具有低等规及立体嵌段的微结构特点,本文提出了一种新的聚丙烯增长链受具有两种能够相互转换活性位的增长方式控制的模型,其中一种活性位服从对映体活性中心控制增长机理,另一种活性位服从链末端控制增长机理,两种活性位可转换,因而交替控制整条聚合物链的增长,并推导了在该链增长方式控制下聚合物链结构的五元组分布函数表达式。在此基础上,提出了采用—釜球磨法制备的MgCl_2负载的低载钛Z-N催化剂在催化丙烯聚合过程中聚合物链的增长模型,并用该模型模拟计算了所得聚合物的五元组分布,发现计算值与~(13)C-NMR实测值吻合得很好,这表明所建立的新模型是合理的。
     基于—釜球磨法制备的MgCl_2负载的低载钛Z-N催化体系存在6种链增长方式,考虑再活化作用,本文建立了新的动力学模型:
     当t     当t>t_0时:R_M=k_p~1M(ρ_(11)e~(λ_5(t-t_0))+ρ_(12)e~(λ_6(t-t_0))+ρ_(13))+k_p~2M(ρ_(14)e~(λ_5(t-t_0))+ρ_(15)e~(λ_6(t-t_0))+ρ_(16))+k_p~3M(ρ_(17)e~(λ_7(t-t_0))+ρ_(18)e~(λ_8(t-t_0))+ρ_(19))+k_p~4M(ρ_(20)e~(λ_7(t-t_0))+ρ_(21)e~(λ_8(t-t_0))+ρ_(22))
     用此模型对实验数据进行拟合,发现计算值和实验值吻合得相当好,说明此模型是合理
Ziegler-Natta (Z-N) catalysts are an important class of commercial catalysts for the preparation of polyolefins. However, some problems such as how to improve the method of preparing the Z-N catalysts to control the type and distribution of active centers, propagating mechanism of the polymer chain and polymerization kinetic of some special catalyst systems still are unclear completely. It is of great theoretical significance and practical value to clear above metioned problems for development of new polymer material with special structures and properties.In this work, a new route for preparing MgCl_2-supported and low Ti-loading Z-N catalysts using a new one-pot ball milling method was developed, and a series of MgCl_2-supported and low Ti-loading Z-N catalysts, such as TiCl_4(0.4%)/MgCl_2 and TiCl_4(0.8%)/MgCl_2, were prepared successfully. This route is easy to be industrialized and the resultant catalysts can be employed in a study of propylene polymerization with AlEt_3 as cocatalyst. It was found that the resultant polymer had low isotactic and block microstructure, and can be widely used in many fields, for example, as additive for building top grade high way.The influence of polymerization temperature, catalyst concentration and [Al]/[Ti] molar ratio on catalytic activities and polymerization kinetics has been investigated. The results showed that the better polymerization conditions were: Ti-loading amount=0.8(wt)%, polymerization temperature =40°C, [Al]/[Ti]=30. Changing polymerization conditions, a series of novel low isotactic polypropylene and block polypropylene were prepared successfully. Using the resultant novel low isotactic polypropylene and block polypropylene as modifier for asphalt, it was found that it had evident effects to improve the properties of asphalt.In this work, the complex GPC data of polypropylene synthesized by MgCl_2-supported and low Ti-loading Z-N catalyst were analyzed using the method of fitting the molecular weight distribution (MWD) curves with multiple Flory-Schulz functions. It was found that these MWD curves could be actually fitted with 6 Flory-Schulz most-probable distributions with different position and area, which showed that it was a reasonable suggestion that there exist six types propagating way of the polymer chain in the polymerization system.Based on microstructure character of obtained polypropylene, we developed a new two-site propagating model: the polymer chain propagates at two-site which can intertransform. Site-1 obeys the enantiomorphic-site model while site-2 follows the chained-end growing dependent model, and the propagation of the polymer chain are controlled by the site-1 and site-2 alternately. The theoretical expressions of the pentad intensities of the polypropylene based on this new propagating model were deduced. A novel multi-active-centers propagating model in the propylene polymerization catalyzed by MgCl_2-supported and low Ti-loading Z-N catalysts prepared using a new one-pot ball milling method was also proposed. After simulating the pentad
    intensities of the resultant polypropylene using multi-active-centers model, it was found that the calculated results from this new model could satisfactorily account for the experimental data, which showed the proposed model is plausible and reasonable.Based on six types propagating way of the polymer chain in the MgCl2-supported and low Ti-loading Z-N catalysts prepared using one-pot ball milling method, a polymerization kinetics model was proposed as following:When tto: RM = *;M(Ai^('-'"> + pl2e*<^ + Pu) + k]M^e^ + p^'^ + pj-* + Pl9) + klM(p2Oe^ + p2]e?'-'-> + p22)Applying this kinetics model, the good agreement between the experimental data and the fitting profiles was achieved, which indicated the proposed model is reasonable.Molecular weight and its distribution of the polyethylene have extensively effects to the product properties. And so it is of great significance to adjust the molecular weight distribution of the polyethylene for developing novel kinds of polyethylene with high properties. In this work, MgCb/SiC^—bi-supported Z-N catalysts were prepared using the one-pot ball milling method and were employed in ethylene polymerization with AlEt3 as cocatalyst. The results showed that by changing the molar ratios of two component of supports in the catalysts and polymerization temperature, the molecular weight and molecular weight distribution of the resultant polyethylene could be widely adjusted.The copolymerizations of ethylene/ct-olefin catalyzed by the catalysts prepared using the one-pot ball milling method were studied. A series of copolymer with various content of hexane and dodecene were synthesized successfully. It was found that these catalyst systems had stable kinetic curves and the content of co-monomer in the resultant copolymer could be widely adjusted, which showed that these catalysts might be useful to commercial preparation of polyolefins.
引文
[1] Rosa CD, Auriemma F, Perretta. [J] . Structure and properties of elastomeric from C_2 and C_(2v)-symmetric zirconocenes. The origin of crystallinity and elastic properties in poorly isotactic polypropylene. Macromolecules. 2004, 37: 6843~6855.
    [2] Mulhaupt R. [J] . Catalytic polymerization and post polymerization catalysis fifty years. Macromol Chem Physic. 2003, 204(2): 289~327.
    [3] Marques MDFV, Conte A, Resende FCD, Chaves EG.. [J] . Copolymerization of ethylene and 1-octene by homogeneous and different supported metallocenic catalysts. J Appl Polym Sci. 2001, 82: 724~730.
    [4] Cecchin G, Morini G, Piemontesi F. [M] . Ziegler-Natta Catalysts, in: Kirkothmer encyclopedia of chemical technology, New York: John Wiley & Sons, Inc., 2003.
    [5] Chadwick J C. [M] . Ziegler-Natta Catalysts, in: Encyclopedia of polymer science and technology, New York: John Wiley & Sons, Inc., 2003.
    [6] Hong DY. [J] . Polymer industry and innovation in macromolecule science and technology in China. Macrom Syrup. 2003, 195: 13~18.
    [7] 黄葆同,沈之荃.[M] .烯烃双烯烃配位聚合进展。北京:科学出版社,1998.
    [8] Coats GW, Wayrnouth RM. [J] Oscillating stereocontrol: a strategy for the synthesis of thermoplastic elastomeric polypropylene. Science, 1995, 267: 217~219.
    [9] Hauptman E, Wayrnouth RM, Ziller JW. [J] . Stereoblock polypropylene: Ligand effects on the stereospecificity of 2-arylindene zirconocene catalysts. J. Am. Chem. Soc., 1995, 117: 11586-11587.
    [10] Kravchenko R, Masood A, Waymouth RM. [J] . Propylene polymerization with chiral and achiral unbridged 2-arylindene metallocenes. Organometallics, 1997, 16: 3635~3639.
    [11] Petoff JLM, Bruce MD, Waymouth RM. [J] . Propylene polymerization with unbridged metallocenes: Ligand effects on the selectivity for elastorneric polypropylene. Organometallics, 1997, 16: 5909~5916.
    [12] Lin S, Hauptman E, Lal KT, Waymouth RM, Quan RW, Ernst A B. [J] . Steric and electronic effects of R in (2-(4-R-C_6H_4)indenyl)2 ZrCl_2 catalysts on the synthesis of elastomeric polypropylene. Journal of Molecular Catalysis A: Chemical, 1998, 136: 23~33.
    [13] Witte P, Lal TK, Waymouth RM. [J] Synthesis of unbridged bis(2-R-indenyl) zirconocenes containing functional groups and investigations in propylene polymerization. Organometallics, 1999, 18: 4147~4155.
    [14] Petoff JLM, Myers C L, Wayrnouth R M. [J] . Influence of trialkylaluminum reagents on the propylene polymerization behavior of bridged and unbridged 2-arylindene metallocene polymerization catalysts. Macromolecules, 1999, 32: 7984~7989.
    [15] Pietsch MA, Repple AK. [J]. π -Stacking as a control element in the (2-PhInd)_2Zr elastomeric polypropylene catalyst. J. Am. Chem. Soc, 1996, 118: 10908-10909.
    [16] Tagge CD, Kravchenko RL, Lal TK, Waymouth RM. [J]. Mixed ligand metallocenes as catalysts for elastomeric polypropylene. Organometallics,1999, 18(3):380~388.
    [17] Zhang F, Mu Y, Zhao LG, Zhang YT, Bu WM, Chen CX, Zhai HM, Hong H. [J]. New sterically hindered unbridged zirconocene complexes with 1,2-diphenylcyclopentadienyl ligands: synthesis, structure and properties as olefin polymerization catalysts. Journal of Organometallic Chemistry. 2000,613:68-76.
    [18] Mallin DT, Rausch MD, Lin YG, S Dong, JCW Chien. [J]. rac-[Ethylidene(1- η~5-tetramethylcyclopentadienyl)( 1- η~5-indenyl)]dichlorotitanium and its homopolymerization of propylene to crystalline-amorphous block thermoplastic elastomers. J.Am.Chem.Soc, 1990, 112:2030-2031.
    [19] Llinas GH, Dong SH, Mallin DT, Rassch MD, Lin YG, Winter HH, Chien JCW. [J]. Crystalline-amorpuous block polypropylene and nonsymmetric ansa-metallocene catalyzed polymerization. Macromolecules, 1992, 25: 1242-1253.
    [20] Gauthier WJ, Corrigan JF, Taylor NJ, Collins S. [J]. Elastomeric poly(propylene): influence of catalyst structure and polymerization conditions on polymer structure and properties. Macromolecules, 1995,28: 3771-3778.
    [21] Bruce MD, Coats GW, Hauptman E, Waymouth RM. [J] Effect of metal on the stereospecificity of 2-arylindene catalysts for elastomeric polypropylene. J. Am. Chem. Soc, 1997,119: 11174-11182.
    [22] Gauthier WJ, Corrigan JF, Taylor NJ. Collins S. [J]. Elastomeric Poly(propylene): Influence of Catalyst Structure and Polymerization Conditions on Polymer Structure and Properties. Macromolecules, 1995,28(11): 3771-3778.
    [23] Gauthier W J, Collins S. [J]. Elastomeric Poly(propylene): Propagation Models and Relationship to Catalyst Structure. Macromolecules, 1995, 28(11): 3779-3786.
    [24] Bravakis AM, Bailey LE, Pigeon M, Collins S. [J] Synthesis of elastomeric poly(propylene) using unsymmetrical zirconocene catalysts: marked reactivity differences of "rac"- and "meso"-like diastereomers. Macromolecules, 1998,31:1000-1009.
    [25] Ditrich U, Hackmann M, Rieger B, Klinga M, Leskela M. [J]. Control of stereoerror formation with high-activity "dual-side" zirconocene catalysts: a novel strategy to design the properties of thermoplastic elastic polypropenes. J.Am.Chem.Soc, 1999, 121:4348-4355.
    [26] Naga N, Mizunuma K. [J]. Stereochemical control in propylene polymerization witn non-bridged metallocene dichloride/methylaluminoxane. Polymer, 1998, 39(13): 2703-2708.
    [27] Miller SA, Bercaw JE. [J] . Aminofluorenyl-pentamethylcyclopentadienyl and bis(aminofluorenyl) derivatives of group 4 metals. Organometallics, 2000, 19: 5608~5613.
    [28] Froese RDJ, Musaev DG, Morokuma K. [J] . Theoretical studies of the Cp_2ZrR~+-catalyzed propylene polymerization reactions and a comparison with ethylene polymerization. Journal of Molecular Structure: THEOCHEM. 1999, 461-462: 121~135.
    [29] Resconi L, Abis L, Franciscono G. [J] . I-Olefin polymerization at bis(pentamethylcyclopentadienyl) zirconium and-hafnium centers: enantioface selectivity. Macromolecules. 1992, 25: 6814~6817.
    [30] Resconi L, Jones RL, Rheingold AL, Yap GPA. [J] . High-molecular-weight atactic polypropylene from metallocene catalysts. 1. Me_2Si(9-Flu)_2ZrX_2(X=Cl, Me) Organometallics, 1996, 15: 998~1005.
    [31] Chen Y X, Rausch M D, Chien J C W. [J] . C_(2v~-) and C_(2~-)Symmetric ansa-bis(fluorenyl) zirconocene catalysts: synthesis and a-olefin polymerization catalysis. Macromolecules, 1995, 28: 5399-5404.
    [32] Ewart S W, Sarsfield M J, Jeremic D, Tremblay TL, Williams EF, Baird MC. [J] . Ethylene and propylene polymerization by a series of highly electrophilic, chiral monocyclopentadienyltitanium catalysts. Organometallics, 1998, 17: 1502~1510.
    [33] Jorg S, Manfred B, Joachim R, Dieter L. [J] Titanium-catalysed formation of high molecular weight elastomeric polypropene: evidence for living propene polymerization. Journal of Organometallic Chemistry. 1997, 548: 23~28.
    [34] 谢本恒,伍青,林尚安。[J] .合成高分子量无规聚丙烯的研究 Ⅰ.单茂基钛化合物/MAO催化丙烯聚合。高分子学报,1999,1:15~19.
    [35] Jeon Y M, Park S J, Heo J, Kim K. [J] . Zirconium complexes with the new ancillary diamido ligand 2,2'-ethylenebis(N,N-(triisopropylsilyl)anilinido)~(2-): syntheses, structures, and living α-olefin polymerization activities. Organometallics, 1998, 17(15): 3161~3163.
    [36] Mcknight A L, Straus D A, masood M A, waymouth RM. [J] . Propylene polymerization with Cp-amido metal complexes: stereoselectivity and regioselectivity. Polym. prepr, 1996, 37(2): 474~475.
    [37] Kleinschmidt R, Griebenow Y, Fink G. [J] . Stereospecific propylene polymerization using halfsandwich metallocenerMAO systems: a mechanistic insight. Journal of Molecular Catalysis A: Chemical, 2000, 157: 83~90.
    [38] Richter J, Edelmann F T, Noltemeyer M, Schmidt FIG, Shmulinson M, Eisen MS. [J] . Metallocene analogues containing bulky heteroallylic ligands and their use as new olefin polymerization catalysts. Journal of Molecular Catalysis A: Chemical., 1998, 130: 149~162.
    [39] Shmulinson M, Fereres MG, Lisovskii A, Nelkenbaum E, Serniat R, Eisen MS. [J] . Formation of elastomeric polypropylene promoted by racemic acetylacetonate group 4 complexes. Organornetallics, 2000, 19:1208~1210.
    [40] Ray B, Neyroud T G, Kapon M, Eichen Y, Eisen MS. [J] . Synthesis, characterization, and catalytic activities for the polymerization of olefins promoted by zirconium(Ⅲ) and titaniurn(Ⅲ) allyl complexes. Organometallics, 2001, 20: 3044~3055.
    [41] Boer EJM, Gilmore IJ, Korndorffer FM, Horton, AD, Linden, A. [J] . Phospholyl catalysts for olefin polymerization. Journal of Molecular Catalysis A: Chemical, 1998, 128: 155~165.
    [42] Chien J C W, Hsieh J T T. [J] . Supported catalysts for stereospeeific polymerization of propylene. J Polym Sci, 1976, 14(8): 1915~1932.
    [43] Soga K, Katano S, Akimoto Y, et al. [J] . Polymerization of α-olefin with a supported Ziegler-Natta catalysts I. Influence of various supports on the polymerization rate and the taetieity of polypropylene. Polymer J, 1973, (5): 128~134.
    [44] Longi P, Giannini U, Mazzocchi R, et al. Catalysts for the polymerization of olefrns [P] . USP 4613655, 1986-09-23.
    [45] Kashiwa N. [J] . The discovery and progress of MgCl_2-supported TiCl_4 catalysts. J Polym Sci Pol Chem, 2004, 42(1): 1~8.
    [46] Gianini U. [J] . Polymerization of olefins with high activity catalysts. Macrornol Chem Suppl, 1981, 5 (S19811): 216~229.
    [47] Witold Kuran. Principles of coordination polymerization [M] . New York: John Wiley & Sons Ltd, 2001.
    [48] Soga K, Shiono T. [J] . Ziegler-Natta catalysts for olefin polymerizations. Prog Polym Sci, 1997, 22(1): 1503~1546.
    [49] 林尚安,于同隐,杨士林.[M] .配位聚合.上海:上海科技出版社,1988。
    [50] Soga K, Shiono T, Doi Y. [J] . The effect of ethyl benzoate on the copolymerization of ethylene with higher α-olefins over TiCl_4/MgCl_2 catalytic systems. Polym Bull, 1983, 10: 168~174.
    [51] Chadwick J C, Morini G, Balbontin G, et al. [J] . Effects of internal and extemal donors on the regio-and stereoselectivity of active species in MgCl_2-supported catalysts for propene polymerization. Macrornol Chern Phys, 2001, 202(10): 1995~2002.
    [52] Busico, V.;Corradini, P.;Martino, Proto A., Albizzati E. [J] . Polymerization ofpropene in the presence of MgCl_2-supported Ziegler-Natta catalysts. 2. effects of the co-catalyst composition. Makromol. Chern. 1986, 187, 1115~1124.
    [53] 王立,封麟先.[J] .TiCl_4/MgCl_2/NaY复合载体催化剂催化丙烯聚合的研究。浙江大学学报:自然科学版,1992,26:147~152.
    [54] Wang L., Yuan YL., Ge CX., Wang YX., Li B., Pan J., Ye ZY., Feng LX. [J] . Studies on probing SiO_2 surface using BF_3 as probe and SiO_2/Al_2Et_3Cl_3/TiCl_4(PhMgCl) catalytic system for copolymerization of ethylene and propylene. J. Appl. Polym. Sci. 2000, 76, 1583-1589.
    [55] Fan ZQ;Feng LX;Yang SL. [J] . Distribution of active centers on TiCl4/MgCL2 catalyst for olefin polymerization. J. Polym. Sci., Part A : Polym. Chem., 1996, 34, 3329~3335.
    [56] Kissin, Y.V. [J] . Molecular weight distributions of linear polymers: Detailed analysis from GPC data. J Polym Sci. Part A: Polym Chem. 1996, 33, 227~237.
    [57] 范志强,封麟先,杨士林。[J] .异相Ziegler-Natta催化剂的活性中心多分散性(Ⅰ)—钛催化体系聚合物分子量分布的研究。高等学校化学学报,1991,12,1681~1685.
    [58] 范志强,封麟先,杨士林。[J] .异相Ziegler-Natta催化剂的活性中心多分散性(Ⅱ)—4种活性中心的聚合动力学参数。高等学校化学学报,1992,13,137~140.
    [59] .范志强,杨柯,邓海鹰,蒋学。[J] .DQ-1高效催化剂的活性中心分布变化规律。石油化工,2003,32(4),285~289.
    [60] 封麟先,范志强,徐君庭,杨士林。[J] .异相Ziegler-Natta催化剂聚合机理若干研究进展.高分子通报.1998,3:24~29,65.
    [61] Busico V, Cipullo R, Monaco G. [J] . High-resolution C-13 NMR configurational analysis of polypropylene made with MgCl_2-supported Ziegler-Natta catalysts. 1. The model system MgCl_2/TiCl_4-2, 6-dimethylpyridine/Al(C_2H_5)_3. Macromolcules, 1999, 32(13): 4173~4182.
    [62] Talarico G, Busico V, Cipullo R. Modeling the active species of MgCl_2-supported Ziegler-Natta catalysts: a quantum mechanical (Re-) visitation, in 1st Blue sky conference on catalytic olefin polymerization & 2nd JAIST/JLPO workshop on Ziegler-Natta Catalysts[C] . Sorrento (Italy), 2002.
    [63] Barino L, Scordamaglia R. [J] . Modeling of isospecific Ti sites in MgCl_2 supported heterogeneous Ziegler-Natta catalysts. Macromol Theory Simul. 1998, 7: 407~419.
    [64] Shiono T, Uchino H, Soga K. [J] . A highly non-stereospecific catalyst for propene polymerization. Polymer Bulletin, 1989, 21: 19~21.
    [65] Covezzi M., Mei G. [J] . The multizone circulating reactor technology. Chemical Engineering Science, 2001, 56: 4059~4067.
    [66] Han Tk., Woo BW., Park JT., Do Y., Ko YS., Woo SI. [J] . Ethylene and Propylene Polymerization over Chiral ansa-Dichlorolo-phenylenedimethylenebis(.η~5 -1-indenyl)] zirconium [Zr{C_6H_4(CH_2-1-C_9H_6)_2-1,2 }Cl_2] . Macromolecules. 1995, 28: 4801~4805.
    [67] Ahlers A., Kaminsky W. [J] . Variation of molecular weight distribution of polyethylenes obtained with homogeneous Z-N catalysts.Makromol. Chem. Rapid Commun. 1988, 9: 457~463.
    [68] Kim JD, Soares JBP, Remple G. L. [J] . Use of hydrogen for the tailoring of the molecular weight distribution of polyethylene in a bimetallic supported metallocene catalyst system. Makromol. Rapid Commun., 1998, 19: 197~199.
    [69] Soares JBP, Kim JD, Remple GL. [J] . Analysis and control of the molecular weight and chemical composition distributions of polyolefins made with metallocene and Ziegler-Natta catalysts. Ind. Eng. Chem. Res., 1997, 36: 1144~1150.
    [70] 袁幼菱,王立,封麟先,沈健。[J] 双组分茂金属催化剂催化乙烯聚合的研究。高分子学报,2002(6):764~769.
    [71] 袁幼菱.[D] .茂金属催化剂催化乙烯聚合的研究。浙江大学博士学位论文,2000.
    [72] 孙敏,陈伟,景振华。[J] 制备宽/双峰分子量分布聚乙烯的催化体系。合成树脂及塑料,2000,17(3):9~12.
    [73] 吕占霞,李杨,魏春阳,唐伟刚,李学峰,张淑清,韩世敏,胡友良。[J] 宽或双峰分子量分布HDPE的研制。合成树脂及塑料,2000,17(5):14~18.
    [74] 吕占霞,张书清,李杨,胡友良,唐伟刚,徐德民,李学峰,韩世敏,赵锦波。[P] —种合成聚乙烯的复合催化剂及其制备方法。CN 00124953.3,2002-4-24.
    [75] 孙爱武,韩世敏,胡友良。[J] MgCl_2负载双金属复合催化剂制备宽分子量分布聚乙烯。高分子学报,1999,12(6):748~751.
    [76] Ahn TO, Hong SC, Huh WS, Lee YC, Lee DH. [J] . Modification of a Ziegler-Natta catalyst with a metallocene catalyst and its olefin polymerization behavior. Polym Eng Sci, 1999, 39(7): 1257~1264.
    [77] Mink Rl, Nowlin TE. [P] . Catalyst for bimodal molecular weight distribution ethylene polymers and copolymers. USA, US 5 614 456. 1997.
    [78] Shimichi K. [P] . Ethylene polymers and its production. Japan, JP 7 278 221. 1995.
    [79] 金茂筑,刘月祥,彭人琪,马兆文,孙怡菁,朱宝兰。[P] 一种用于合成宽分子量分布聚乙烯或乙烯共聚物的复合催化剂及其制备方法和应用。CN 98126384.4,2000-7-5.
    [80] 李三喜。[J] .Ti-Hf双金属高效载体催化剂合成宽分子量分布聚乙烯的研究。应用化学,2001,18(5):412-415.
    [81] 罗杰.斯皮茨,让.马林格,让一弗朗索瓦.乔利。[P] 能够制得宽分子量分布的聚合物的乙烯聚合方法,催化组分的处理方法。CN 89108760.5,1990-6-13.
    [82] Guy D. [P] . Production of polyethylene having a bimodal molecular weight distribution. USA, US 6 294 500. 2001.
    [83] 王海华,林尚安,张启兴,卢泽俭。[P] 可调节分子量的超高分子量聚乙烯制备方法。CN 93103156.7.1993-9-22.
    [84] 邹丰楼,李扬,邹晓天,李松涛,宋玉春,周秀中,徐善生。[J] 分子量宽峰分布聚乙烯茂金属催化剂的研究。合成树脂及塑料,2000,17(2):28~30.
    [85] Chung JS, Cho HS, Ko YG, Lee WY. [J] . Preparation of the Ziegler-Natta/metallocene hybrid catalysts on SiO_2/MgCl_2 bisupport and ethylene polymerization. J Mol Catal A:Chem, 1999, 144: 61-69.
    [86] Kim Y, Han Y, Do Y. [J] New half-sandwich metallocene catalysts for polyethylene and polystyrene. J. Organomet. Chem. 2001, 634:19-24.
    [87] Kim Y, Han Y, Lee MH,Yoon SW, Choi KH, Song BG, Do Y. [J] New half-metallocene catalysts generating polyethylene with bimodal bolecular weight distribution and syndiotactic polystyrene. Macromol. Rapid Commun. 2001, 22:573-578.
    [88] Grognec EL, Poli R. [J] Diene-containing half-sandwich Mo complexes as ethylene polymerization catalysts: experimental and theoretical studies. Chem. Eur. J. 2001, 7: 4572-4583.
    [89] Ohnishi K, Mori H, Terano M. [J]. Polyolefin-supported homogeneous titanium based Ziegler catalyst for the production of polyethene with narrow molecular weight distribution. Macromol Chem Phys. 1998, 199:1765-1773.
    [90] Mori H, Ohnishi K, Terano M. [J]. The heterogeneous modified-polypropene-supported Ziegler catalyst/MMAO system for producing ultrahigh molecular weight polyethene and poly(ethylene-co-hexene) with a homogeneous comonomer distribution. Macromol Chem Phys. 1999,200:2320-2326.
    [91] Fukuda K, Liu B, Nakatani H, Nishiyama 1, Yamahiro M, Terano, M. [J]. Significant variation of molecular weight distribution (MWD) of polyethylene induced by different alkyl-Al co-catalysts using a novel surface functionalized SiO_2-supported Ziegler-Natta catalyst. Catalysis Communications, 2003, 4: 657-662.
    [92] B.Liu, K. Fukuda, H. Nakatani, l.Nishiyama, M.Yamahiro, M.Terano. ~(27)Al MAS solid state NMR study on coordinative nature of alkyl-Al cocatalysts on a novel SiO_2-supported Ziegler-Natta catalyst for controlled multiplicity of molecular weight distribution. Journal of Molecular CatalysisA:Chemical, 2004, 219: 363-370.
    [93] Andres R, Jesus E, Mata FJ, Flores JC, Gomez R. [J]. Titanocene and zirconocene complexes containing dendrimer-substituted cyclopentadienyl ligands-synthesis and ethylene polymerization. Eur. J. Inorg. Chem. 2002, 9:2281-2286.
    [94] Li LD, Wang Q.[J] Synthesis of polyethylene with bimodal molecular weight distribution by supported Iron-Based catalyst. J Polym Sci.Part A: Polym Chem. 2004,42: 5662-5669.
    [95] Wang Q, Li LD, Fan ZQ. [J] Polyethylene with bimodal molecular weight distribution synthesized by 2,6-bis(imino)pyridyl complexes of Fe(II) activated with various activators. Eur. Polym. J. 2004,40: 1881-1886.
    [96] Wang Q, Yang HX, Fan ZQ, Xu H. [J]. The effect of compositions and combinations of the reactants upon the copolycondensation of isophthalic acid/terephthalic acid with a combination of
     hydroquinones and bisphenols by tosyl chloride/dimethylformamide/pyridine. J Polym Sci. Part A: Polym Chem. 2004, 42: 1093~1099.
    [97] Helmut G. Alt, Rainer Ernst. [J] . Asymmetric dinuclear ansa zirconocene complexes with methyl and phenyl substituted bridging silicon atoms as dual site catalysts for the polymerization of ethylene. Inorganica Chimica Acta. 2003,350: 1~11.
    [98] 张玉清,范志强,封麟先.fJ] .聚烯烃催化合金技术的新进展.高分子材料科学与工程,1999,15(6):21~24.
    [99] Herwig T, Kaminsky W. [J] . Halogen-free soluble Ziegler-Natta catalysts with methylalumoxan as catalyst. Polym. Bull., 1983, 9: 464~469.
    [100] Chien JCW, He D. [J] . Olefin copolymerization with metallocene catalysts. I. Comparison of catalysts. J. Polym. Sci. Part A: Polym. Chem., 1991, 29: 1585~1593.
    [101] Koivumaki J, Seppala J V. [J] . Copolymerization of ethylene and 1-hexadecene with Cp_2ZrCl_2-methylaluminoxane catalyst. Polymer, 1993, 34(9): 1958~1959.
    [102] Quijada R, Narvaez A, Rojas R, Rabagliati FM, Galland GB, Mauler RS, Benavente R, Perez E, Perena JM, Bello A. [J] . Synthesis and characterization of copolymers of ethylene and 1-octadecene using the rac-Et(Ind)_2ZrCl_2/MAO catalyst system. Macromol. Chem. Phys. 1999, 200: 1306~1310.
    [103] 姚晖,肖士镜,陆宏兰。[J] .锆茂均相催化剂对乙烯/丙烯和乙烯/1-丁烯共聚合研究。高分子学报,1996,2:253~256.
    [104] Denger C, Haase u, Fink G.. [J] . Simultaneous oligomerization and polymerization of ethylene. Makromol. Rapid Commun., 1991, 12: 697~701.
    [105] Uozimu T, Miyazawa K, Sano T, Soga K. [J] . Alternating copolymerization of ethylene and 1-octene with meso-[dimethylsilylbis(2-methyl-1-indenyl)] zirconium dichloride-methylaluminoxane as catalyst system. Makromol. Rapid Commun., 1997, 18: 883~889.
    [106] Jin J, Uozimu T, Sano T, Teranishi T, Soga K, Shiono T. [J] . Alternating copolymerization of ethylene and propene with the [ethylene(1-indenyl)(9-fluorenyl)] zirconium dichloridemethylaluminoxane catalyst system. Makromol. Rapid Commun. 1998, 19: 337~339.
    [107] Nomura K, Oya K, Komatus T, Imanishi Y. [J] . Effect of the Cyclopentadienyl Fragment on Monomer Reactivities and Monomer Sequence Distributions in Ethylene/α-Olefin Copolymerization by a Nonbridged (Cyclopentadienyl)(aryloxy)titanium(Ⅳ) Complex-MAO Catalyst System. Macromolecules. 2000, 33: 3187~3189.
    [108] Forlini F, Fan Z Q, Tritto l, Locatelli P, Sacchi MC. [J] . Metallocene-catalyzed propene/1-hexene copolymerization: Influence of amount and bulkiness of cocatalyst and of solvent polarity. Makromol. Chem. Phys., 1997, 198: 2397.
    [109] Forlini F, Tritto 1, Locatelli P, Sacchi MC, Piemontesi F. [J]. ~(13)C NMR studies of zirconocene-catalyzed propylene/1-hexene copolymers: in-depth investigation of the effect of solvent polarity. Macromol. Chem. Phys., 2000, 201: 401-408.
    [110] Xu G X, Ruckenstein E. [J]. Ethylene Copolymerization with 1-Octene Using a 2-Methyl- benzfe]indenyl-Based ansa-Monocyclopentadienylamido Complex and Methylaluminoxanes Catalyst. Macromolecules, 1998, 31: 4724-4729.
    [111] Soga K, Kaminsky W. [J]. Copolymerization of olefins with SiO_(2~-), Al_2O_(3~-), and MgCl_2-supported metallocene catalysts activated by trialkylaluminiums. Macromol.Chem.Phys. 1994,195: 1369-1379.
    [112] Meng FH, Yu GQ, Huang BT. [J]. Polymer-supported zirconocene catalyst for ethylene polymerization . J Polym Sci Part A: Polym Chem , 1999, 37:37-46.
    [113] Chien JCW, Nozaki T. [J]. Ethylene-hexene copolymerization by heterogeneous and homogeneous Ziegler-Natta catalysts and the "comonomer" effect. J. Polym. Sci., Polym. Chem. 1993,31:227-237.
    [114] Karal FJ, Kao SC, Cann KJ. [J]. Comonomer effects with high-activity titanium- and vanadium-based catalysts for ethylene polymerization. J Polym Sci, Chem. 1993,31: 2541-2553.
    [115] Heiland K., Kaminsky K. [J]. Comparison of zirconocene and halfnocene catalysts for the polymerization of ethylene and 1-butene. Makromol.Chem. 1992, 193:601-608.
    [116] Galland GB, Sefein M, Mauler RS, Santos JHZD. [J]. Linear low-density polyethylene synthesis promoted by homogeneous and supported catalysts. Polym Int. 1999,48:660-664.
    [117] Chu K J, Shan C L P, Soares J B P, Penlidis A. [J] Copolymerization of ethylene and 1-hexene with in-situ supported Et[lnd]_2ZrCl_2. Macromol Chem Phys[J], 1999,200:2372-2376.
    [118] Walter P, Trinkle S, Suhm J, Mader D, Friedrich C, Mulhaupt R. [J]. Short and long chain branching of polyethene prepared by means of ethene copolymerization with 1-eicosene using MAO activated Me_2Si(Me_4Cp)(N~tBu)TiCl_2 Macromol Chem Phys.2000,201:604~612.
    [119] Koivumaki J, Fink G, Seppala J V. [J]. Copolymerization of Ethene/1-Dodecene and Ethene/ 1-Octadecene with the Stereorigid Zirconium Catalyst Systems iPr[FluCp]ZrCl_2/MAO and Me_2Si- [Ind]_2ZrCl_2/MAO: Influence of the Comonomer Chain Length. Macromolecules. 1994,27: 6254.
    [120] Koppl A, Babel A, Alt HG. [J]. Homopolymerization of ethylene and copolymerization of ethylene and 1-hexene with bridged metallocene/methylaluminoxane catalysts: the influence of the bridging moiety. J Mole Cataly A: Chemical[J], 2000,153:109-119.
    [121] Quijada R, Dupont J, Miranda M S L, Scipioni RB, Galland GB. [J]. Copolymerization of ethylene with 1-hexene and 1-octene: correlation between type of catalyst and comonomer incorporated. Macromol Chem Phys. 1995,196:3991-4000.
    [122] Britto ML, Galland GB, Santos JHZ, Forte MC. [J] . Copolymerization of ethylene and 1-hexene with Et(Ind)_2ZrCl_2 in hexane. Polymer. 2001, 42: 6355~6361.
    [123] Suhm J, Schneider M J, Mulhaupt R. [J] . Influence of metallocene structures on ethene copolymerization with 1-butene and 1-octene. J Mole Cataly A: Chemical [J] 1998, 128: 215~227.
    [124] Chen H, Wang JG, Zhang XQ, Tang T, Huang BT. [J] . Synthesis of a polyethylene-graft-polystyrene copolymer and its compatibilization for linear low density polyethylene/poly(phenylene oxide) blends. Macromol Chem Phys. 1995, 196: 2173~2182.
    [125] Kissin Y V. [J] . Peculiarities of Ethylene Polymerization Reactions with Heterogeneous Ziegler-Natta Catalysts: Kinetic Analysis. Macromol Theory Simul [J] 2002, 11: 67~76.
    [126] Snhm J, Schneider M J, Mulhaupt R. J. [J] . Temperature dependence of copolymerization parameters in ethene/1-octene eopolymerization using homogeneous rac-Me_2Si(2-MeBenz[e] Ind)_2 ZrCl_2/MAO catalyst. J. Polym. Sci., Polym. Chem. 1997, 35: 735~740.
    [127] Camurati I, Cavicehi B, Dall'Occo T, Piemontesi F. [J] . Synthesis and characterization of ethylene/1-olefin copolymers obtained by "single centre" catalysis. Macromol Chem Phys. 2001, 202: 701~709.
    [128] Reybuck S E, Meyer A, Waymouth R W. [J] . Copolymerization behavior of unbridged indenyl metallocenes: substituent effects on the degree of eomonomer incorporation Maeromoleeules. 2002, 35: 637~643.
    [129] Chakravarti S, Ray HW, Zhang SX. [J] . Kinetic study of olefin polymerization with a supported metallocene catalyst. Ⅳ. Comparison of bridged and unbridged catalyst in gas phase. J Appl Polym Sci. 2001, 81: 1451~1459.
    [130] Gerbasi R, Marigo A, Martorana A, Zannetti R, Guidetti GP, Batuzzi G. [J] . The activation of MgCl_2-supported Ziegler-Natta catalysts. Eur Polym J. 1984, 20: 967~970.
    [131] Zhou X, Lin S, Chien JCW. [J] . Magnesium chloride supported high mileage catalysts for olefin polymerization. ⅩⅪ. Isospecific and regiospecific vanadium catalyst for propylene polymerization. J Polym Sci. Polym Chem. 1990, 28: 2609~2632.
    [132] Forte MC, Bcoutinho FM. [J] . Highly active magnesium chloride supported Ziegler-Natta catalysts with controlled morphology. Eur Polym J. 1996, 32(2): 223~231.
    [133] Chung SJ, Song Kl, Lee YW. [J] . Morphology control of a MgCl_2-supported Ziegler-Natta catalyst by the recrystallization method. Macromol Chem Phys. 1995, 196: 1205~1210.
    [134] Sacchi MC, Forlini F, Tritto I, Menchichi R, Zannoni G, Noristi L.[J] ._Activation effect of alkoxysilanes as external donors in magnesium chloride-supported Ziegler-Natta catalysts_Macromolecules. 1992, 25: 5914~5918.
    [135] 毛炳权,杨菊秀,李珠兰。烯烃聚合用的球形催化剂组分、制备方法和应用及球形催 化剂[P] .CN 1036011C,1997-08-23.
    [136] 王立,叶朝刚,江山。球形催化剂载体MgCl_2-醇-有机络合剂复合物的制备方法[P] .CN 1397568A.2003-2-1-19.
    [137] Ye ZY, Wang L, Fen LF, Gu XP, Chen HH, Zhang PY, Pan J, Jiang S, Feng LX. [J] . Novel Spherical Z-N catalyst for polymerization and copolymerization. J. Polym. Sci.Part A. 2002, 40, 3112_3119.
    [138] Ma ZL, Wang L, Wang WQ, Fen LF, Gu XP. [J] . Study of propylene polymerization catalyzed by a spherical MgCl_2-supported Z-N catalyst system. J. Appl. Polym. Sci. 2005, 95: 738~742.
    [139] Yano T, Inoue T, Ikoi S, Shirizu M, Kar Y, Tamura M. [J] ._Highly active supported catalysts for olefin polymerization. Supports from a grignard reagent for preparation of highly active catalysts. J Polym Sci. Part A: Polym Chem. 1988, 26: 457~464.
    [140] Yano T, Inoue T, Ikoi S, Tamura M, Shimizu M. [J] . Supported catalyst for olefin polymerization. Eur Polym J. 1986, 22(8): 637~641.
    [141] Lu HL, Xiao SJ. [J] . Structure and behaviour of SiO_2/MgCl_2 bisupported Ziegler-Natta catalysts for olefin polymerization. Macromol Chem. 1993, 194: 421~429.
    [142] 伍青,赖雄飞,王海华,张启兴,卢泽俭,林尚交。[J] .用高效SiO_2载体催化剂进行乙烯气相聚合。催化学报,1996,17(4):315~318。
    [143] 王海华,胡锦民,高克京,吴江丽,张启兴。[J] .新型高效催化剂气相聚合制备聚乙烯。合成树脂及塑料,1998,15(4):8~11。
    [144] Nowlin TE, Kissin YV, Wagner KR [J] . High activity Ziegler-Natta catalysts for the preparation of ethylene copolymers. J. Polym. Sci. Part A: Polym.Chem., 1988, 26: 755~764.
    [145] Soga K, Ohnishi R, Doi Y. [J] . Copolymerization of ethylene with propylene over SiO_2-supported MgCl_2/TiCl_4 catalyst. Polymer Bull. 1983, 9: 299~304.
    [146] Salajka Z, Kratochvila J, Hamrik O, Kazda A, Gheorghiu M. [J] . One-phase supported titanium-based catalysts for polymerization of ethylene and its copolymerization with 1-alkenes. I. Preparation and properties of catalysts. J. Polym. Sci. Part A: Polym. Chem., 1990, 28: 1651~1660.
    [147] Kim I, Kim JH, Woo SL [J] . Kinetic study of ethylene polymerization by highly active silica supported TiCl_4/MgCl_2. catalysts. J Appl Polym Sci. 1990, 39, 837~854.
    [148] Ewen J A. J. Am. Chem. Soc., 1984, 106, 6355.
    [149] Chien J C W, Wang B P. [J] . Metallocene-methylaluminoxane catalysts for olefin polymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3. J. Polym. Sci. Part A: Polym. Chem., 1990, 28, 15~38.
    [150] Chien J C W, Sugimoto R. [J] . Kinetics and stereochemical control of propylene polymerization initiated by ethylene bis(4,5,6,7-tetrahydro-1-indenyl)zirconium dichloride/methyl alurninoxane catalyst. J. Polym. Sci. Part A: Polym.Chem., 1991, 29, 459~470.
    [151] Estrada J M V, Hamielec A E. [J] . Modelling of ethylene polymerization with Cp_2ZrCl_2/MAO catalyst. Polymer, 1994, 35, 808~818.
    [152] Jiang S, Wang L, Zhang PY, Feng LX. [J] . New kinetic model of ethylene polymerization with Cp_2ZrCl_2/MAO catalyst. Macromol Theor Simul 2002, 11, 1~7
    [153] Jiang S, Wang L. [J] . Simulation of molecular-weight distribution using a new kinetic model of ethylene polymerization catalyzed by Cp_2ZrCl_2-MAO. Macromol Theor Simul 2002,11, 871~877
    [154] Shelden RA;Furno T;Tsunetsugu T;Furukawa J. [J] . A one-parameter model for isotactic polymerization based on enantiomorphic catalyst sites. J. Polym. Sci. 1965, 3, 23~26.
    [155] Busico V, Cipullo R. [J] . Influence of monomer concentration on the stereospecificity of 1-alkene polymerization promoted by C_2-symmetric ansa-metallocene catalysts. J Am Chem Soc. 1994, 116: 9329~9330.
    [156] Bovey FA;Tiers G.VD. [J] . Polymer NSR spectroscopy, Ⅱ. The high resolution spectra of methyl methacrylate polymers prepared with free radical and anionic initiators. J. Polym. Sci 1960, 44, 173~182.
    [157] Lowry GG. [M] . Markov chain and monte carlo calculation in polymer science. New York: Marcel dekker, 1970.
    [158] Bovey FA. [M] Chain structure and conformation of macromolecules. New York: Academic Press, 1982.
    [159] Ewen JA. [J] . Mechanisms of stereochemical control in propylene polymerizations with soluble group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc, 1984, 106: 6355~6364.
    [160] Busico V, Cipullo R, Monaco G, Vacatello M, Segre AL. [J] . Advances in the ~(13)C NMR microstructural characterization of propene polymers. Macromolecules, 1995, 28: 1887~1892.
    [161] Busico V, Cipullo R, Monaco G, Vacatello M, Bella J, Segre AL. [J] . Full assignment of the ~(13)C NMR spectra of regioregular polypropylenes: Methine region. Macromolecules, 1998, 31: 8713~8719.
    [162] Ewen JA, Jones RL, Razavi A, Ferrara JD. [J] . Syndiospecific propylene polymerizations with Group IVB rnetallocenes. J Am Chem Soc. 1988, 110: 6255~6256.
    [163] 叶朝阳.[D] .MgCl_2载体和TiCl_4/Mgcl_2球形催化剂的制备及其催化丙烯聚合。浙江大学硕士学位论文,2002.
    [164] 徐君庭.[D] .烯烃聚合负载型催化剂研究及聚合物表征。浙江大学博士学何论文,1996.
    [165] Busico, V.;Corradini, P.;Martino, Proto A., Albizzati E. [J] . Polymerization of propene in the presence of MgCl_2-supported Ziegler-Natta catalysts. 2. effects of the co-catalyst composition. Makromol. Chem. 1986, 187, 1115-1124.
    [166] Kakugo M.;Miyatake T.;Naito Y.;Mizunuma K. [J] . Microtacticity distribution of polypropylenes prepared with heterogeneous Ziegler-Natta catalysts. Macromolecules. 1988, 21, 314~319.
    [167] Sergeev, S. A.;Bukatov, G. D.;Zakharov, V. A. [J] . Propylene polymerization on titanium-magnesium catalysts. 3. influence of the products resulting from the interaction of trialkylaluminium with aromatic esters on the activity and stereospecificity. Makromol.Chem. 1984, 185, 2377~2385.
    [168] Busico V.;Corradini R;Biasio RDe.;Trifuoggi M. [J] . Stereoblock polypropene from the Ziegler-Natta catalyst system TiCl_4/octylsodium. Makromol. Chem. 1992, 193, 1765~1771.
    [169] Ye, ZY;Wang, L;Feng, LF;Gu XR, Chen HH., Zhang PY., Pan J., Jiang S., Feng LX. [J] . Novel spherical Ziegler-Natta catalyst for polymerization and copolymerization. I. Spherical MgCl_2 support. J. Polym. Sci. Part A. 2002, 40, 3112~3119.
    [170] Wang, L;Feng LX;Yang S. L. [J] . Studies on the preparation of new magnetic polyolefins using nanometer magnetic Ziegler-Natta catalyst. J. Appl. Polym. Sci. 1999, 71, 2087~2090.
    [171] Chien JCW., Wu JC. [J] . Magnesium-chloride-supported high-mileage catalysts for olefin polymerization. Ⅲ. Electron paramagnetic resonance studies. J. Polym. Sci., Part A. 1982, 20: 2461~2476.
    [172] Cecchin G.;Morini G.;Pelliconi A. [J] . Polypropene product innovation by reactor granule technology. Macromol. Symp. 2001, 173, 195~210.
    [173] Xu JT;Feng LX;Yang SL;Yang YQ., Kong XM. [J] . Temperature rising elution fraction of polypropylene produced by heterogeneous Ziegler-Natta catalysts. European Polymer Journal 1998, 34, 431~434.
    [174] 何曼君,陈维孝,董西侠。[M] .高分子物理。上海:复旦大学出版社,1983.
    [175] Busico V, Cipullo R. [J] . Influence of monomer concentration on the stereospecificity of 1-alkene polymerization promoted by C_2-symmetric ansa-metallocene catalysts. J Am Cbem Soc. 1994, 116: 9329~9330.
    [176] Leclerc MK, Brintzinger HH. [J] . ansa-Metallocene derivatives. 31. Origins of stereo-selectivity and stereoerror formation in ansa-zirconocene-catalyzed isotactic propene polymerization. A deuterium labeling. J A m Chem Soc. 1995, 117: 1651-1652.
    [177] Busico V, Caporaso L, Cipullo R, Landriani L, Angelini G, Margonelli A, Segre Al. [J] . Propene polymerization promoted by C_2-symmetric metallocene catalysts: flom atactic to isotactic polypropene in consequence of an isotope effect. J Am Chem Soc. 1996, 118: 2105~2106.
    [178] Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM. [J] . Stereospecific olefin
    ??polymerization with chiral metallocene catalysts. Angew Chem, Int Ed Engl 1995;34:1143-1170.
    [179] Spaleck W, Kuber F, Winter A, Rohrmann J, Bachmann B, Antberg M, Dolle V, Paulus EF. [J]. The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometallics. 1994, 13:954-963.
    [180] Resconi L, Balboni D, Baruzzi G, Fiori C, Guidotti S, Mercandelli P, Sironi A. [J]. rac-[Methylene(3-tert-butyl-l-indenyl)_2]ZrCl_2: a simple, high-performance zirconocene catalyst for isotactic polypropene. Organometallics. 2000, 19:420-429.
    [181] Stehling U, Diebold J, Kirsten R,Roll W, Brintzinger HH, Jungling S, Mulhaupt R, Langhauser F. [J]. ansa-Zirconocene polymerization catalysts with anelated ring ligands - effects on catalytic activity and polymer chain length. Organometallics. 1994, 13:964-970.
    [182] Ewen JA, Jones RL, Razavi A, Ferrara JD. [J]. Syndiospecific propylene polymerizations with Group IVB metallocenes. J Am Chem Soc. 1988, 110:6255-6256.
    [183] Guerra G, Cavallo L, Moscardi G, Vacatello M, Corradini P. [J]. Back-skip of the growing chain at model complexes for the metallocene polymerization catalysis. Macromolecules 1996;29:4834-4845.
    [184] Coleman BD.;Fox TG. [J]. Multistate mechanism for homogeneous ionic polymerization. I . The diastereosequence distribution. The Journal of Chemical Physics 1963,38,1065-1075.
    [185] Coleman BD.;Fox TG. [J]. General theory of stationary random sequences with applications to the tacticity of polymers. Journal of Polymer Science: Part A. 1963,1,3183-3197.
    [186] Lu HL., Xiao SJ. [J]. Structure and behaviour of SiO_2/MgCl_2 bisupported Ziegler-Natta catalysts for olefin polymerization. Makromol. Chem., 1993, 194: 421-429.
    [187] Hsieh ET, Randall JC. [J].Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules. 1982,15:1402-1406.
    [188] Randall JC. [J]. A review of high resolution liquid 13-carbon nuclear magnetic resonance characterizations of ethylene-based polymers. Rev. Macromol. Chem. Phys. 1989, 29: 201-307.
    [189] Cheng HN. [J]. Comonomer sequence distribution in ethylene/1-hexene copolymers. Polym Bull. 1991,26:325-332.
    [190] Grant DM, Paul EG. [J]. Carbon-13 Magnetic Resonance. II. Chemical Shift Data for the Alkanes. J.Am.Chem.Soc. 1964,86: 2984-2990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700