用户名: 密码: 验证码:
无单元法及其面向对象程序实施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与有限元法相比,无单元法由于只需节点不需单元而在诸如结构大变形、断裂、裂纹扩展等工程问题的计算分析中具有很多优点,进一步完善无单元法理论,并研究出一套简便快捷和有效的、易于程序修改和扩充的方法,以便编制包含各种无单元法(或无单元法与有限元法相结合)的计算力学软件将是十分有意义的。
     本文总结了无单元法的有关理论和该方法在有关领域的应用,并建立了一套完整的面向对象无单元法程序设计体系。在认真回顾与总结各种无单元法理论及其应用的基础上,本文完成了如下工作:
     Ⅰ.对几种常见的无单元近似方法如光滑粒子法(SPH)、无单元迦辽金法(EFGM)、再生核点法(RKPM)、滑动最小二乘(MLS)法、单位分解(PU)法等进行了总结,讨论了其相应的列式方法、完备性、一致收敛性及应用情况;研究了它们的共性和特性以及其间的相互关系,为进行面向对象无单元法类定义,并为建立相应的类库建立了理论上的依据。
     Ⅱ.对场函数及其导数不连续近似的处理方法如可视性法则、衍射法则和透射法则进行了总结;对无单元法中各种本质边界条件施加方法进行了总结,对罚函数法、Lagrange乘子法、边界奇异核函数法、边界转换法、无单元与有限元耦合法等方法以及其各自的优缺点进行了讨论,为进行面向对象无单元法程序设计时边界条件施加类的定义建立基础;对无单元近似的数值离散方法、核函数紧支半径计算方法、数值积分方法等问题进行了研究,并提出了核函数紧支半径计算的一种新算法,这种新算法可以改进节点随机分布时无单元法的计算效果。
     Ⅲ.对小波理论中再生核、再生方程等与无单元法有关的重要概念进行了介绍,并对小波理论在无单元法中的应用,尤其是在多尺度再生核点法中的应用以及列式方法进行了总结和讨论;为进行面向对象无单元法程序设计时小波函数类的定义建立了基础;并在结构动力问题计算中采用小波函数作为核函数;
     Ⅳ.基于变分原理,采用边界转换法施加本质边界条件,对弹性力学静力问题和结构动力问题进行了无单元法列式;将无单元法的应用领域扩展到压电陶瓷非线性断裂这一包含多物理场问题的分析中,进行了该问题分析的
Compared with Finite Element Method (FEM), the idea of Element Free Method ( EFM ) or meshless method for numerical analysis (such as large deformation, fracture ,etc.) is very appealing as EFM does not require the generation of a mesh for complicated two- and three-dimensional structures. In order to give a good approach for the development of large scale EFM coupled or connected with FEM analysis software system, the following works have been done in this dissertation:1. The major methodologies of element free approximations including Smoothed Particle Hydrodynamics (SPH) , Partition of Unity (PU), Moving Least Square (MLS) approximation, Element Free Galerkin Method (EFGM), Reproducing Kernel Particle Method (RKPM), have been reviewed. The completeness, consistency, convergence, applications and meshless formulations of these EFM approximations have been discussed. The common features of different EFM approximations have also been studied. According to these features, one can define the classes of object-oriented EFM program.2. The approaches of imposing essential boundary conditions such as Lagrange multiplier method, penalty method, boundary transformation method, boundary singular kernel method, Coupling method with FEM, have been summarized in detail. The advantages and disadvantages of the approaches have also been discussed. In object-oriented EFM programmimg, one can define a set of C++ classes to implement these approaches. The dominant methods of EFM discretization including collocation and Galertkin method, the calculation of compact support radius of kernel (weight or window ) function, the numerical integral methods in EFM, have been described. Considering the issue of functions with discontinuities and discontinuous derivatives, EFM approximations of discontinuous fields play an important role in engineering problems. Several methods (such as visibility criterion, diffraction method , transparency method) for the calculation of the functions with discontinuities have been reviewed. To calculate the compact support radius of the kernel function, an improved method has been introduced.
    3. The concepts of reproducing kernel, reproducing conditions, reproducing equations and multiple scale analysis in wavelets theory, have been introduced. The applications of wavelets in RKPM have been described. To calculate wavelet functions, a typical C++ class named as "Wavelet" is defined.4. Based on variational principles, the EFM formulations for elastic static and dynamic analysis of structures have been implemented with the essential boundary conditions imposed by boundary transformation method. Considering the piezoelectric structure involving coupled elastic and electrostatic energy domains, EFM is more appealing for the analysis of piezoelectric ceramics because of the mix energy field. EFM formulation for non-linear fracture analysis of piezoelectric ceramics has also been completed.5. The approaches of defining C++ classes library including weight functions library, basis functions and shape functions library have been discussed. The emphasis is to identify and define the classes of object-oriented element free program, and some typical classes are arranged into hierarchies. An object-oriented element free program code in C++ is named MPM-FEM. Because of the relationship between EFM and FEM, some classes of the existing object-oriented FEM program is reused in MPM-FEM. In MPM-FEM, all the numerical integral approaches, imposing essential boundary conditions approaches of EFM are optional. One can use this program for the EFM and (/or coupled with ) FEM analysis.6. In order to enhance data hiding and decrease data coupling, the EFM data members encapsulated in C++ classes in place of the Fortran COMMON variables have been defined. To decrease data redundancy, static data members are used for implementing common resources that all objects need. A C++ class named "Tree" has been used to manage the objects and data. The extensibility and the extensible approaches of the program code have also been discussed.7. A nonlinear constitutive model for piezoelectric ceramics is proposed, in which the polarization switching and saturation are taken into account. Based on the model, the non-linear fracture analysis is implemented using RKPM that is one of the EFM numerical methods. Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields is obtained. Qualitatively, the curve is in agreement with the experimental observations reported by Park &
    Sun. The computation is implemented using object-oriented programming method.
引文
1 Zienkiewicz OC. The Finite Element Method. 3rd edn. McGraw-Hall, 1977.
    2 Gupta KK, Meek JL. A brief history of the beginning of the finite element method. 1996, vol.39: 3761-3774.
    3 Belytschko T, Krongauz Y, Organ, Fleming M, Krysl P. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering. 1996, 139: 3-48.
    4 Li SF, Liu WK. Meshfree amd Particle Methods and Their Applications. Applied Mechanics Review. 2002, vol.55(1): 1-34.
    5 Liu WK, Belytschko T, Chang H. An arbitary lagrange-eulerian finite element method for path-dependent materials. Computer Methods in Applied Mechanics and Engineering. 1986, 58: 227-246.
    6 Liu WK, Chang H, Chen JS, Belytschko T. Arbitrary lagrangian and eulerian petrov-galerkin finite elements for nonlinear problems. Computer Methods in Applied Mechanics and Engineering. 1988, 68: 259-310.
    7 Huerta A, Liu WK. Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering. 1988, 69: 277-324.
    8 Liu WK, Chen JS, Belytschko T, Zhang Y H. Adaptive ALE finite elements with particular reference to external work rate on frictional interface. Computer Methods in Applied Mechanics and Engineering. 1991, 93: 189-216.
    9 Needleman A. Material rate dependent and mesh sensitivity in localization problems. Computer Methods in Applied Mechanics and Engineering. 1988, 67: 68-85.
    10 Needleman A. Dynamic shear band development in plane strain. Journal of Applied Mechanics. 1989, 56: 1-9.
    11 周瑞忠,周小平,缪圆冰.具有自适应半径的无单元法.工程力学.2001,Vol.18,No.6:94-99.
    12 Aluru NR. A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering. 2000, 7: 1083-1121.
    13 Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal. 1977, 82(12): 1013-1024.
    14 Monaghan JJ. Why particle methods work(Hydrodynamics). SIAM Journal of Scientific and Statistical Computing. 1982, 3(4): 422-433.
    15 Monaghan JJ, Gingold R A. Shock simulation by the particle method sph.Journal of Computational Physics. 1983,52:374-389.
    16 Monaghan JJ. An introduction to sph. Computer Physics Communications. 1988,48:89-96.
    17 Monaghan JJ. Particle methods for hydrodynamics. Computer Physics Report. 1985,3:71-124.
    18 Monaghan JJ. On the problem of penetration in particle methods. 1989, Journal of Computational Physics. 1983,82:1-15.
    19 Monaghan JJ. Smoothed partical hydrodynamics. Annual Review of Astronomy and Astrophysics. 1992,30:543-574.
    20 Swegle JW.Hicks DL.Attaway SW. Smoothed particle hydrodynamics stability analysis, Journal of Computational Physics. 1995,116: 123-134.
    21 Dyka CT, Ingel RP. An approach for tension instability in smoothed particle hydrodynamics, Computer & . Structure. 1995,57:573-580.
    22 Dyka CT, Randies PW, Ingel RP. Stress points for tensor instability in sph. International Journal for Numerical Methods in Engineering. 1995, 40:2325-2341.
    23 Belytschko T, Guo Y, Liu WK, Xiao P. A unified stability analysis of meshless particle methods. International Journal for Numerical Methods in Engineering. 2000,48:1359-1400.
    24 Johnson GR, Stryk RA, and Beissel SR.SPH for high velocity impact computations, Computer Methods in Applied Mechanics and Engineering. 1996, 139: 347-374.
    25 Johnson GR, Beissel SR. Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering. 1996,39:2725-2741.
    26 Hultman J, Pharayu A. Hierarchical, dissipative formation of elliptical galaxies: is thermal instability the key mechanism? Hydrodynamical simulations including supernova feedback multi-phase gas and metal enrichment in cdm:structure and dynamics of elliptical galaxies. Astronomy and Astrophysics. 1999, 347: 769-798.
    27 Monaghan JJ, Lattanzio J C. A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophysical Journal. 1991,375:177-189.
    28 Berczik P, Kolesnik I G. Smoothed parthydrodynamics and its application to astrophysical problems. Kinematics and Physics of Celestial Bodies. 1993,9:1-11.
    29 Berczik P, Kolesnik I G. Gasdynamical model of the trialxial protogalaxy collapse. Astronomical and Astrophysical Transactions. 1998,16:163-185.
    30 Berczik P. Modeling the star formation in galazies using the chemo-dynamical sph code. Astronomy and Astrophysics. 2000,360: 76-84.
    31 Lee WH. Newtonian hydrodynamics of the coalescence of black holes with neutron stars ii: tidally locked binaries with a soft equation of state. Monthly Notices of the Royal Astronomical Society. 1998, 308:780-794.
    32 Lee WH. Newtonian hydrodynamics of the coalescence of black holes with neutron stars iii: irrotational binaries with a stiff equation of state. Monthly Notices of the Royal Astronomical Society. 2000, 318:606-624.
    33 Monaghan JJ. Modeling the universe. Proceedings of the Astronomical Society of Australia. 1990,18:233-237.
    34 Kum O, Hoover WG, Posch H A. Viscous conducting flows with smooth-particle applied mechanics. Physics Review E. 1995,109:67-75.
    35 Posch HA, Hoover WG, Kum O. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Physics Review E. 1995, 52:1711-1719.
    36 Bernard PS. A deterministic vortex sheet method for boundary layer flow. Journal of Computational Physics. 1995,117:132-145.
    37 Chorin AJ. Vortex sheet approximation of boundary layers. Journal of Computational Physics. 1978, 27:428-442.
    38 Leonard A. Vortex methods for flow simulation. Journal of Computational Physics. 1980,37:289-335.
    39 Leonard A. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 1985,17:523-529.
    40 Liszka T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 1980,11: 83-95.
    41 Liszka T. An interpolation method for an irregular net of nodes. Int. J. Numer. Methods Eng. 1984,20:1599-1612.
    42 Kobrak MN, Bittner ER. Quantum molecular dynamics study of polaron recombination in conjugated polymers. Phys.Rev.B. 2000, 62:11473-11486.
    43 Krumrine JR, Jang S, Alexander MH, Voth GA. Quantum molecular dynamics and spectral simulation of a boron impurity in solid para-hydrogen. J. Chem.Phys. 2000,113:9079-9089.
    44 Kihe C, Yildirim T, Mehrez H, Ciraci S . A first-principles study of the structure and dynamics of C8H8 , Si8H8, and Ge8H8 moleculars. J. Phys. Chem. A. 2000,104:2724-2728.
    45 Hedman F, Laaksonen A. Parallel aspects of quantum molecular dynamics simulations of liquids. Comput.Phys.Commun. 2000, 128:284-294.
    46 Hong J, Zhao XS . New propagators for quantum-classical molecular dynamics simulations. J. Chem. Phys. 2000, 113:930-935.
    47 Rapaport DC. The Art of Molecular Dynamics Simulation. Cambridge Univ. Press, Cambridge, UK. 1995.
    48 Oran ES, Oh CK, Cybyk BZ. Direct simulation Monte Carlo: Recent advances and applications. Annu. Rev. Fluid Mech. 1998,30:403-441.
    49 Tunon I, Martins-Costa MTC, Millot C, Ruiz-Lopez MF, Rivail JL . A coupled density functional-molecular mechanics Monte Carlo simulation: the water molecule in liquid water. J. Comput.Chem. 1996, 17:19-29.
    50 Gross WJ, Vasileska D, Ferry DK. A novel approach for introducing the electron-electron and electron-impurity interactions in particle-based simulations, IEEE Electron Device Lett. 7999,20:463-465.
    51 Drovetsky BY, Chu JC, Mak CH. Computer simulations of self-avoiding polymerized membranes. J. Chem. Phys. 1998,108:6554-6557.
    52 Acioli PH. Review of quantum monte carlo methods and their applications. J. Mol. Struct. 7997,394:75-85.
    53 Baer R. Ab-initio molecular deformation barriers using auxiliary-field quantum Monte Carlo with application to the inversion barrier of water. Chem. Phys. Lett. 2000,324:101-107.
    54 Liu WK, Belytschko T, Mani A. Probabilistic finite elements for nonlinear structural dynamics. Comput. Methods Appl.Mech. Eng. 1986, 56:61-81.
    55 Liu WK, Belytschko T, Mani A. Random field finite elements. Int. J. Numer. Methods Eng. 1986, 23:1831 -1845.
    56 Chen YJ, and Belytschko T. Three reliability methods for fatigue crack growth, Eng. Fract. Mech. 1996, 53:733-752.
    57 Frisch U, Hasslacher B, Pomeau Y. Lattice gas cellular automata for the Navier-Stokes equations. Phys. Rev. Lett. 1986,56:1505.
    58 Kadanoff L. On two levels. Phys. Today. 1986,29:7-9.
    59 Kadanoff L, McNamara GR, Zanetti G. A Poiseuille viscometer for lattice gas automata, Complex Syst. 1987,1:791.
    60 Kadanoff L, McNamara GR, Zanetti G. From automata to fluid flow: comparisons of simulation and theory, Phys. Rev. A. 1989, 40:4527.
    61 Henon M. Viscosity of a lattice gas, Complex Syst. 1987,1:763.
    62 Qian YH, d'Humie'res D, Lallemand P. Lattice BGK models for the Navier-Stokes equation. Europhys. Lett. 1992, 17:479-484.
    63 Qian YH, Orszag SA. Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes. Europhys.Lett. 7995,21:255-259.
    64 Chen S, Wang Z, Shan XW, Doolen GD. Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat.Phys. 7992,68:379-400.
    65 Chen S and Doolen GD. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 7995,30:329-364.
    66 Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Computational Mech., Berlin. 1992, 10: 307-318.
    67 Breitkopf P, Touzot G, Villon P. Consistency approach and diffuse derivation in element free methods based on moving least squares approximation. Comp: Assist. Mech. Eng. Sci. 1998, 5: 479-501 ISSN:1232-308X.
    68 Breitkopf P, Touzot G, Villon P. Double grid diffuse collocation method. Computational Mech., Berlin. 2000, 25:199-206.
    69 Breitkopf P, Rassineux A, Touzot G, Villon . Explicit form and efficient computation of MLS shape function and their derivatives. Int. J. Numer. Methods Eng. 2000,48:451-466.
    70 Belytschko T, Lu YY, Gu L. Element free galerkin methods. Int. J. Numer. Methods Eng. 1994,37:229-256.
    71 Belytschko T, Gu L, Lu YY. Fracture and crack growth by elementfree Galerkin methods. Modelling and Simulation in Material Science and Engineering. 1994,2:519-534.
    72 Belytschko T, Organ D.,Krongauz Y. A coupled finite element- element-free Galerkin method. Computational Mechanics. 1995,17:186-195.
    73 Lu YY, Belytschko T, Tabbara M. Element-free Galerkin method for wave propagation and dynamic fracture. Comput. Methods Appl. Mech. Eng. 1995, 126: 131-153.
    74 Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. J. Comput. Appl. Math. 1997, 39: 923-938.
    75 Kaljevic I, Saigal S. An improved element free galerkin formulation. International Journal for Numerical Methods in Engineering. 1997, 40: 2953-2974.
    76 Belytschko T, Krongauz Y, Dolbow J, Gerlach C. On the completeness of meshfree particle methods. Int. J. Numer. Methods Eng. 1998, 43: 785-819.
    77 Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete. Comput. MethodsAppl.Mech. Eng.2000, 187: 385-399.
    78 Chen JS, Wu CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering. 2001, 50: 435-466.
    79 娄路亮,曾攀,方刚.应力高梯度问题的无网格分析.应用力学学报.2000,19(2):121-124.
    80 庞作会.一种新的数值方法—无网格伽辽金法.计算力学学报.1999,16(3): 320-329.
    81 李卧东,王元汉,陈晓波.无网格法在断裂力学中的应用.岩石力学与岩土工程学报.2001,20(4):462-466.
    82 张伟星,庞辉.双参数弹性地基板计算方法.力学季刊.2000,21(2):262-26.
    83 袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展.工程力学.2002,19(1):25-28.
    84 Liu WK, Chen YJ. Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids. 1995, 21: 901-931.
    85 Liu WK, Chen YJ, Uras RA, Chang CT. Generalized multiple scale reproducing kernel particle methods. Compt.Methods Appl.Mech.Engrg. 1996, 139: 91-157.
    86 Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods, Int. J. Numer. Methods Eng. 1995, 20: 1081-1106.
    87 Liu WK, Jun S, Li S, Adee J, Belytsehko T. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Eng, 1995, 38: 1655-1679.
    88 Liu WK, Chen Y, Chang CT, Belytsehko T. Advances in multiple scale kernel particle methods. Computational Mech., Berlin. 1996, 18: 73-111.
    89 Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Uras RA, Chang CT. Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering: State of the art reviews. 1996, 3: 3-80.
    90 Liu WK, Li S, Belytschko T. Moving least square reproducing kernel method Part Ⅰ: Methodology and convergence. Comput.Methods, 4ppl. Mech. Eng. 1997, 143: 422-453.
    91 Chen JS, Pan C, Wu CT, Liu WK. Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 1996, 139: 195-227.
    92 Li S, Liu WK, Qian D, Guduru R, Rosakis AJ. Dynamic shear band propagation and micro-structure of adiabatic shear band. Comput. Methods Appl. Mech. Eng. 2001, 191: 73-92.
    93 Liu WK, Hart WM, Lu HS, Li SF, Cao J. Reproducing kernel element method. Part Ⅰ: Theoretical formulation. Comput. Methods Appl. Mech. Engrg. 2004, 193: 933-951.
    94 Li SF, Lu HS, Hart WM, Liu WK, Simkins DC. Reproducing kernel element method Part Ⅱ: Globally conforming I~m/C~n hierarchies. Comput. Methods Appl. Mech. Engrg. 2004, 193: 953-987.
    95 Lu HS, Li SF, Simkins DC, Liu WK, Cao J. Reproducing kernel element method Part Ⅲ: Generalized enrichment and applications. Comput. Methods Appl. Mech. Engrg. 2004, 193: 989-1011.
    96 Xiong SG, Liu WK, Cao J, et al. Simulation of bulk metal forming processes using the reproducing kernel particle method. Computer & Structure. 2005, 83: 574-587.
    97 Duarte CA, Oden JT. hp Clouds—an hp meshless method. Numer. Methods Partial Diff Eqs. 1996, 12: 673-705.
    98 Duarte CA, Oden JT. An hp adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 1996, 139: 237-262.
    99 Liszka T, Duarte CA, Tworzydlo WW. hp-meshless cloud method, Comput. Methods Appl. Mech. Eng. 1996, 139: 263-288.
    100 Oden JT, Duarte CA, Zienkiewicz OC. A new Cloudbased hp finite element method. Comput. Methods Appl. Mech. Eng. 1998, 153: 117-126.
    101 Babuska I, Melenk JM. The partition of unity method. Int. J. Numer. Methods Eng. 1997, 40: 727-758.
    102 Babuska I, Zhang Z. The partition of unity method for the elastically supported beam. Comput. Methods Appl. Mech. Eng. 1998, 152: 1-18.
    103 Melenk JM and Babuska I.The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996, 139: 289-314.
    104 Atluri SN, Zhu T. A new meshless local Petrov-Galerkin(MLPG) approach to nonlinear problems in computer modeling and simulation. Comput. Model. Simul. Eng. 1998 3: 187-196.
    105 Atluri SN, Kim HG, Cho JY. A critical assessment of the truly meshless local Petrov-Galerkin(MLPG) and local boundary integral equation(LBIE) methods. Computational Mech., Berlin. 1999, 24: 348-372.
    106 Atluri SN, Cho JY, Kim HG. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least square interpolations. Computational Mech., Berlin. 1999, 24: 334-347.
    107 Atluri SN, Zhu T. The meshless local Petrov-Galerkin(MLPG) approach for solving problems in elasto-statics. Computational Mech., Berlin. 2000, 25: 169-179.
    108 Atluri SN, Zhu T. New concepts in meshless methods. Int. J. Numer. Methods Eng. 2000, 47: 537-556.
    109 龙述尧,许敬晓.弹性力学问题的局部边界积分方程方法.力学学报.2000,32(5): 566-578.
    110 龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报.2001,33(4): 508-518.
    111 Furukawa T, Yang C, Yagawa G, Wu CC. Quadrilateral approaches for accurate free mesh method. Int. d. Numer. Methods Eng. 2000, 47: 1445-1462.
    112 Shirazaki M, Yagawa G. Large-scale parallel flow analysis based on free mesh method: A virtually meshless method. Comput. Methods Appl. Mech. Eng. 1999, 174: 419-431.
    113 Yagawa G, Yamada T. Free mesh method: A new meshless finite element method. Computational Mech., Berlin. 1996, 18: 383-386.
    114 Yagawa G, Furukawa T. Recent development of free mesh method. Int. J. Numer. Methods Eng. 2000, 47: 1419-1417.
    115 Cushman-Roisin B, Esenkov OE, Mathias BJ. A particlein-cell method for the solution of two-layer shallow-water equations. Int. J. Numer. Methods Fluids. 2000, 32: 515-543.
    116 Munz CD, Schneider R, Sonnendrucker E, Stein E, Voss U, Westermann T. A finite-volume particle-in-cell method for the numerical treatment of Maxwell-Lorentz equations on boundary-fitted meshes. Int. J. Numer. Methods Eng. 1999, 44: 461-487.
    117 Munz CD, Schneider R, and Voss U. A finite-volume particlein-cell method for the numerical simulation of devices in pulsedpower technology. Surv. Math. Ind. 1999, 8: 243-257.
    118 Bardenhagen SG, Brackbill JU, Sulsky D. The materialpoint method for granular materials. Comput. Methods Appl. Mech. Eng. 2000, 187: 529-541.
    119 Brackbill JU, Ruppel HM. FLIP: A method for adaptively zoned, particle-in-cell calculations in two dimensions. J. Comput. Phys. 1986, 65: 314-343.
    120 Sulsky D, Schreyer HL. Axisymmetric form of the material point with applications to upsetting and Taylor impact problems. Comput. Methods Appl. Mech. Eng. 1996, 139: 409-429.
    121 Abraham FF, Bernstein N, Broughton JQ, Hess D. Dynamic fracture of silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bull. 2000, 25: 27-32.
    122 Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for FCC metals Cu, Ag, Au, Ni, Pal, Pt, and their alloys. Phys. Rev. B. 1986, 33: 7983-7991.
    123 Falk ML, Langer JS. From simulation to theory in the physics of deformation and fracture. MRS Bull. 2000, 25: 40-45.
    124 Galli G, Cygi F, Catellani A. Quantum mechanical simulations of microfracture in a complex material. Phys. Rev. Lett. 1996, 82: 3476-3479.
    125 Galli G. Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations. Curr. Opin.Solid State Mater. Sci. 1996, 1: 864-874.
    126 Lancaster P, Salkauskas K. Surface generated by moving least squares methods. Mathematics of computation. 1981, 37: 141-158.
    127 Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering. 1994, 113: 397-414.
    128 Belytschko T, Lu YY, Gu L. Element-free Galerkin methods for static and dynamic fracture. Int. J. Solids Struct.. 1995, 32: 2547-2570.
    129 Krysl P, Belytschko T. The element free Galerkin method for dynamic propagation of arbitrary 3-d cracks. Int. J. Solids Struct. 1999, 44: 767-800.
    130 Belytschko T, Krongauz Y, Fleming M, Organ D, Liu WK. Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math.. 1996, 74: 111-126.
    131 Organ DJ, Fleming M, Terry T, Belytschko T.Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech.. 1996, 18: 225-235.
    132 Fleming M, Chu YA, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 1997, 40: 1483-1504.
    133 Krysl P, Belytschko T. Element-free Galerkin method: convergence of the continuous and discontinuous shape function. Comput. Methods Appl. Mech. Eng. 1996, 148: 257-277.
    134 Krysl, P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics. 1996, 17: 26-35.
    135 Krysl P, Belytschko T. Analysis of thin shells by the Element-Free Galerkin method. Int. J. Solids & Structures. 1996, 33: 3057-3080.
    136 Liu WK, Zhang Y, Ramirez MR. Multiple scale finite element methods. Int. J. Numer. Methods Eng. 1991, 32: 969-990.
    137 程正兴译,崔锦泰(美)著.小波分析导论.西安交通大学出版社.1997.
    138 Chui CK. An Introduction to Wavelets.Academic Press, Boston. 1992.
    139 程正兴.小波分析算法与应用.西安交通大学出版社.1998.
    140 赵松年,熊小芸.子波变换与子波分析.电子工业出版社.1997.
    141 秦前清,杨宗凯.实用小波分析.西安电子科技大学出版社.1994.
    142 刘贵忠,邸双亮.小波分析及其应用.西安电子科技大学出版社.第三版,1997.
    143 Liu WK, Chen YJ. Wavelet and Multiple scale reproducing kernel methods. International Journal for numerical methods in fluids. 1995, 2: 901-931.
    144 Liu WK, Jun S, Sibling DT, Chen Y, Hao W. Multiresolution reproducing kernel Particle method for computational fluid dynamics. Int. J. Numer. Methods Fluids. 1997, 24: 1391-1415.
    145 Wagner GJ, Liu WK. Turbulence simulation and multiple scale subgrid models. Computational Mech.. 2000, 25: 117-136.
    146 Chen JS, Pan C, Wu CT. Large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mech.. 1997, 19: 153-168.
    147 Jun S, Liu WK, Belytschko T. Explicit reproducing kernel particle methods for large deformation problems. Int. J. Numer. Methods Eng. 1998, 41: 137-166.
    148 Li S, Hao W, Liu WK. Meshfree simulations of shear banding in large deformation. Int. J. Solids Struct. 2000, 37: 7185-7206.
    149 Liu WK, Jun S. Multiple scale reproducing kernel particle methods for large deformation problems. Int. J. Numer. Methods Eng. 1998, 141: 1339-1362.
    150 Liu WK, Hao W, Chen Y, Jun S, Gosz J. Multiresolution reproducing kernel particle methods. Computational Mech. 1997, 20: 295-309.
    151 Jun S and Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Computational Mech. 2000, 25: 257-266.
    152 Chen JS, Yoon S, Wang HP, Liu WK. An improvement reproducing kernel particle method for nearly incompressible hyperelastic solids. Comput. Methods Appl. Mech. Eng. 2000, 181: 117-145.
    153 Liu WK, Hao S, Belytsehko T, Li S, Chang CT. Multiple scale meshfree methods for damage fracture and localization. Comput.Mater. Sci. 1999, 16, 197-205.
    154 Hao S, Liu WK, Chang CT. Computer implementation of damage models by finite element and mesh-free methods. Comput. Methods Appl. Mech. Eng. 2000, 187: 401-440.
    155 Zhang SL, Liu WK, Ruoff RS, Atomistic Simulations of Double-Walled Carbon Nanotubes(DWCNTs) as Rotational Bearings. Accepted for publication in Nano Letters. 2005.
    156 Liu WK, Park HS.Bridging Scale Methods for Computational Nanotechnology. Accepted for publication in Handbook of Theoretical and Computational Nanotechnology. editors M. Rieth and W. Sehommers, to be published by American Scientific Publishers. 2005.
    157 Wing Kam Liu, Sukky Jun. Dong Qian. Computational Nanomechanics of Materials. Accepted for publication in Handbook of Theoretical and Computational Nanotechnology edited by M. Rieth and W. Schommers, American Scientific Publishers, Stevenson Ranch, CA. Mar. 2005.
    158 Dong Q, Wagner GJ, Liu WK, Yu MF, Ruoff RS.Mechanics of Carbon Nanotubes. Submitted for Publication in Applied Mechanics Reviews.2005.
    159 Liu WK, Karpov EG, Zhang S, Park HS.An introduction to computational nanomechanics and materials.Comput.Methods Appl. Mech. Engrg. 2004: 193 1529-1578.
    160 Qian D, Liu WK, Ruoff RS. Mechanics of C60 in Nanotubes. J. Phys. Chem. B.. 2001, 105: 10753-10758.
    161 Qian D, Liu WK, Subramoney S, Ruoff RS.Effect of interlayer interaction on the mechanical deformation of multiwalled carbon nanotube. J. Nanosci. Nanotechnol. 2003, 3(1): 185-191.
    162 Jun S. Meshfree implementations for the real-space electronicstructure calculations of crystalline solids. Int. J. Num.Meth. Eng.. 2004, 59: 1909-1923.
    163 Jun S, Cho YS, Im S.Moving least-square method for the band-structure calculation of 2D photonic crystals. Opt. Express. 2003, 11: 541-551.
    164 Li SF, Liu WK. Reproducing kernel hierarchical partition of unity Part Ⅰ: Formulation and theory. Int. J. Numer. Methods Eng.. 1998, 45: 251-288.
    165 Li SF, Liu WK. Reproducing kernel hierarchical partition of unity Part Ⅱ: Applications. Int. J. Numer.Methods Eng. 1998, 45: 289-317.
    166 Dolbow J, Mose N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem. Anal. Design. 2000, 36: 235-260.
    167 Klaas O, Shepard MS. Automatic generation of octreebased three-dimensional discretization for partition of unity methods. Computational Mech. 2000, 25: 296-304.
    168 Taylor RL, Zienkiewicz OC, Onate E. A hierarchical finite element method based on the partition of unity. Comput. Methods Appl. Mech. Eng. 1997, 152: 73-84.
    169 李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用.固体力学学报.2001,22(4):361-367.
    170 陆新征,江见鲸.利用无网格方法分析钢筋混凝土梁开裂问题.工程力学.2004,21(2):24-28.
    171 王卫东,赵国群.弹性力学问题的无网格方法.山东工业大学学报.2002,32(1): 52-56.
    172 张湘伟,蔡永昌.一种改进的无单元方法.计算力学学报.2002,19(1):26-30.
    173 白泽刚,杨元明,钱勤.一种新型核函数下的无单元法及应用.陕西工学院学报.2001,17(1):54-58.
    174 龙述尧,陈莘莘.关于板弯曲问题又解的研究.湖南大学学报.2002,29(1):39-42.
    175 Beissel S, Belytschko T.Nodal integration of the elementfree Galerkin method. Comput. Methods Appl. Mech. Eng. 1996, 139: 49-74.
    176 Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Computational Mech. 1999, 23: 219-230.
    177 Sladek V, Sladek J, Atluri SN, Van Keer R.Numericai integration of singularities in meshless implementation of local boundary integral equations. Computational Mech. 2000, 25: 394-403.
    178 Hernquist L, Katz N.TREESPH: A unification of SPH with the hierarchical tree method. Astrophys. J., Suppl. Ser. 1989, 70: 419-446.
    179 Dave R, Dubinski J, Hernquist L. TreeSPH. New Astron. 1997, 2:277-297.
    180 Lia C, Carraro G. A parallel tree SPH code for galaxy formation. Mon. Not. R. Astron. Soc. 2000, 314: 145-161.
    181 Plimpton S, Attaway S, Hendrickson B, Swegle J, Vaughan C . Parallel transient dynamics simulations: algorithms for contact detection and smoothed particle hydrodynamics. Journal of Parallel and Distributed Computing. 1998, 50: 104-122.
    182 Li SF, Hao W, Liu WK. Numerical simulations of large deformation of thin shell structures using meshfree methods,Computational Mech.,Berlin.2000, 25: 102-116.
    183 Li SF, Liu WK. Numerical simulations of strain localization in inelastic solids using mesh-free methods. Int. J. Numer. Methods Eng. 2000, 48:1285-1309.
    184 Gunther F.Liu WK.Diachin D.and Christon MA. Multi-scale meshfree parallel computations for viscous compressible flows. Comput.Methods Appl. Mech. Eng.2000,190:279-303.
    185 Danielson KT, Adley MD. A meshless treatment of threedimensional penetrator targets for parallel computation. Computational Mech. 2000,25:267-273.
    186 Danielson KT, Hao S, Liu WK, Aziz R, Li SF. Parallel computation of meshless methods for explicit dynamic analysis. Inter. J. Numer. Methods. 2000, 47:1323-1341.
    187 Zhang LT, Wagner GJ, Liu WK. A parallelized meshfree method with boundary enrichment for large-scale CFD. J. Comput.Phys. 2000.
    188 Clementi E. Global scientific and engineering simulations on scalar, vector and parallel LCAP-type supercomputer. Philos. Trans. R. Soc. London, Ser. A. 1998,326:445-470.
    189 Abraham FF. Portrait of a crack: rapid fracture mechanics using parallel molecular dynamics. IEEE Comput. Sci. Eng. 1997,4: 66-77.
    190 Zhu T, Atluri SN.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mech., Berlin. 1998, 21:211-222.
    191 Kalijevic I.Saigal S.An improved element free Galerkin formulation.Int. J. Numer. Methods Eng. 1997, 40: 2953-2974.
    192 Chen JS, Wang HF. New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl.Mech. Eng. 2000.187: 441-468.
    193 Wagner GJ, Liu WK. Application of essential boundary conditions in mesh-free methods: A corrected collocation method. Int.J. Numer. Methods Eng. 2000,47:1367-1379.
    194 Gunther F , Liu WK. Implementation of boundary conditions for meshless methods. Comput. Methods Appl. Mech. Eng. 1998, 163:205-230.
    195 Wagner GJ, Liu WK. Hierarchical enrichment for bridging scales and meshfree boundary conditions. Int. J. Numer. Methods Eng. 2000, 50: 507-524.
    196 Han W, Wagner GJ, Liu WK. Convergence analysis of a hierarchical enrichment of dirichlet boundary conditions in a meshfree method. Int. J. Numer. Methods Eng. 2002, 53(6): 1323-1336.
    197 Liu GR, Gu YT. Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches. Computational Mech. 2000,26:536-546.
    198 Liu WK, Uras RA, Chen Y. Enrichment of the finite element method with reproducing kernel particle method. ASME J. Appl. Mech. 1997, 64:861-870.
    199 Krongauz Y.Belytschko T.Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Eng. 1996,131:133-145.
    200 Pang Z. Treatment of point loads in element free Galerkin method(EFGM). Commun. in Numer. Methods in Eng. 2000, 16:335-341.
    201 Dolbow J, Belytschko T . Volumetric locking in the element-free Galerkin method. Int. J. Numer. Methods Eng. 1999, 46:925-942.
    202 Atluri SN, Sladek J, Sladek V, Zhu T. The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity. Computational Mech. 2000,25:180-198.
    203 Zhu T, Zhang J, Atluri SN. A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems. Eng. Anal. Boundary Elem. 1999, 23: 375-389.
    204 Zhu T. A new meshless regular local boundary integral equation (MRLBIE) Approach. Int. J. Numer. Methods Eng. 1999, 46:1237-1252.
    205 De S, Bathe KJ. The method of finite spheres. Computational Mech. 2000, 25:329-345.
    206 Belytschko T,Lu YY.Gu L.Crack propagation by element-free Galerkin methods. Eng. Fract. Mech. 1995, 51:295-315.
    207 Bathe KJ. Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.
    208 崔俊芝.有限元结构分析软件述评(一,二).计算结构力学及其应用.1985.2(4); 1986.3(1).
    209 崔俊芝,梁俊.现代有限元软件技术,第八章—面向对象的FEM技术.国防工业出版社,1995:122-137.
    210 Stroustrup B. What is object-oriented programming? IEEE soflw. 1988, 5: 10-20.
    211 Forde BWR, Foschi RO, Stiemer SF. Object-oriented finite element analysis. Computer & Structure. 1990, 35: 355-374.
    212 Schdz SP. Elements of an object-oriented FEM++ programming in C++. Computer & Structure. 1992, 43: 577-529.
    213 Mackie RI. Object-oriented programming of the finite element method. Int. J. Num. Meth. Eng.. 1992, 35: 425-436.
    214 Miller GR. An object-oriented approach to structureal analysis and design. Computer & Structure. 1991, 40: 75-82.
    215 Zimmermann, Peler YD, Bornme P. Object-oriented finite element programming Ⅰ: Governing principles. Comput. Methods Appl. Mech.Engrg.. 1992, 98: 291-303.
    216 Peler YD, Zimmermann, Bornme P. Object-oriented finite element programming Ⅱ: A prototype program in smalltalk. Cornput.Methods Appl. Mech.Engrg.. 1992, 98: 361-397.
    217 Peler YD, Zimmermann, Bornme P. Object-oriented finite element programming Ⅲ: An efficient implementation in C++. Comput.Methods Appl.Mech.Engrg.. 1993, 108: 165-183.
    218 Menetrey PH, Zimmermann TH. Object-oriented nonlinear finite element analysis: Application to J_2 Plasticity. Computer & Structure. 1993, 49: 767-777.
    219 Pidaparti RMV, Hidli AV. Dynamic analysis of structures using object-oriented technique. Computer & Structure. 1993, 49: 149-156.
    220 Kong XA(孔祥安), Chen DP(陈大鹏).An Object-Oriented Design of FEM Programs.Computer & Structure. 1995, 57(1): 157-166.
    221 曹中清,周本宽,陈大鹏.面向对象有限元程序几种新的数据类型.西南交通大学学报.1996,31(2):119-125.
    222 周本宽,曹中清,陈大鹏.面向对象有限元程序的类设计.计算结构力学及其应用.1996,13(3):268-278.
    223 Cao Zhongqing(曹中清), Zhou Benkuan(周本宽) Object-Oriented Finite Element Programming in C++. Journal of Southwest Jiaotong University. 1996. 4(1): 78-89.
    224 李会平,曹中清,周本宽.弹塑性分析的面向对象有限元方法.西南交通大学学报.1997,33(6):119-125.
    225 Niedereiter H. Quasi-Monte Carlo methods and pseudorandom numbers. Bull. Am. Math. Soc. 1978, 84: 957-1041.
    226 Wozniakowski H. Average case complexity of multivariate integration. Bull. Am. Math. Soc. 1991, 24: 185-194.
    227 Di Lisio R, Grenier E, Pulvirenti M. The convergence of the sph method. Comput.Meth.Appl. 1998, 35: 95-102.
    228 Cordes LW, Moran B. Treatment of material discountinuity in the element free Galerkin method. Comput. Methods Appl.Mech.Engrg.. 1996, 139: 75-89.
    229 Johnson GR. Linking Lagrangian particle methods to standard finite methods for high velocity impact computations, nucl. Engrg. Des. 1994, 150: 265-2 74.
    230 Attaway SW, Heinstein MW, Swegle JW. Coupling of smooth particle hydrodynamics with the finite element method, nucl. Engrg. Des. 1994, 150: 199-205.
    231 潘亦苏,陈大鹏.压电陶瓷非线性断裂的有限元分析.西南交通大学学报.2000.Vol.35:451-456.
    232 Park S B, Sun C T. Fracture criteria for piezoelectric eramics, J. Amer. Ceram. Soc. 1995.78: 1475-1480.
    233 Fulton C C. Gao H. Electrical nonlinear in fracture of piezoelectric ceramic. Appl. Mech.Reviews, 1997.50: S56-S63.
    234 Sosa H. On the fracture mechanics of piezoelectric solids. Int.J.Solids Structures, 1992;29: 2613-2622.
    235 周本宽.有限元程序设计.西南交通大学研究生课程讲义.2002.
    236 钱伟长.广义变分原理.知识出版社.1983.
    237 张汝清等.计算结构动力学.重庆大学出版社.1987
    238 贺国京.弹性动力学中的各种变分原理及结构线性和非线性振动的有限元方法.西南交通大学博士研究生学位论文.1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700