用户名: 密码: 验证码:
电动汽车用永磁同步电动机及其驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在国家863计划项目“钕铁硼电机应用产品开发”及辽宁省科学技术计划项目“高性能钕铁硼永磁电机的研制”的资助下,对电动汽车用永磁同步电动机及其驱动系统进行了系统、深入的研究,取得了一些具有重要理论意义和工程实用价值的成果。
     概括起来,本文的内容可分为以下几个部分:
     第一部分首次采用永磁同步电动机(PMSM)d、q坐标系下的相量分析方法,详细分析电机不同弱磁率、凸极率及不同定子电流控制策略对电机电压、电流相量变化轨迹的影响,及由此导致的电机功率特性及弱磁扩速能力的差异。推导出以弱磁率和凸极率为变量的PMSM弱磁扩速倍数表达式,由此得出提高PMSM弱磁扩速能力的根本方法,并比较不同磁路结构PMSM弱磁扩速能力的大小。
     第二部分全面研究了电动汽车用PMSM的设计计算方法。首先给出电动汽车用PMSM性能参数指标的确定步骤;其次研究了电机转子外圆偏心对内置式PMSM空载气隙永磁磁密波形的影响,并采用模拟退火算法对该波形进行优化设计,总结出该种磁路结构PMSM获得良好空载气隙永磁磁密波形的电机设计准则,并由实测结果进行验证;最后深入研究电动汽车用PMSM的场路结合设计方法,并采用场路结合方法对电动汽车用PMSM的参数设计进行研究,分析了不同电机参数对电动汽车整体性能的影响,提出参数设计准则。在上述分析的基础上,设计制作了一台轻微型电动客车用7.5kW永磁同步电动机。
     第三部分对电动汽车用PMSM的绕组换接进行了深入分析研究。提出用绕组换接的方法弥补PMSM弱磁扩速能力的不足,以在逆变器及蓄电池容量不变的前提下,改善电动汽车的起动加速及低速爬坡能力,同时提高系统低速大转矩运行时的整体效率。首先分析了绕组换接的原理及绕组换接前后电机参数的变化,提出了绕组换接方法;其次用计算机仿真方法研究了PMSM绕组换接的动态过程及有无绕组换接对电动汽车性能的影响,给出有绕组换接电机的设计步骤及应注意的问题;最后进行了试验验证。
     第四部分首先研究了PMSM样机控制系统的各硬件组成部分,给出系统的硬件结构框图及软件设计流程图,并以80C196KC单片机为核心,以PL/M语言为编程语言,完成了控制系统;然后对电动汽车用PMSM整体系统进行了试验验证,试验证明系统具有很好的性能;最后,建立了PMSM驱动的电动汽车的计算机仿真数学模型,编制了计算机仿真软件,并对本样机系统驱动的电动汽车各运行工况进行了计算机仿真。
This dissertation is devoted to the study on the permanent magnet synchronous motor (PMSM) and its drive system in electric vehicle (EV) application. Four parts are included as follows:First of all, the phasor method is adopted to analyze the influence of the demagnetizing coefficient, saliency ratio and stator current control strategies of PMSM on the motor's voltage and current phasor loci and then the power capability and the flux-weakening level. The description of the PMSM's flux-weakening adjusting speed capability is worked out and expressed with the demagnetizing coefficient and saliency ratio, by which the radical method to enhance the PMSM's flux-weakening capability is concluded and the flux-weakening capability of PMSM with different magnet structures is compared.The design and calculation of PMSM used for EV are researched in the second part. Firstly, the calculating procedures are given to determinate the driven motor's performance parameters. Secondly, the influence of the rotor eccentric pole-arc is analyzed by finite element method (FEM) on no-load airgap permanent magnet flux density of PMSM with buried magnet. Simulated Annealing (SA) algorithm is employed to optimize the pole-arc in order to obtain sinusoidal no-load airgap permanent magnet flux-density distribution as well as possible, and the design rule to realize this target is presented which has been verified by calculation and experiment. Then, the parameter design and field-circuit coupled method of PMSM are studied deeply considering the EV drive demands. Finally, a 7.5kW PMSM prototype to drive mini electric bus is designed and manufactured.The third part concerns the winding switch of PMSM to compensate the shortage of flux-weakening capability of PMSM. The principle, method of winding switch in PMSM is given and the parameter change before and after the winding switch is analyzed. The transient process of winding switch and its effectiveness on the EV's climbing and initial acceleration are studied through simulation, and the efficiency improvement of the PMSM is verified by experiment when its winding connection is changed from parallel to series. The key points to the design of PMSM with winding switch are presented and the whole design method is given.In the forth part of this dissertation, the components of the control system of PMSM are introduced and studied, the hardware structure and the software procedure are given. The whole control system is completed, in which, the hardware system is realized with the single chip microcomputer (80C196KC) and other hardware circuits, and the control software is programmed
    with the PL/M language. The whole system including the PMSM and the control unit is verified to be of well performances by experiment. At last, the digital simulation model of the EV driven by PMSM is given and the simulation software is programmed. Then simulation of the EV driven by the prototype PMSM is done considering the every operating condition.
引文
[1] C C Chan, K T Chou. An ovorview of power electronics in electric vehicles. IEEE Trans. on Ind. Electro. 1997,44(1): 3~13
    [2] 第二届北京国际电动车及代用燃料汽车研讨会论文集.北京;1998.12
    [3] 陈清泉.环境保护和电动车开发.北京:1996.6
    [4] 孙立志.电动汽车用轮式无刷直流电动机驱动系统的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1998
    [5] Hermance D, Sasaki S. Hybrid electric vehicles take to the streets. IEEE Spectrum. 1988. 35:48~51
    [6] Traci R M, Acebal R and Mhler T. Integrated thermal management of a hybrid electric vehicle. IEEE Trans. on Magnetics. 1999, 35:479~483
    [7] Szabodos B, Schaible U. Peak power bi-directional transfer from high speed flywheel to electrical regulated bus voltage system : a practical proposal for vehicular technology,. IEEE Trans. on Energy Conversion. 1998, 13:34~41
    [8] Hori Y, Toyoda Y and Tsuruoka Y. Traction control of electric vehicle basic experimental results using the test EV 'UOT electric match'. IEEE Trans. Ind. Applications. 1998, 34: 1131~1138
    [9] Shimizu H, Harada J, Bland C and ete. Advanced concepts in electric, vehicle design. IEEE Trans. on Ind. Electronics. 1997, 34:14~18
    [10] Corrigan D A. Nickel metal hydride: ready to serve. IEEE Spectrum, 1998. 35: 29~34
    [11] Hum G. L. The great battery search [electric vehicle]. IEEE Spectrum. 1998, 35:21~28
    [12] Lynch W A. Realistic electric vehicle battery evaluation. IEEE Trans. on Energy conversion. 1997, 12:407~412
    [13] Kutkut N H, Divan D. M. and Novotny D. W. and etc. Design considerations on Energy Conversion for a 120 - kW IGBT converter for EV fast charging. IEEE Trans. on Power Electronics. 1998, 13: 169~178
    [14] Klonta L. W., Divan D. M. and Novotny D W. An actively cooled 120kW coaxial winding transformer for fast charging electric vehicle. IEEE Trans. on Ind. Applications. 1995, 31: 1257~1263
    [15] Hong H and Liuchen C. Electric two -speed propulsion by motor winding switching and its control strategies for electric vehicles. IEEE Trans. on Vehicular Technology. 1999.48:607~619
    [16] Hyeoyndong L and Seungki S. Fuzzy, - logic -based torque control strategy for parallel -type hybrid electric. IEEE Trans. on Ind. Electronics. 1998, 45:625~632
    [17] Jinhwon Jung and Kwanghee Nam. A vector control scheme for EV induction motors with a series iron loss model. IEEE Trans. on Ind. Electronics. 1998, 45:617~624
    [18] Kenji Y, Katsuyuld W, Isao M and etc . An efficiency maximizing induction motor drive system for transmissionless electric vehicle. Proc. of EVS - 13. Osaka, Japan. 1996. 529~536
    [19] 陈敏祥,陈永校.小容量无刷直流电动机换向逻辑的研究.微特电机.1997(6):2~4
    [20] 张志忠,王强,陆永平.无刷直流电机系统的脉动力矩抑制方法.微特电机.1998(5):12~14
    [21] Renato Carlson, Michel Lajoie Mazenc, Joao C. and ere . Analysis of torque ripple due to phase commutation in brushless dc machine. IEEE Trans. on Ind. Applications. 1993, 28(3): 632~638
    [22] 沈建新,罗佳,陈永校.无传感器无刷直流电机误差位置的分析与补偿.微特电机.1999(5):3~7
    [23] 胡晟,戴忆君,金如麟.无位置传感器的无刷直流电动机新控制方法的研究.微特电机.1999(5):8~10
    [24] 刘明基,王强,邹继斌.电动势换向无刷直流电机的预定位方式起动.微特电机.1999(2):8~10
    [25] 沈建新,吕晓春,杜写红.无传感器无刷直流电机三段式起动技术的深入分析.微特电机.1998(5):8~11
    [26] 吴忠,三秀芝,许镇琳.BLDCM交流伺服系统变结构控制.电气传动.1996(3):25~31
    [27] 郝晓弘.职能控制全数字交流伺服系统.第五届中国交流电机调速传动学术论文集
    [28] 王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机.北京:机械工业出版社.1994
    [29] 郭庆鼎,王成元,周美文.交流伺服系统.北京:机械工业出版社,1994
    [30] C. L. Putta Swamy, B.him Singh and B. P. Singh. Investigations on dynamic behavior of permanent magnet brushless de motor drives . Electric Machine and Power System. t995: 689~701
    [31] Thomasm M Jahns. Torque production in permanent~magnet synchronous motor drives with rectangular current excitation. IEEE Trans. on Ins. Applications. 1984, 20:803~813
    [32] Brian J Chalmers, Lawrence M and David F G . Variable fi'equency synchronous motor drives for electric vehicle. IEEE Trans. on Ind. Applications. 1996, 32:896~903
    [33] M. Azizur Rahman and Ruifeng Qin. A permanent magnet hysteresis hybrid synchronous motor for electric vehicle. IEEE Trans. on Ind. Electronics. 1997, 44 (1): 46~53
    [34] Katsunori N and Akira N . New technology of drive system for electric vehicle. Proc. of EVS - 13. Osaka Japan, 1996. 552~556
    [35] C. C. Chan, Ruoju Z. and K. T. Chou, A novel permanent magnet hybrid motor for electric vehicle. Proc. ofCICEM'95. Hongzhou China, 1995. 552~556
    [36] D. Platt, B. H. Smith. Twin rotor drive for an electric vehicle. Proc. IEE Pt - B. 1992, 140(6): 497~506
    [37] Kawamura A., Hoshi N. Tao Weong Hin and et al, Analysis of anti - directional - twin - rotary motor drive characteristics for electric vehicle. IEEE Trans. on Ind. Electronics. 1997, 44 (1): 64~67
    [38] Peter Thelin, Hans - peter Nee. Suggestion regarding the pole - number of inverter - fed PM-synchronous motors with buried magnets. London, England, 1998. 544~547
    [39] Masayuki T., Tadashi A., Takayuki M. and etc. Novel motors and controllers for highperformance electric vehicle with four in - wheel motors. IEEE Trans. on Ind. Electronics. 1997, 44 (1): 28~38
    [40] Henneberger S., Pahuer U., Hameyer K. and etc. Computation of a highly saturated permanent magnet synchronous motor for a hybrid electric vehicle . IEEE Trans. on Magnetics. 1997, 33 (5): 4086~4088
    [41] 尹华杰.主轴永磁同步电动机电磁结构及弱磁问题的研究:[博士学位论文].武汉:华中理工大学,1994
    [42] Tomy S. and Gorden R. S. Operation limited of inverter - driven permanent magnet motor drives. IEEE Trans. on Ind.. Application. 1987. 23 (3): 327~333
    [43] S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi. Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity. IEEE Trans. on Ind, Application, 1990, 26 (5): 886~871
    [44] Morimoto S. Sanada M. and Takeda Y. Inverter~driven synchronous motor for constant power. IEEE Trans. Ind. Magazine. 1996:19~24
    [45] R. F. Schiferl and T. A. Lipo. Power capability of salient pole permanent magnet syrlchronous motor in variable speed drive applications . IEEE Trans. Ins. Application. 1990, 26 (1): 115~123
    [46] B. J. Chalmers. L. Musaba and D. F. Gosden. Variable - frequency synchronous motor drives for electric vehicles. IEEE Trans. Ind. Application. 1996, 32 (4): 898~903
    [47] Harnefors L., Nee H. P. Model - based current control of AC machines using the internal model control method. IEEE Trans. on Ind. Application. 1998, 34 (1): 133~141
    [48] Faajeng Lin, Senglyin Chiu and Kuokai shyu. Novel sliding mode controller for synchronous motor drive. IEEE Trans on Aerospace and Electronic System. 1998, 34 (2) : 532~542
    [49] Sakai S., Sado H. and Hori Y. Motion control in an electric vehicle with four independently driven in-wheel motors. IEEE/ASME Trans. on Mechatronics. 1999, 4 (1): 9~16
    [50] Gait S. Hredzak B. and Eastham J. F. Design of advanced electric drives and torque methodologies for electric vehicles. EVS~14
    [51] Mehrdad Ehsani, Khwaja M. and Hamid A. Toliyat. Propulsion system design of electric and hybrid vehicles. IEEE Trans. Ind. Electronics. 1997, 44 (1) : 19~27
    [52] Satoshi T., Yasufumi I., Yasuhiro K. and etc.. The Optimal control system of interior permanent magnet motors for electric vehicles. Prec. of EVS-13. Osaka Japan, 1996. 557~561
    [53] Takayuki Mizuno, Yasuo Yanagibashi, Hiroshi Shimizu and etc.. New drive system for electric vehicle. Prec. of EVS-13. Osaka Japan, 1996. 70~77
    [54] 郭振宏.宽恒功率调速范围主轴永磁同步电动机及其传动系统的研究:[博士学位论文].沈阳:沈阳工业大学,1999
    [55] Pragasen Pillay, Ramu Krishnan. Application characteristics of permanent magnet synchronous and brushless de motors for serve drives. IEEE Trans. on Ind. Applications. 1991, 27 (5) : 327~329
    [56] 唐任远等.现代永磁电机理论与设计.北京:机械工业出版社,1997
    [57] Masato M., Yoshiharu K., Takayuki M. and etc. Development of an inverter - fed six - phase pole change induction motor for electric vehicle. Proc. of EVS - 16. Osaka Japan, 1996. 511~517
    [58] Tetsuya Miura, Yasutimo K. and Eiji Y. Development of motor for electric vehicle. Proc. of EVS~13. Osaka Japan, 1996.57~63
    [59] Tetsuya M., Yasutomo K. Eiji Y. and etc.. Development of motor for electric vehicle, Proc. of EVS- 13. Osaka Japan, 1996.57~63
    [60] J. Lindstrom, J. Hellsing and J. Luomi. Design of high - efficiency electrical motors for a hybrid electric vehicle. Proc. ofEVS - 13. Osaka Japan, 1996. 64~69
    [61] Hirohisa Y., Hiroshi K., Osamu K. and etc.. AC drive system for electric vehicle. Proc. of EVS - 13. Osaka Japan, 1996.770~775
    [62] Yasuyuki S., Masayuki Y. and Soichi K.. Applicability of various motors to electric vehicles. Proc. of EVS- 13. Osaka Japan, 1996.757~764
    [63] H. R. Bolton, et al. Investigation into a class of brushless DC motor with quasisquare voltage and current. IEE Proc. Pt~B, 1986. 133(2): 103~111
    [64] Nasar S. A., Boldea I. And Unnewehr L. E,. Permanent magnet, P, eluctance, and self-synchronous motors, CRC press, Boca Raton, 1993
    [65] 姜建国等译.电力电子与变频传动技术与应用.徐州:中国矿业大学出版社,1999
    [66] 蔡春源主编.《机械零件设计手册》下册.冶金工业出版社,1994
    [67] 喻方平,罗薇.MCS-96单片机PL/M语言编程及系统的设计与调试.北京:电子工业出版社,1998.5
    [68] 丁书文,胡启宙,张承学等.微机保护系统运行失控的解决方法. 电工技术杂志.2000(5):25~27
    [69] 孙涵芳.Intel 16位单片机.北京:北京航空航天大学出版社,1995年11月
    [70] 谭浩强.C程序设计.北京:清华大学出版社,1991年7月
    [71] 何立民.MCS-51系列单片机应用系统设计(系统配置与接口技术).北京:北京航空航天大学出版社,1990年1月.
    [72] 陈建铎.8098单片机原理及应用技术.北京:电子工业出版社,1995年2月.
    [73] R. Schiferl and T. A. Liao. Core loss in buried magnet permanent magnet synchronous motors. IEEE Tran. Energy Conversion. 1989, 4 (2): 279~284
    [74] 张万奎.汽车蓄电池.北京:人民交通出版社,1998
    [75] 机械工程手册.专业机械卷(三).PP.1~23.北京:机械工业出版社,1997.
    [76] 余志生.汽车理论.北京:机械工业出版社,1998
    [77] 王静.电动车发展现状及前景分析.汽车研究与开发.2000 (2):30~34
    [78] 宋慧,胡骅.复合动力电动汽车的驱动模式和控制策略.世界汽车.2000(7):7-11
    [79] 廖权来,徐韵锋.电动汽车的改装设计初探. 汽车研究与开发.1999(1):20~24
    [80] 陈清泉.电动汽车——清洁有效的城市交通工具. 电工技术杂志.1999(2):5~8
    [81]杨卫国,金启玫.电工领域几种常用优化方法比较和选取. 电工电能新技术.1999(3):28~31
    [82] 赵清,徐衍亮,安忠良等.电动汽车的发展与环境保护.沈阳工业大学学报,2000(5):430~432
    [83] 徐衍亮,唐任远.模拟退火算法在永磁同步电动机优化设计中的应用.电工技术杂志.2000(2):8~10
    [84] 徐衍亮,唐任远.混合励磁同步电动机的原理结构及参数计算.微特电机.2000(1):16~18
    [85] N. Mutoh, S. Kaneko, T. Miyazaki and et al. A torque controller suitable for electric vehicles. IEEE Trans. Ind. Electro.. 1997, 44 (1) : 54~63
    [86] Xu Yanliang, Tang Renyuan and Guo Zhenheng. Power capability of permanent magnet synchronous motors in EV application. CICEM'99. Xian China. 1999. 217~220
    [87] Tang Renyuan, Xu Guangren and Xu Yanliang. Study on the local irreversible demagnetization problem of PM in electric machines. MT~15, 1998. 1437~1440
    [88] Kaushik Rajashekara. History of electric vehicles in general motors. IEEE Trans. Ind. Appl.. 1994, 30(4): 897~904
    [89] Yoichi Hori, Yasushi Toyoda and Yoshimasa Tsuruoka. Traction control of electric vehicle: basic experimental results using the test EV UOT electric march. IEEE Trans. Ind. Appl.. 1998, 34 (5): 1131~1138
    [90] Jib-Sheng Lai, Resonant snubber-based soft-switching inverters for electric propulsion drives. IEEE Trans. Ind. Electro. 1997, 44(1): 71~80
    [91] Bjorn Odegard, Christian A., and Peter K. Steimer. High-speed, variable-speed drive system in megawatt power range. IEEE Industry Applications Magazine, 1996: 43~50
    [92] Nobuyuki Matsui, Makoro Nakamura, and Takashi Kosaka. Instantaneous torque analysis of hybrid stepping Motor. IEEE Trans. Ind. Applio 1998, 32 (5): 1176~1182
    [93] Damien Grenier, L. -A. Dessaint, Quassima Akhrif and et cl. Experimental nonlinear torque control of a permanent-magnet synchronous motor using saliency. IEEE Trans. Ind. Electronics. 1997, 44(5): 680~87
    [94] James A. Haylock, Barrie C. Mecrow, Alan G. Jack, and et cl. Enhanced current control of high-speed PM machine drives through the use of flux controllers. IEEE Trans. Ind. Applications. 1999, 35 (5) : 1030~1038
    [95] Thomas A. Nondahil, Glen Ray, Peter B. Schmidt, ant et cl. A permanent-magnet rotor containing an electrical winding to improve detection of rotor angular position. IEEE Trans. Ind. Applications. 1999,35(4): 819~824.
    [96] Richard M. Bass, Mirodiav M. Begovic, and et cl. A senior design course bridging power electronics power quality inpacts of electric vehicle charging. IEEE Trans. on Power system. 1997, 12 (3): 1040~1045
    [97] S. Rahman, G. B. Shresths. An investigation into the impact of electric vehicle load on the electric utility distribution system. IEEE Trans. on Power Delivery. 1993, 8 (2): 591~597
    [98] Fumiko Koyanagi, Yoshihiss Uriu, and et cl. A strategy of load leveling by charging and discharging time control of electric vehicles. IEEE Trans. on Power system. 1998, 13(3): 1179~1184
    [99] 陈伯时,陈敏逊编著.交流调速系统.北京:机械工业出版社,1998
    [100] 张燕宾编著.S P W M变频调速应用技术.北京:机械工业出版社,1997
    [101] 王季秩,曲家骐编著.执行电动机.北京:机械工业出版社,1997
    [102] 冯垛生,曾岳南编著.无速度传感器矢量控制原理与实践.北京:机械工业出版社.1997
    [103] 王宏化编著:开关型磁阻电动机调速控制技术.北京:机械工业出版社,1995
    [104] 曲家骐,王季秩编著.伺服控制系统中的传感器.北京:机械工业出版社,1998
    [105] 张琛编著.直流无刷电动机原理及应用.北京:机械工业出版社,1998
    [106] 符曦编著.高磁场永磁式电动机及其驱动系统.北京:机械工业出版社,1997
    [107] 孙建中.轴向磁场盘式无刷直流电动机的电磁场逆问题与优化设计研究:[博士学位论文].沈阳:沈阳工业大学,1997
    [108] 徐广人.高效高起动转矩永磁同步电动机设计中的关键技术问题研究:[博士学位论文].沈阳:沈阳工业大学,1999
    [109] 杨仕友.多段圆弧极靴水轮发电机极弧优化、参数计算和动态性能研究:[博士学位论文].沈阳:沈阳工业大学,1995
    [110] 孙逢春,张承宁,祝嘉光.电动汽车.北京:北京理工大学出版社,1997
    [111] 万培霖主编.电动汽车的关键技术.北京:北京理工大学出版社,1998
    [112] 胡广振等编著.电机的矩阵理论.沈阳:东北大学出版社,1998
    [113] 唐任远主编.特种电机 北京:机械工业出版社,1998
    [114] 陈世坤主编.电机设计.北京:机械工业出版社,1990
    [115] 李仁定主编.电机的微机控制.北京:机械工业出版社,1999
    [116] 丁元杰.单片微机原理及应用.北京:机械工业出版社,1997
    [117] 李德成等编著.单相异步电动机原理、设计与试验.北京:秘学出版社,1993
    [118] 黄俊,王兆安主编.电力电子变流技术.北京:机械工业出版社.1996
    [119] 姜可熏.电机瞬变过程.北京:机械工业出版社,1991
    [120] 施阳等编著.MATLAB语言精要及动态仿真工具SIMULINK.西安:西北工业大学出版社,1997
    [121] Duane Hanselman, Bruce Littlefield著.李人厚,张平安等译校.精通MATLAB综合辅导与指南.西安:西安交通大学出版社,1998
    [122] 贺益康编著.交流电机的计算机仿真.北京:科学出版社,1990
    [123] 陈坚编著.交流电机数学模型及调速系统.北京:国防工业出版社,1989
    [124] 刘勇,康立山,陈毓屏著.非数值并行算法——遗传算法.北京:科学出版社,1998
    [125] 邢文训,谢金醒编著.现代优化计算方法.北京:清华大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700