用户名: 密码: 验证码:
长期往复荷载作用下无粘性材料累积变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着交通的日益繁忙,路基的长期沉降问题已经引起人们的广泛关注,如何控制和减少路基沉降已经成为道路工程界和岩土工程界共同关注的热点问题。由于长期以来道路工程土力学和传统的岩土工程土力学作为两个不同学科而各自发展,导致现行道路设计还主要依靠经验方法。同时,尽管以弹塑性理论为核心的本构理论在道路工程中也有涉及,但由于多数模型采用传统的小步长积分方式,造成计算时间过长,难以在实际工程中应用。总之,迄今为止,还未发现有合适的本构模型能够同时考虑计算的简便性和无粘性材料复杂的变形特征。文献表明,近年来,基于安定性理论而提出的弹塑性本构模型由于只需考虑循环加载过程中的最大塑性变形,可采用较大的积分步长,具有良好的应用前景。因此,为了能够填补目前道路长期沉降计算方法上的空白,本文在系统研究砂土变形特性的基础上,基于安定性理论提出了双硬化弹塑性本构模型,可以合理有效地计算无粘性材料在大数目循环加载时的累积塑性变形,从而为下一步探索控制和减少路基长期沉降的有效途径提供了可靠的理论依据和数值分析手段。因此,本课题具有重大的理论意义和工程实用价值。
     本课题取得了如下创新性的研究成果:
     1.在试验室内运用GDS土体多功能三轴试验机,对上海粉细砂进行了一系列的常规三轴压缩试验,针对其在不同试验条件下的变形规律进行了系统分析。试验表明,无论排水还是不排水试验条件,砂土都表现出两类显著的变形特征,一是应力-剪胀性特征,二是剪切应变硬化/软化特征,这两类特征均与试样的初始密实度及有效围压密切相关。同时,对比等向与非等向固结时的三轴剪切试验结果,可知后者的峰值强度及剪胀性特征均高于前者,表明初始应力各向异性对砂土应力-应变关系有较为显著的影响。
     2.利用上述仪器,对上海粉细砂进行了大数目循环次数(5000次)的非等向固结三轴压缩试验,得出其在不同初始密实度、不同围压和不同动应力时的变形规律,发现初始密实度及围压相同时,动应力比越大,累积变形越大;而在同样的应力水平下,密实度越高,累积变形越小;另外,围压对累积变形也有一定的影响。同时,有两点需要注意:一是累积变形主要发生在加载初期,
With the rapid development of traffic engineering, the long term settlement of subsoil induced by repeated loading has received much attention recently. Controlling and reducing settlement have been a common interest to the pavement engineers and the geotechnical engineers. Pavement soil mechanics and traditional soil mechanics have developed as two separate disciplines. As a result, current pavement design methods are mainly based on empirical equations with rough results. Although there are some constitutive models based on fundamental elasto-plasticity theory, most of them can not be used in a large number of repeated loading, e.g. 10~6, which is because that the numerical implementation of such a model through a classical step-by-step procedure proves unrealistic beyond a few load cycles. Therefore, a constitutive model based on shakedown theory that only accounts for the maximum plastic deformation for each load cycle is needed. To settle the puzzle problem, the author firstly summarizes deformation mechanisms in this dissertation, and then formulates an elasto-plastic model within the framework of shakedown theory. Computation results show that the model can consider both computational efficiency and complex deformation features of cohesionless soil. In brief, the research production is of importance both for theoretical analysis and practical engineering.
    The main achievements of this thesis are as follows:
    1. In order to investigate the deformation characteristics of sand under static loading, a series of traditional triaxial compression tests of Shanghai silt sand are performed in the laboratory on GDS triaxial apparatus. Test results show that subjected to shear, a sand will exhibit either dilative or contractive behavior under both drained condition and undrained condition. Whether a sand dilates or contracts depends on the initial state of the sand, that characterized by both the density of the sand and the effective mean normal stress applied. The larger the density, the lower the effective mean normal stress, the more dilative response is. And the strain hardening or softening laws has the similar features. What's more, the initial stress anisotropy has significant influence on the strength and dilatancy of sand.
    2. Secondly, to obtain the cumulative deformation pattern, a series of cyclic triaxial compression tests are performed on the same apparatus. The test results show that the cumulative plastic strain will be larger with the smaller density, the lower effective mean normal stress and the higher dynamic stress level. At the same time, it should be noted that most of cumulative deformation happens mainly at initial stage and approaches to stable deformation gradually. What's more, the mechanical process can be characterized as cyclic densification with volumetric compaction.
引文
[1] Abdelkrim M, De Buhan P, Bonnet G. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading. Computers and Geotechnics, 2003,30: 463-476.
    
    [2] Allen J J, Thompson M R. Resilient response of granular materials subjected to time dependent lateral stresses. Transportation Research Record, 1974,(510): 1-13.
    
    [3] Arnold G, Dawson A, Hughes D, et al. The application of shakedown approach to granular pavement layers. Journal of Transportation Research Board, 2003, (1819): 194-200.
    [4] Baladi G Y, Renoud-Lias. An elasto-plastic constitutive model for saturated sand subjected to monotonic and/or cyclic loading. Proc. 3rd Inter. Conf. on Numerical Methods in Geomechnics, Achen, 1979.
    
    [5] Barden L, Ismail H, Tong P. Plane strain deformation of granular material at low and high pressures. Geotechnique, 1969,19(4): 441-452.
    
    [6] Bardet J P. Bounding surface plasticity model for sands. J. Eng. Mech., ASCE, 1986, 112(6): 1198-1217.
    
    [7] Bardet J P. Hypoplastic model for sands. J. Eng. Mech., 1990, 116(9): 1973-1994.
    
    [8] Bardet J P, Proubet J. Numerical Simulation of Localization in Granular Materials. Mechanics Computing in 1990's and Beyond, Proceedings of the EMD/ASCE Conference, Columbus, Ohio, 1991.
    
    [9] Barksdale R D. Laboratory evaluation of rutting in base course materials. In Proceedings of the Third International Conference on Structural Design of Asphalt Pavements, London, 1972: 161-174.
    
    [10] Barksdale R D, Itani S Y. Influence of aggregate shape on base behavior. Transportation Research Record, 1988, (1227): 173-182.
    
    [11] Bathurst R J, Rothenberg L. Micromechanical aspects of isotropic granular assemblies with linear interactions. Journal of Applied Mechanics, ASME, 1988, 55:17-23.
    
    [12] Been K, Jeferies M G. A state parameter for sands. Geotechnique, 1985, 35(2): 99-112.
    
    [13] Billam J. Some aspects of the behavior of granular materials at high pressures. In Stress-strain behaviour of soils. (ed. R. H. G. Parry), London: Foulis, 1972: 69-80.
    [14] Bishop A W, Green G E. Compression strength of cohesionless soil. Geotechnique, 1965,15(3): 243-266.
    [15] Bishop A W. Shear strength parameters for undisturbed and remoulded soils specimens. In Stress-strain behavior of soils (ed. Parry R H G), London: Foulis, 1972: 3-58.
    [16] Bolton M D. The strength and dilatancy of sands. Geotechnique, 1986,36(1): 65-78.
    [17] Boulbibane M, Weichert D. Application of shakedown theory to soils with non-associative flow rules. Mechanics Research Communications, 1997, 24(6): 516-519.
    [18] Boulbibane M, Collins I F, Weichert D, et al. Shakedown analysis of anisotropic asphalt concrete pavements with clay subgrade. Canadian Geotechnical Journal, 2000, 37: 882-889.
    [19] Brown S F, Hyde A F L. Significance of Cyclic confining stress in repeated load triaxial testing of granular materials. Transportation Research Record, 1985, 537: 49-58.
    [20] 蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探.西南交通大学学报,1996,31(1):1-5.
    [21] Cai Z Y. A comprehensive study of state-dependent dilatancy and its application in shear band formation analysis. Ph.D. thesis, Hong Kong Univ of Sci & Tech, 2001.
    [22] 蔡正银,李相菘.砂土的变形特性与临界状态.岩土工程学报,2004,26(5):697-701.
    [23] Carter J P, Booker J R, Wroth C P. A critical state soil model for cyclic loading. Soil Mechanics-Transient and Cyclic Loading. Chichester: John Wiley & Sons, 1982: 219-252.
    [24] Casciaro R, Garcea G. An iterative method for shakedown analysis. Comput. Methods Appl. Mech. Engrg. 2002, 191:5761-5792.
    [25] Castro G. Liquefaction and cyclic mobility of saturated sands. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(6): 551-569.
    [26] Chai J C, Miura N, et al. Traffic-load-induced permanent deformation of road on soft subsoil. Journal of geotechnical and geoenvironmental engineering. 2002, 128(11): 907-916.
    [27] Chan F W K. Permanent deformation resistance of granular layers in pavements. Ph.D. Thesis, University of Nottingham, 1990.
    [28] Chang C S, Whitman R V. Drained permanent deformation for sand due to cyclic loading. J. Geotech. Engrg., ASCE, 1988, 114(10): 1164-1180.
    [29] Chen W F, Baladi G Y. Soil plasticity-theory and Implementation, Elsevier, 1985.
    [30] Collins I F, Wang A P, Saunders L R. Shakedown theory and the design of unbound pavements. Road Transp. Res., 1993,2(4):28-39.
    
    [31] Collins I F, Boulbibane M. Geomechanical analysis of unbound pavements based on shakedown theory. Journal of Geotechnical and Geoenvironmental Engineering, 2000,126(1):50-59.
    
    [32] Cornforth D H. One dimensional consolidation curves of a medium sand. Geotechnique, 1975,25:678-683.
    
    [33] Dafalias Y F, Popov E P. A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 1975, 21: 173-192.
    
    [34] Dafalias Y F, Herrmann L R. Bounding surface formulation of soil plasticity. Soil Mechanics-Transient and Cyclic Loads, (eds. Pande, G N and Zienkiewicz, O C), John Wiley and Sons, Chichester, U. K., 1982: 153-182.
    
    [35] Dafalias Y F. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity J. Engng Mech, ASCE, 1986,112(12): 1263-1291.
    
    [36] Dafalias Y F, Herrmann L R. Bounding surface plasticity. Ⅱ: Application to isotropic cohesive soils. Journal of engineering mechanics, ASCE, 1986, 112(12): 1263-1291.
    
    [37] De Josselin de Jong G. Rowe's stress-dilatancy relation based on friction. Geotechnique, 1976,26(3): 527-534.
    
    [38] DeSouza J M. Compressiblity of quartz sand at high pressure: MSc thesis, Massachussets Institute of Technology, Cambridge, 1958.
    
    [39] Drescher A, Vardoulakis I. Geometric softening in triaxial tests on granular material. Geotechnique, 1982,32(4): 291-303.
    
    [40] Drucker D C, Gibson R E, Henkel D J. Soil mechanics and work hardening theories of plasticity. Transactions of the American Society of Civil Engineers, 1975, 122: 338-346.
    
    [41] Ellyin F. Fatigue damage, crack growth, and life prediction. Chapman & Hall, 1997.
    
    [42] Gajo A, Wood M D. Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation. Geotechnique, 1999a, 49(5): 595-614.
    
    [43] Gajo A, Wood M D. A kinematic hardening constitutive model for sands: the multiaxial formulation. International Journal for Numerical and Analytical Methods in Geomechanics, 1999b, 23: 925-965.
    
    [44] Ge Y N. Cyclic constitutive modeling of granular materials. The Univeristy of Colorado, Boulder, 2003.
    
    [45] George H M. Behavior of granular materials under cyclic and repeated loading. Ph.D. thesis, the University of Alaska Fairbanks, 2003.
    [46] Guo P J. Modeling Granular materials with respect to stress-dilatancy and fabric: a fundamental approach. Ph.D. thesis, The University of Calgary, Alberta, 2000.
    [47] Habiballah T, Chazallon C. An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials. Int. J. Numer. Anal. Meth. Geomech., 2005,29: 577-596.
    [48] Haldar A K, Reddy D V, Arockiasamy M. Foundation shakedown of offshore platforms. Comput. Geomech., 1990, (10):231-245.
    [49] Hardin B O. 1-D strain in normally consolidated cohesionless soils. J. Geotech. Engng, ASCE. 1987, 113(12): 1449-1467.
    [50] Heeres O M. Modern strategies for the numerical modeling of the cyclic and transient behavior of soils. PhD thesis, Delft University of Technology, Netherlands, 2001.
    [51] Hendron A J. The behavior of sand in one-dimensional compression. Ph. D. thesis, University of Illinois, Urbana, 1963.
    [52] Hicks R G, Monismith C L. Factors influencing the resilient properties of granular materials. Highway Research Record, 1971, (345): 15-31.
    [53] Hill R. The mathematical theory of plasticity. Clarendon Press, Oxford, England, 1950.
    [54] Houisby G T. How the dilatancy of soils affects behavior. Proc. 10th Eur. Conf. Soil Mech. Found. Eng., 1991: 1189-1202.
    [55] 胡仁伟,王红等.道碴动三轴试验研究.中国铁道科学,2001,22(2):101-106.
    [56] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Fdns., 1975, 15(4): 29-44.
    [57] Ishihara K. Liquefaction and flow failure during earthquakes. 33rd Rankine Lecture, Geotechnique. 1993, (3): 351-415.
    [58] Iwan W D. On a class of models for the yielding behavior of continuous and composite systems. Journal of Applied Mechanics, ASME, 1967, 34: 612-617.
    [59] Jefferies M G. Norsand: a simple critical state model of sand. Geotechnique, 1993,43(1): 91-103
    [60] Jefferies M G, Been K. Implications for critical state theory from isotropic compression of sand. Geotechnique, 2000, 50(4): 419-429.
    [61] Jenkins J T, Strack O. Mean-field inelastic behaviour of random array of identical spheres. Mechanics of materials, 1993, 16: 25-33.
    [62] 蒋军.循环荷载作用下粘土及含砂芯复合试件性状试验研究[博士学位论文].杭州:浙江大学.2000.
    [63] Kahalili, Habte, et al. A bounding surface plasticity models for cyclic loading of granular soils. Int. J. Numer. Meth. Engng, 2005(63): 1939-1960
    [64] Khedr S. Deformation characteristics of granular base course in flexible pavement. Transportation Research Record, 1985, (1043): 131-138.
    [65] Krieg R D. A practical two-surface plasticity theory. J. Appl. Mech., ASME, 1975, 42: 641-646.
    [66] Lade P V. The stress-strain and strength characteristics of cohesionless soils. Ph.D. thesis, University of California, Berkeley, 1972.
    [67] Lade P V, Duncan J M. Elasto-plastic stress-strain theory for cohesionless soil. Proc. ASCE, 1975, 101 (10): 1037-1053.
    [68] Lade P V. Elasto-plastic stress-strain theory for cohesionless soils with curved yield surfaces. Int. Jour. Solids and Structures. 1977, 13: 1019-1035.
    [69] Lade P V, Ibsen L B. A study of the phase transformation and the characteristic lines of sand behavior. Deformation and progressive failure in Geomechanics(Eds. Asaoka A, Adachi T, Oka F), 1997, 353-358.
    [70] Lemaitre J, Chaboche J L. Mechanics of solid materials. Cambridge University Press, Cambridge, 1990.
    [71] Lentz R W, Baladi G Y. Simplified procedure to characterize permanent strain in sand subjected to cyclic loading. Soil under Cyclic and Transient Loading(eds. Pande et al), 1980:89-95.
    [72] Lekarp F, Richardson I R, Dawson A R. Influences on permanent deformation behavior of unbound granular materials. Transportation Research Record, 1996, (1547): 68-75.
    [73] Lerkarp F, Dawson A R. Modeling permanent deformation behaviour of unbound granular materials. Construction and building Materials. 1998, 12(1): 9-18.
    [74] Li D, Selig E T. Resilient modulus for fine-grained subgrade soils. J. Geotech. Engrg., ASCE, 1994, 120(6): 939-957.
    [75] Li D, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils. J.Geotech. Eng, 1996, 122(12):1006-1013.
    [76] 李广信.土的三维本构关系的探讨与模型验证[博士论文].北京:清华大学,1985.
    [77] 李进军.交通荷载作用下饱和软粘土长期沉降分析[博士论文].上海:同济大学,2005.
    [78] Li X S. Modeling of dilative shear failure. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(7): 609-616.
    [79] Li X S, Dafalias Y F, Wang Z L. State dependent dilatancy in critical state constitutive modeling of sand. Canadian Geotechnical Journal, 1999,36(4): 559-611.
    [80] Li X S, Dahlias Y F. Dilatancy for cohesionless soil. Geotechnique, 2000, 50(4): 499-460.
    [81] Li X S. A sand model with state-dependent dilatancy. Geotechnique, 2002,52(3): 173-186.
    [82] 廖化荣.红黏土路基循环动荷载下塑性力学行为及预测模型研究[硕士学位论文].广州:中山大学,2004.
    [83] 刘松玉,邱钰等.煤矸石的动力特性试验研究.东南大学学报(自然科学版).2005,35(2):280-283.
    [84] 陆鼎中,程家驹.路基路面工程(第二版).上海:同济大学出版社,1999.
    [85] 罗刚,张建民.考虑物理状态变化的砂土本构模型.水利学报,2004,(7):26-31.
    [86] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands. Geotechnique, 1997, 47(2): 255-272.
    [87] Matsuoka H. Dilatancy characteristic of soil. Soils and Foundations. 1974, 14(3): 47-61.
    [88] Monismith C L, Seed H B, Mitry F G, et ai. Prediction of pavement deflections from laboratory tests. Proceedings of 2nd International Conference on Structures Design of Asphalt Pavements, 1967: 109-140.
    [89] Monosmith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subsoil due to repeated loading. Transportation Research Record, 1975, (537): 1-17.
    [90] Mroz Z. On the description of anisotropic hardening. J. Mech. Phys. Solids, 1967, 15: 163-175.
    [91] Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2: 203-221.
    [92] Mroz Z, Norris V A, Zienkiewicz O C. Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique, 1979, 29(1): 1-34.
    [93] Mroz Z, Norris V A. Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loading. Soil Mechanics-Transient and Cyclic Loads, (Eds. Pande G N, Zienkiewicz O C), John Wiley and Sons Ltd, 1982.
    [94] Nova R, Wood M D. An experimental programme to define the yield function for sand. Soils and Foundations, 1979, 18(4): 77-86.
    [95] Oda M, Nemat-Nasser S, Konishi J. Stress-induced anisotropy in granular masses. Soils and Foundation, 1985,25(3): 85-97.
    [96] Pande G N. Shakedown of foundations subjected to cyclic loads. Soil Mechanics-transient and Cyclic Loads (eds. Pande G N, Zienkiewicz O C), Wiley, New York, 1982: 469-489.
    
    [97] Pappin J W. Characteristics of a granular material for pavement analysis. Ph.D. Thesis, University of Nottingham, 1979.
    
    [98] Pastor M, Zienkiewicz O C, Chan A C. Generalized plasticity and the modelling of soil behavior. Int. J. Numer. Anal. Methods Geomech., 1990, 14: 151-190.
    
    [99] Pastor M. Modeling of anisotropic sand behavior. Computer and Geotechnics, 1991, 11: 173-208
    [100] Paute J L, Hornych P, Benaben J P. Repeated load triaxial testing of granular materials in the French network of laboratories. Flexible Pavements, (Ed. Lisbon A G C), 1996: 53-64.
    
    [101] Pecker A, Prevost J H, Dormieux L. Analysis of pore pressure generation and dissipation in cohesionless materials during seismic loading. J Earthquake Eng, 2001, 5(4): 441-64.
    
    [102] Peelings R H J, Brekelmans W A M, de Borst R, et al. Gradient-enhanced damage modeling of high-cycle fatigue. Int. J. Num. Meth. Engng. 2000, 49: 1547-1569.
    
    [103] Perzyna P. Fundamental problems in viscoplasticity. Rec. Adv. Apply. Mech. 1966, 9: 243-377.
    
    [104] Pestana J M, Whittle A J. Compression model for cohesionless soils. Geotechnique 1995,45(4): 611-631.
    
    [105] Pietruszczak S, Stolle D F E. Deformation of strain softening material, Part II: modelling of strain softening response. Comput. Geotech. 1987, (4):109-123.
    
    [106] Poorooshasb H B, Holubec I, Sherboure A N. Yielding and flow of sand in triaxial compression, Part 1. Canadian Geotechnical Journal, 1966,3(5): 179-190.
    
    [107] Poulos S J. The steady state of deformation. Journal of Geotechnical Engineering, ASCE, 1981,107(5):553-562.
    
    [108] Provest J H. Mathematical modeling of monotonic and cyclic undrained clay behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, (1): 195-216.
    
    [109] Provest J H. Anisotropic undrained stress-strain behavior of clay. Journal of the Geotechnical Engineering Division, ASCE, 1978a, 104(8): 1075-1090.
    
    [110] Provest J H. Plasticity theory for soil stress-strain behavior. EM Division, ASCE, 1978b, 104(8): 1177-1194.
    
    [111] Pycko S, Mroz Z. Alternative approach to shakedown as a solution of min-max problem. Acta Mech., 1992, 93: 205-222.
    [112] Pycko S, Maier G. Shakedown theorems for some classes of non-associated hardening elastic-plastic material models. Int. J. Plasticity, 1995, (11):367-395.
    
    [113] Raad L, Weichert D, Haidar A. Shakedown and fatigue of pavements with granular bases. Transportation Research Record, 1989, (1227): 159-172.
    
    [114] Raymond G P, Williams D R. Repeated Load Triaxial Tests on a Dolomite Ballast. J Geotech Eng, 1978, 104(10):13-29.
    
    [115] Regier K. The stress-dilatancy behavior of sands: pressure and density dependencies in both monotonic and cyclic loading regimes. MSc. Thesis, The University of Calgary, 1997.
    
    [116] Roscoe K H, Schofied A N, Wroth C P. On the yielding of soils. Geotechnique. 1958,8(1):22-53.
    
    [117] Roscoe K H, Poorooshasb H B. A fundamental principle of similarity in model tests for earth pressure problem. Proc 2nd Regional Conf on SMFE, Tokyo, 1963, 1: 134-140.
    
    [118] Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical. Geotechnique, 1963, 13(3):211-40.
    
    [119] Roscoe K H, Burland J B. On the generalized stress-strain behavior of 'wet' clay. Engineering plasticity, Cambridge: Cambridge University Press, 1968:535-609.
    
    [120] Rowe P W. The stress-dilatancy relation of static equilibrium of an assembly of particles in contact. Proc. Roy. Soc., Series A, London, 1962, (269):500-527.
    
    [121] Rowe P W. The relation between the shear strength of sands in triaxial compression, plane strain and direct shear. Geotechnique, 1969,19(1):75-86.
    
    [122] Sandier I S, Dimaggio F L, Baladi G Y. Generalized cap model for Geological materials. J. Geotech. Eng. Div., ASCE, 1976, 102(7): 683-697.
    
    [123] Schofield A N, Wroth C P. Critical state soil mechanics. London: McGraw-Hill, 1968.
    
    [124] Seed H B, Chan C K, Monismith C L. Effect of repeated load on the strength and deformation of compacted clay. Highway Research Record, 1955, 34:541-558.
    
    [125] Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Fdns Div. Am. Soc. Civ. Engrs, 1966, 92(6): 105-134.
    
    [126] Sharp R W. Shakedown analysis and the design of pavements. Ph.D. Thesis, University of Sydney, 1983
    
    [127] Sharp R W. Pavement design based on shakedown analysis. Transportation Research Record, 1985, (1022): 99-107.
    
    [128] Sharp R W, Booker J R. Shakedown of pavements under moving surface loads. Journal of Transportation Engineering, 1984,110(1): 1-14.
    [129] Stein E, Zhang G, Konig J A. Shakedown with nonlinear strain hardening including structural computations using finite element method. Int. J. Plasticity, 1992, 8: 1-31.
    [130] Stroud M A. The behavior of sand at low stress levels in the simple shear apparatus. Ph.D. thesis, Cambridge University, 1971.
    [131] Suiker A S J. The mechanical behavior of ballasted railway tracks. Ph.D. Thesis, University of Delft, Delft, The Netherlands, 2002.
    [132] Suiker A S J, de Borst R. A numerical model for the cyclic deterioration of railway tracks. International Journal for Numerical Methods In Engineering, 2003, 57: 441-470.
    [133] Sweere G T H. Unbound granular bases for roads. Ph. D. Thesis, University of Delft, Delft, The Netherlands, 1990.
    [134] 沈珠江.土的弹塑性应力应变关系的合理形式.岩土工程学报,1980,2(2):11-19.
    [135] 沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [136] Tatsuoka F. Shear tests in a triaxial apparatus-a fundamental study of the deformation of sand (in Japanese), Ph. D. thesis, Tokyo University, 1972.
    [137] Tatsuoka F, lshihara K. Yielding of sand in triaxial compression. Soils and Foundations, 1974a, 14(2):63-76.
    [138] Tatsuoka F, Ishihara K. Drained deformation of sand under cyclic stress reversing direction, Soils and Found., 1974b,14(3): 51-65.
    [139] Taylor D W. Fundamentals of soil mechanics. Wiley, New York, 1948.
    [140] Tokue T. Deformation behavior of dry sand under cyclic loading and a stress-dilatancy model. Soils and Foundations, 1979,19(2): 63-78.
    [14l] 土工试验规程DT-92.地质出版社.1993.
    [142] Vaid Y P, Sasitharan S. The strength and dilatancy of sand. Can. Geotech. J., 1992, 29: 522-526.
    [143] Verdugo R. Characterization of sandy behaviour under large deformation. Ph. D. thesis, University of Tokyo, 1992.
    [144] Verdugo R, Ishihara K. The steady state of sandy soils. Soils and Foundations, 1996, 36(2):81-91.
    [145] Vermeer P A. A double hardening model for sand. Geotechnique, 1978, 28(4): 413-433.
    [146] Vermeer P A. A five-constant model unifying well-established concepts. Constitutive relations for soils(Ed. By Gudehus, Darve and Vardoulakis),1982: 175-197.
    [147] Vermeer P A, de Borst R. Non-associated plasticity for soils. Concrete and Rock. 1984, 29(3): 1-64.
    [148] Vesic A S, Clough W. Behavior of granular materials under high stresses. J. Soil Mech. Found. Engng Div., ASCE, 1968, 94(3): 661-688.
    [149] Wan R G, Guo P J. A simple constitutive model for granular soils: Modified stress-dilatancy approach. Computers and Geotechnics, 1998, 22(2): 109-113.
    [150] Wan R G, Guo P J. A pressure and density dependent dilatancy model for granular materials. Soils and Foundations, 1999, 39(6):1-12.
    [151] 王飞,栾茂田.海洋平台地基的极限分析与安定性分析.岩石力学与工程学报,2004,23(5):797-803.
    [152] 王红.道碴弹性和累积变形的试验研究.中国铁道科学,2001,22(6):106-110.
    [153] 王建华,要明伦.软粘土不排水循环特性的弹塑性模拟.岩土工程学报,1996,18(3):11-18.
    [154] 王林秀等.级配碎石作路面基层材料的动三轴力学性能试验研究.中国市政工程,2004,(3):25-26.
    [155] 王仁,熊祝华,黄文彬.塑性力学基础.北京:科学出版社,1987.
    [156] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [157] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticy model for sand. J. Engng. Mech. ASCE, 1990,116(5):983-1001.
    [158] Wang Z L, Dafalias Y F, Li X S, et ai. State pressure index for modeling sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(6): 511-519.
    [159] Werkmeister S, Dawson A R, Wellner F. Permanent deformation behavior of granular materials and the shakedown theory. Transportation Research Record, 2001, (1575):75-81.
    [160] Werkmeister S, Dawson A R, Wellner F. Pavement design model for unbound granular materials. Journal of Transportation Engineering, 2004,130(5): 665-674.
    [161] Wolff H, Visser A T. Incorporating elasto-plasticity in granular layer pavement design. In proceedings of the Institution of civil Engineers Transport, 1994,(105): 50-64.
    [162] Wood M D. Soil behavior and critical state soil mechanics. Cambridge University Press, 1990.
    [163] Wood M D, Belkheir K, Liu D F. Strain softening and state parameter for sand modeling. Geotechnique, 1994,44(2):335-339.
    [164] Wroth C P. The behavior of soils and other granular media when subjected to shear. Ph.D. thesis, University of Cambridge, 1958.
    [165] 徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报,1995,17(2):1-12.
    [166] Yu H S, Hossain M Z. Lower bound shakedown analysis of layered pavements discontinuous stress fields. Computer Methods in Applied Mechanics and Engineering, 1998, (167):209-222.
    [167] 殷宗泽,Duncan J M.剪胀士与非剪胀土的应力应变关系.岩土工程学报,1984,6(4):24-40.
    [168] 殷宗泽.一个土体的双屈服面应力应变模型.岩土工程学报,1988,10(1):64-71.
    [169] Zarka J, Casier J. Elastic plastic response of structure to cyclic loading: practical rules. Mechanics Today, 1979,6: 93-198.
    [170] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-asociated visco-plasticity in soil mechanics. Geotechnique, 1975, 25(4): 671-689.
    [171] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700