用户名: 密码: 验证码:
管涌现象细观机理的模型试验与颗粒流数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从细观力学角度对管涌的形成与发展机制,进行深入研究。将先进的数码摄像可视化跟踪技术和数字图像处理技术引入管涌的室内模型试验,摄录土颗粒的移动轨迹,确定形成管涌的临界参数和识别分析管涌过程中管涌通道形成的机理。在室内试验的基础上,基于散体介质颗粒流理论及其分析方法等细观力学手段,分析渗流与土介质的共同作用机理,深入研究管涌现象形成以及发展过程的细观力学机理。利用并开发PFC2D和PFC3D计算软件,对管涌现象形成与发展过程中土颗粒的移动规律以及水流在土体孔隙中的过程进行细观仿真模拟。并结合堤防工程的管涌险情实例进行分析研究,为预测和治理管涌险情提供理论支持。
     在研究和分析的过程中解决了以下四个技术难题:1、利用室内模型试验确定形成管涌的临界参数;2、通过室内模型试验准确测定试样流失量的变化,以确定水头压力与颗粒移动的关系;3、管涌的形成与发展过程中的细观数值模型的仿真模拟。如何优化数值模型,以解决目前软件计算时间过长而不能满足模拟要求的问题;4、将颗粒流分析技术、先进的室内模型试验量测技术和计算机仿真模拟技术有机融合。
     在室内模型试验方面,使用了先进的数字图像试验分析手段记录管涌现象,取得有益于数值模拟的细观参数。在数值模拟方面,摒弃了有限元理论模拟大变形和破坏问题天然的局限性,使用能够模拟破坏现象的颗粒流理论,利用并开发颗粒流程序模拟管涌现象,实现了使用细观参数定量的确定宏观参数的突破。本文在如下几方面的研究值得重视:
     1、针对不同级配及细粒含量的土样使用数码相机和先进的数字图像变形量测技术研究管涌过程中试样的宏观临界参数,得到了管涌发生的临界水力梯度,发展过程中的流速与水力梯度变化关系和流失量的变化规律以及宏观的颗粒移动情况和通道路径的形成过程;
     2、使用高分辨率的体视显微镜记录局部土体管涌现象的细观变化全过程,真实还原管涌现象产生和发展过程中细观颗粒流失的路径和颗粒相互之间的作用现象。在此基础上采用先进的数字图像土体细观组构量测技术对管涌发生发展过程中细观孔隙率变化规律以及细观的颗粒之间的相互作用关系规律进行了研究,揭示了管涌发生发展过程的细观力学机理;
     3、通过不同组构的等粒径二维平面与三维空间模型的孔隙率转换关系分析,建立实用的等粒径的二维与三维孔隙率转换关系公式,为使用PFC2D程序模拟土体的三维组构关系提供了孔隙率转换的依据;
     4、利用并开发PFC2D颗粒流程序对不同掺入量的可动颗粒试样管涌现象进行了细观数值模拟。揭示了不同掺入量的可动颗粒试样管涌产生与发展过程中一系列的细观参数变化规律,揭示管涌通道形成了细观力学机理;
     5、利用并开发PFC3D颗粒流程序对不同粒径的可动颗粒试样在不同水压力作用下的管涌现象进行了细观数值模拟。定量的确定了管涌发生的临界水力梯度。揭示了不同粒径的可动颗粒试样管涌随水力梯度变化的一系列的细观参数变
This article does deep research on the formation and development mechanism of piping from the angle of meso-scale mechanism. Advanced digital photographic video tracing and image processing technology is introduced into the indoor model test of piping to record the motive orbit of soil grains, determine critical parameters in piping-formation, identify and analyze tunnel-forming mechanism during piping. On the basis of model test and the meso-scale mechanism means such as the particle flow code of discrete mediums theory and its analytic method, this article analyses the collective influence of seepage and soil medium, and researches further meso-mechanics mechanism of piping-formation. The software of PFC2D and PFC3D are used and developed in meso-analog simulation of soil particles' motion rules in the process of piping formation and development. Combined with the case analysis and research of embankment piping, this article provides theoretic support for forecasting and handling piping failure conditions.
    Four technical problems are solved: 1. to determine critical parameters in piping-formation through model test; 2. to determine the relation between water head pressure and grain motion by precisely setting the change of sample loss amount in model test; 3. to analog simulate meso-numeric model in piping formation and development and optimize numeric model so as to solve the problem resulted from the long-time computing; 4. to combine the PFC analytic technology, advanced model test measurement technology with computer analog simulation technology.
    In model test, piping process is recorded and meso-parameters beneficial to numeric simulation are acquired through advanced digital image test analytic method. In numeric simulation, discarding the natural limitation of finite element method simulation's deformation and failure while adopting the PFC theory which can simulate failure phenomenon, and utilizing and developing PFC software to simulate piping, breakthrough is made in using meso-parameters to quantitatively determine macro-parameters. Attention should be paid to the researches in this article as blow:
    1. Aimed at soil samples of different graded and fine particles content, using digital camera and advanced digital image deformation measurement technology to analyze and research macro critical parameters in piping failure, this article acquires the critical hydraulic gradient in piping, the relation between velocity of flow and hydraulic gradient, variety rule of the loss amount, the macro the particles' movement and formation process of tunnels.
    2. Using high-resolution microscope to record the whole meso-scale process of piping, makes it possible to record the creation and development process of particle loss and the interaction between particles in piping in the view of meso-scale. With this as the basis, adopting advanced digital photographic soil body meso-structural measurement technology to research variety rules of meso-porosity and interaction between meso-particles, and thus the meso-mechanical mechanism in piping is revealed.
引文
[1] Aberg,B. Hudraulic conductivity of Noncohesive soils. Journal of Geotechnical Engineering,ASCE, 1992,118(9): 1335-1347
    
    [2] Aberg,B.. Void ratio of noncohesive soils and similar materials. Journal of Geotechnical Engineering,ASCE, 1992,118(9): 1315-1334
    [3] Aberg,B.. Washout of grains from filtered sand and gravel materials. Journal of Geotechnical Engineering, ASCE, 1992,119(1):36-53
    [4] Achmus, M., and Mansour, B.GS.. Comparing finite element and empirical analysis methods for the Assuit barrage apron. International Journal on Hydropower and Dams, 2003,10(3): 101-105
    [5] ADIL Elkrail, Shu L.C,and Hao Z.C.. Numerical Simulation of Groundwater Dynamic for Songhuajiang River Vally in China. Journal of Hydrodynamics. 2004.16(3):332-335
    [6] Armencea, G. A head loess critierion for piping , applied ti levees. Water Resources Engineering. 1998,2:1571-1576
    [7] Arulanandan,k.,and Perry,E.B.. Erosion in relation to filter design criteria in earth dams. Journal of Geotechnical Engineering,ASCE, 1983,109(5):682-698
    [8] Arya, L. M., and Paris, J.F.. A physicoemical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Socirty of America Journal, 1981,45:1023-1030
    [9] Arya, L.M., Leij, F. J. and Shouse, P. J., et al. Relationship between the hydraulicconductivity function and the particle-size distribution. Soil Science of America Journal, 1999,63:1063-1070
    [10] Arya, L.M., Leij, F. J. and Van Genuchten, M.T.,et al. Scaling Parameter to predict the soil water characteristic from particle-size distribution data. Soil Science Society of America Journal, 1999,63:510-519
    
    [11] B. P. B. Hoomans, J. A. M. Kuipers, W. J. Briels and W. P. M. van Swaaij. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. Chemical Engineering Science. 1996,51(1):99-118
    
    [12] Baker, F.G and J. Bouma. Variability of hydraulic conductivity in two subsurface horizons of two silt loam soils. Soil Sci. Soc. Am. J., 1976,Vol.40:219-222
    
    [13] Ba?ant, Z.. Measuring soil deformation caused by the pressure of the seepage. In: 17th Int. Navig. Congr., Lisbon, Sect(1), 1949. 195-198
    
    [14] Ba?ant, Z.. Stability of a non-cohesive soil under elliptic upward seepage. Proc. Of the 3rd Int. Conf. On SM&FE, Zurich, 1953, Vol.2:198-203
    
    [15] Bear, J.. Dynamics of Fluids in Porous Media. New York: American Elsevier Publishing Co., Inc., 1972
    
    [16] Brama, S.P.Seepage through an imperfect cutoff wall. Indian Geotechnical Journal, 1972, 2(2): 140-148
    
    [17] Brown, Dan A., Derick, R. Kenneth. Piping failure of a non-dispersive clay dam. In:Engineering Aspects of Soil Erosion, Dispersive Clays and Loess. Proceedings of a Symposium Held in Conjunction with the ASCE Convention. Atlantic City, NJ, USA:ASCE (Geotechnical Special Publication n 10), New York, NY, USA, 1987,79-85
    
    [18] Casagranda, A.. Seepage Through Dams, Journal of the New England Water Works Association, 1937, Jane, Republished in 'Contributions to Soil Mechanics 1925-1940'. BSCE:1403-1433
    [19] Chang-Yu Ou,Dar-Chang Chiou,and Tzong-Shiann Wu. Three-dimensional finite element analysis of deep excavation. J.Geotechnical Engineering, 1996.5(122)
    [20] Chen,C.-J., Chen,H.-C. Development of Finite Analytic Numerical Method for Unsteady Two Dimensional Convective Transport Equation. In: Proceedings of the Symposium - International Association for Hydraulic Research: Refined Modelling of Flows. Paris: Presses de l'Ecole Natl des Ponts et Chaussees, 1982:69-78
    [21] Chugaev, R. R.. Design and Calculation of the Underground Profile of Dam on Pervious Foundation, In: Proc. Of the 6th ICOLD. New York, 1958, Question No.21, Vol.2:14
    [22] Cundall, P. A. A computer model for simulation progressive large scale movement in blocky rock systems. Proceeding of the symposium of the international socity for rock mechanics, Nancy, France, 1971, Vol.1: 2-8
    [23] Cundall, P. A. and O. D. L. Strack. A discrete numerical model for granular assemblies. Geotechnique, 1979,29 (1): 47-65
    [24] Cundall, P. A. Computer Simulations of Dense Sphere Assemblies. Micromechanics of Granular Materials, 1988,113-123
    
    [25] Cundall, P. A. PFC2D User's Manual (Version 3.1), Itasca Consulting Group, Inc., 1999
    [26] Cundall, P. A., M. Board & J. Tinucci. Numerical modeling related to rockburst research. Applied Rockburst Research, Santiago: Editec, 1945,43—59
    [27] Cundall, P., Strack, O. A discrete numerical model for granular assemblies. Geotechnique, 1979, Vol.29 (1): 47-65
    [28] D. J. White, W. A. Take, M. D. Bolton. Measuring soil deformation in geotechnical models using digital images and PIV analysis, 10th International Conference on Computer Methods and Advances in Geomechanics, Rotterdam: Balkema, 2001, 997-1002
    [29] D.Van .Zyl, M.E.Harr,Seepage Erosion Ananlyses f Structures, Processing of the 10th International conference on Soil Mechanics and Foundation Engineering ,Stockholm,Part 1: 503
    [30] Dan Zaslavsky,Gabriel Kassiff. Theoretical formulation of piping mechanism in cohesive soils. Geotechnique, 1965,19(3):305-316
    [31] De Wit, J. M., Sellmeijer, J. B. and Penning, A.. Laboratory Testing on Piping. In: Proc. Int. Conf. Soil Mech. Found. Eng., Delft Soil Mech Lab, Stockholm, Swed: A. A. Balkema, 1981, Vol. 1:517-520
    
    [32] Design for Stream Restoration.Journal of Hydraulic Eng.,Aug:2003,129(8):575-587
    [33] Domjan, J.. Piping of Soils Near Dams. Proc, of the 5th Int. Conf. on Soil Mech. and Found. Eng., 1969, Vol.2: 581-583
    [34] E. Helland, R. Occelli and L. Tadrist. Numerical study of cluster and particle rebound effects in a circulating fluidised bed, Chemical Engineering Science,2005. 60(1) :27-40
    [35] Ehss, H.. Grundlagen zum hydraulischen Grundbruch bei Stauhaltungen im durchlaessigen Erdreich. Der Bauingenieur, 1960, Vol.35(11):423-431
    [36] Fell, R., Wan, C.F., and Cyganiewicz, J. et al. Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(4):307-314
    [37] Foster, Mark, and Fell, Robin. Assessing embankment dam filters that do not satisfy design criteria. Journal of Geotechnical and Geoenvironmental Engineering, 2001,127(5):398-407
    [38] Foster, Mark, Fell, Robin, and Spannagle, Matt. Method for assessing the relative likelihood of failure of embankment dams by piping. Canadian Geotechnical Journal,2000,37(5):1025-1061
    [39] Foster, Mark; Fell, Robin; Spannagle, Matt. Statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 2000,37(5): 1000-1024
    [40] Frenkel, Haim, and Rhoades, J. D.. Effects of dispersion and swelling on soil hydraulic conductivity. Journal of Testing & Evaluation, 1978,6(1):60-65
    [41] Fukuoka, M, and Yamamura, K. Full-scaled model tests of slope failure of river embankments. Proc. Of International Conference on SMFE 1966,12:467-471
    [42] Goodman,R.E.,and Sundaram P.N.. Permeability and Piping in fracturedd rocks. Journal of Geotechnical Engineering Division,ASCE,1980,106(GTS):485-498
    [43] Hagerty.DJ.. Piping/sapping erosion.I:basic considerations. Journal of Hydraulic Engineering 1991,117(8):991-1008
    [44] Hagerty,D.J.. Piping/sapping erosion.II: identification- diagnosis. Journal of Hydraulic Engineering ,1991,117(8):1009-1025
    [45] Hakuju Yamakuchi, Tsutomu Kimura & Nariald Fuji. On the influence of progressive failure on the bearing capacity of shallow foundations in dense sand. Soils and Foundations, 1976,16 (4): 11-22
    [46] Hanses, U., Mueller-Kirchenbauber, H., and Stavros, S. Zur Mechanik der rueckschreitenden Erosion under Deichen und Daemmen. Bautechnik,1985,5:163-168
    [47] Harza, L.F.. Uplift and Seepage Under Dams on Sand. Transactions of ASCE,Vol.100, 1935, Paper No.l00:1386-1406
    [48] Hsu, S. J..Aspects of piping resistance to seepage in clayey soils. In: Proceedings of the International Conference on Soil Mechanics and Foundation Engineering.Stockholm, Swed: A. A. Balkema, 1981.Vol(1):421-428
    [49] Indraratna, B., and Vafai, F.. An experimental study of the filtration of a lateristic clay slurry by sand filters. Proceedings of the institution of Civil Engineerings, Geotechnical Engineering, 1996, 119:75-83
    [50] Itasca Consulting Group, Verification Problems and Example Applications [M] , USA. Minneapolis, 2005: 8-9
    [51] J.B.Sellmeijer,A mathematical model for piping,Appl. Math. Modelling, 1991,Vol. 15,,Nov-Dec.
    [52] Jie Ouyang and Jinghai Li. Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chemical Engineering Science. 1999,54(13-14):2077-2083
    [53] K?lin,M. Hydraulic piping - theoretical and experimental findings. Canadian Geotechnical Journal, 1977,14:107-124.
    [54] Kalkani, E.C., Finite differences analysis of seepage. International Water Power and Dam Construction. 1992.1(44):21-23
    [55] Kenney.T.C, and Lau,D. Internal stability of granular:Reply. Canadian Geotechnical Journal, 1986,23:420-423
    [56] Kenney,T.C, and Lau,D.. Internal stability of granular. Canadian Geotechnical Journal, 1985, 22: 215-225.
    [57] Kentaro, Yamamoto & Jun Otani, Microscopic Observation on Progressive Failure of Reinforced Foundations, Soils and Foundations, 2001, 41 (1): 25~37.
    [58] Kezdi, A.. Process of Hydraulic Soil Failure. Acta Technica Acad. Sci. Hungary, 1976, Vol. 82(3-4): 245-254
    [59] Khalid A., Alshibli and Stein Stme. Sand shear band thickness measurement by digital imaging techniques. Journal of Computing in Civil Engineering, 1999, 13 (2): 103~109
    [60] Khalid A., Alshibli and Stein Sture. Shear Band Formation in Plane Strain Experiments of Sand, Journal of Geotechnicai and Geoenvironmentai Engineering / June 2000 p. 495~503.
    [61] Khalid A., Mshibli, SusanN. Batiste, Stein Stare. Strain Localization in Sand: Plane Strain versus Triaxial Compression. Journal of Geotechnical and Geoenvironmental Engineering. 2003, 129(6): 483~494
    [62] Khilar, K. C., Folger, H. S., and Gray, D. H.. Model for piping-plugging in earthen structures. J. Geotech. Eng., 1985, 111(7): 833-846
    [63] Khilar, K. C., Folger, H. S. and Ahluwalia, J. S.. Sandstore water sensitivity: existence of a critical rate of salinity decrease for particle capture. Chemical Engineering Science, 1983, 38(5): 789-800
    [64] Khosla, A. N., Bose, N. K. and E. McKenzie, Taylor. Design of Weirs on Permeable Foundations, India: Central Board of Irrigation, Publication No. 12, 1936. 200
    [65] Koenders, M. A., and Selhneijer, J. B.. Mathematical model for piping. J. Geotech. Eng., 1992, 118(6): 943-948.
    [66] Kohno, Ichiro, Nishigaki, Makoto, and Takeshita, Yuji. Levee failure caused by seepage and prevent measures. Natural Disaster Science, 1987, 9(2): 55-76
    [67] L. Opyrchal. Application of Fuzzy Sets Method to Identify Seepage Path through Dams. July 2003, 129(7): 546-560
    [68] Lafleur, J., Miynared, J, and Rollin, A. L.. Filtration of broadly graded cohesionless soils. Journal of Geotechnical Engineering, 1989, 115(12): 1747-1768
    [69] Lafleur, J.. Filter testing of broadly graded cohesionless tills. Cnandian Geotechnical Journal, 1984, 21: 634-643
    [70] Lane, E. W.. Security from underseepage: Masonary dams on earth foundations. Trans. Am. Soc. Civ. Eng.. 1935, 100: 1235-1272.
    [71] Leonards, G. A., Huang, A. B., and Ramos, J.. Piping and erosion tests at conner run dam. J. Geotech. Eng., 1991, 117(1): 108-117
    [72] Liu, Zhong-Yu, and Miao, Tian-De. Assessment for the noneohesive piping-typed soils. Yantu Lixue/Rock and Soil Mechanics, 2004, 25(7): 1072-1076
    [73] Lovell, Charles William, and Wiltshire, Richard L.. Engineering aspects of soil erosion, dispersive clays and loess. In: Engineering Aspects of Soil Erosion, Dispersive Clays and Loess. Proceedings of a Symposium Held in Conjunction with the ASCE Convention. Atlantic City, NJ, USA: ASCE (Geotechnical Special Publication n 10), New York, NY, USA, 1987, 169
    [74] Lundgren, T. S.. Slow flow through stationary random beds and suspensions of spheres. Journal of Fluid Mechanics, 1972, 51: 273-299
    [75] Marlone, G. H. Hutchinson, T. E., and Prager, S.. Molecular models for permeation through thin membranes: the effect of hydrodynamic interaction on permeability. Journal of Fluid Mechanics, 1974, 65: 753-767
    [76] Marsland, A.. Model Experiments to Study the Influence of Seepage on the Stability of a Sheeted Excavation in Sand. Geotechnique, 1953, 3(2): 233-240
    [77] Martin, C. S.. Effect of a porous sand bed on incipient motion. Water Resources Research, 1970, 6(4): 1162-1174
    [78] Masannat, Y. M.. Development of piping erosion conditions in the benson area, arizona, U. S. A.. Quarterly Journal of Engineering Geology, 1980, 13(1): 53-61
    [79] McDowwll-Boyer, L. M., Hunt, J. R., and Sitar, N.. Particle transport through porous media. Water Resources Research, 1986, 22(13): 1901-1921
    [80] Measurements of Sediment Erosion and Transport with the Adjustable Shear Stress Erosion and Trasport Flame, Nov. 2003, 129(11): 862
    [81] Meyer, W., Schuster, R. L., and Sabol, M. A.. Potential for seepage erosion of landslide dam. J. Geotech. Engrg., ASCE, 1994, 120(7): 1211-1229
    [82] Miiligan, V.. Internal stability of granular: Discussion. Canadian Geotechnical Journal, 1986, 23: 414-418
    [83] Mindlin, R. D., and H. Deresiewicz. "Elastic Spheres in Contact under Varying Oblique Forces, "J. Appl. Mech., 1953, 20, 327~344
    [84] Mohamed, M., Samuels, P. G, and Morris, M. W.. Uncertainties in dam failure modelling with the US NWS BREACH model. In: River Basin Management-First International Conference on River Basin Management. Cardiff, United Kingdom: WITPress, 2001, 129-138
    [85] Nakajima, Y.. Study of the Failure of Piping in Polder Dikes for Land Reclamation, Soils and Foundations, 1968, Vol. 8(4): 30-47
    [86] Odgaard, A. Jacob, Jain, Subhash C., and Luzbetak, Douglas J.. Hydraulic mechanisms of riverbank erosion. In: Proceedings of the 1989 National Conference on Hydraulic Engineering. New Orleans, LA, USA: Publ by ASCE, 1989, 112-117
    [87] Ojha, C. S. P., Singh, V. P., and Adrian, D. D.. Determination of Critical Head in Soil Piping. Journal of Hydraulic Engineering, 2003, 129(7): 511-518
    [88] Ojha, C. S. P., Singh, V. P., and Adrian, D. D.. Influence of porosity on piping models of levee failure. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127, 12: 1071-1074
    [89] Perry, Edward B.. Piping in earth dams constructed of dispersive clay; Literature review and design of laboratory tests. United States Waterways Experiment Station, Vicksburg, Miss, Technical Report, 1975, 125
    [90] Perry, Edward B.. Susceptibility of dispersive clay at grenada dam, mississippi, to piping and rainfall erosion. Technical Report - US Army Engineer Waterways Experiment Station, 1979, 9: 165
    [91] Peter, P.. Piping problem in the danube valley in Czechoslovakia. Proceeding, 4th Danube European Conference SMFE, International Society for Soil Mechanics and Foundation Engineering, London, 35-40
    [92] Peter, P.. Vyskum filtra?nych poruch z hi' adiska stability dunajskych hradzi. Geol. Pru zkum, 1974, 16. 199-202
    [93] Potyond D. O., Cundall P. A.. Modeling Notch-formation Mechanisms in the URL Mine-by Test Tunnel Using Bonded Assemblies of Circular Particles. Int. J. Rock Mech. Min. Sci., 1998, Vol. 35
    [94] Radoslaw L., Michalowski and Aigen Zhao. Failure of Fiber-Reinforced Granular Soils, Journal of Geotechnical Engineering / March 1996 p. 226-234.
    [95] Radoslaw L., Michalowski and Lei Shi. Deformation patterns of Reinforced Foundation Sand at Failure, Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 2003,129 (6): 439-449
    [96] Radoslaw L., Michalowski and Lei Shi. Bearing Capacity of Footings over Two-Layer Foundation Soils, Journal of Geotechnical Engineering / May 1995 p. 421-428.
    [97] S. Nemat-Nasser and N. Okada. Radiographic and microscopic observation of shear bands in granular materials. Geotechnique, 2001, 51 (9): 753-76
    [98] S. Shibuya, T. Mitachi and S. Tamale, Interpretation of direct shear box testing of sands as quasi-simple shear, Geotechnique, 1997,47 (4). 769 -790
    [99] Sato, T, Uno, T.. Probabilistic approach to hydraulic fracturing in heterogeneous soil. In: Computational Methods in Subsurface Hydrology-Proceedings of the 8th International Conference on Computational Methods in Water Resources. Venice, Italy:Publ by Springer-Verlag Berlin, 1990,463-468
    [100] Schmiderbauer, J.. Die Schwimmsanderscheinungen beim senkrecht auf steigenden Grundwasserstrom. Diss. Tech. Hochsch. Hannover, 1950
    [101] Schofield A N. Dynamic and earthquake geotechnical centrifuge modeling[A]. Int Conf on Recent Adv in Geotech Earthquake Eng and Soil Dyn[C]. St. Louis, Missouri, 1981:1081-1100.
    [102] Sellmeijer, J. B., and Koenders, M. A.. A mathematical model for piping. Appl. Math. Modelling, 1991,15(6): 646-651
    [103] Sellmeijer, J.B..Piping due to flow towards ditches and holes. Proceedings of Euromech. 1981,69-72
    [104] Sellmeijer, Joannes Baptista. On The Mechanism of Piping Under Impervious Structures:[Dissertation] .The Netherlands: Technische Universiteit Te Delft, 1988
    [105] Sentko, M.. Der Zeitliche Ablouf des Schwimmsand aufbruches und der Einfluss der geometrischen Anordung der Baugrubenumschliess ungen auf das kritische Gefaelle:[Dissertation]. Veroffentlichungen Institu fuer Bodenmechanik, Karsruhe: Technische Hochschule, 1961,No.7
    [106] Sherard, J.L., and Dunnigan,L.P. Internal stability of granular: Discussion. Canandian Geotechnical Journal, 1986,23:418-420
    [107] Sherard, J.L., Decker, R.S.,and Ryker, N.L.,et al. Piping in earth dams of dispersive clay.Geotechnical Special Publication, 1992,32:55-93
    [108] Sherard, J.L., Dunnigan, L.P., and Talbot, J.R.. Basic properties of sand and gravel filters. Journal of Geotechnical Engineering, 1984(a), 110(6):684-700
    [109] Sherard, J.L.,and Decker, R.S.. Dispersive calys.related piping, and erosion in geotechnical projects. In:ASTM Special Technical Publication-Dispersive Clays, Relat Piping, and Erosion in Geotech Proj, Symp Presented at the ASTM Annu Meet,Chicago, IL, USA: 79th.ASTM, Philadelphia, Pa, 1977,486
    [110] Sherard, J.L.,Dunnigan,L.P., Decker, R.S., and Steele, E.F.. Pinhole test for identifying dispersive soils. J. of Geotechnical Engineering division. ASCE, 1976, 102(GT1):69-85
    [111] Sherard, James L., Decker, Rey S., and Ryker, Norman L. Hydraulic fracturing in low dams of dispersive clay. Geotechnical Special Publication, 1992, 32:94-131
    [112] Singh,and Sukhmander. Conference on Embankment Dams, Geotechnical Special Publication, 1992,32:575
    [113] Skempton, A.W., and Brogan, J.M.. Experiments on piping in sandy gravels:disscusion. Geotechnique, 1994,44(3): 449-460
    [114] Spring, F.M., Jr.,Ullrich, C.R., and Hagerty, D.J.. Streambank stability. Journal of Geotechnical Engineering, 1985, 111(5):624-640
    [115] Stability of a Non-Cohesive Soil Under Elliptic Upward Seepage- Proceedings of the third international conference on soil Mechanics & foundation Engineering,Switzerland, 1953
    [116] Takemura, J., Okamura, M, Suesmasa, N. and Kimura, T. (1992): Bearing capacirty and deformations of sand reinforced with geogrids, Proc. Int. Earth Reinforcement Practice, Fukuoa, Kyushu, Japan, 695-700
    [117] Tam, C.K.W.. The drag on a cloud of spherical particles in low Reynolds number flow. Journal of Fluid Mechanics, 1969,38:537-546
    [118] Tanaka, T, and Verruijt, A.. Seepage failure of sand behind sheet piles- the mechanism and practical approach to analyze. Soils and Foundations, 1999,39(3):27-35.
    [119] Tannka, T., amd Toyokuni, E.. Seepage-failure experiments on multi-layered sand columns -effects of flow conditions and residual effective stress on seepage-failure phenomena, Soil and Founation, 1991, 31(4): 13-36
    [120] Terzaghi, K.,and Peck, R.. Soil mechanics in engineering practice. 2nd ed. John Wiley and Son Inc., New York, 1967 First class
    [121] Terzaghi, K.. Der Grundbruch an Stauwerken und seine Verhuetung, Die Wasserkraft, 1922, Vol. 17:445-449 First class
    [122] Terzaghi, K.. Effect of minor geologic details on the safety of dams. Technical Publication No. 215, Class I, Mining Geology, No. 26, American Institute of Mining and Metallurgical Engineers, New York, 1929. 31-46. First class
    [123] Terzaghi, K.. Theretical Soil Mechanics. New York: John Wiley &Sons, Inc., 1943 First class
    [124] Tomlinson, S.S., and Vaid, Y.P.. Seepage forces and confining pressure effects on piping erosion. Canadian Geotechnical Journal, 2000,37(1):1-13 First class
    [125] Ulrich, C.R., Hagerty, D.J., and Holmberg, R.W.. Surficial failures of alluvial streambanks, Canadian Geotechnical Journal, 1986, 23:304-316
    [126] Van Zyl, D., and Harr, M.E.. Seepage erosion analyses of structures. In: Proc. 10th Int. Conf. On Soil Mech. and Found. Eng.. Stockholm, Sweden, 1981. Vol.1, 530-509
    [127] Van Zyl, Dirk. Seepage Erosion of Geotechnical Structures Subjected to Confined Flow-A Probabilistic Design Approach:[dissertation]. London: Purdue University, 1979
    
    [128] Vaughan, P.R., and Soares, H.F.. Design of filters for clay cores of dams. Journal of Geotechnical Engineering Division,ASCE,1982,108(GT1):17-31
    
    [129] Wan, Chi Fai, and Fell, Robin. Investigation of rate of erosion of soils in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 373-380
    [130] Wan, Chi Fai, Fell, Robin. Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical Testing Journal, 2004, 27(3): 295-303
    [131] Watermeyer, C. E, Hall, B. E., and Botha, G. R.. Countering potential piping at an earth dam on dispersive soils, In: Geotechnics in the African Environment-Proceedings of the 10th Regional Conference for Africa on Soil Mechanics and Foundation Engineering and the 3rd International Conference on Tropical and Residual Soils. Mascru, Lesotho: Pubi by A. A. Balkema, 1991, 321-330
    [132] Yamamura, K, and Kutara, K. Seepage flow in river embankment and its influence on stability of slope. Journal of research PWRI, 1974, 18: 89-152
    [133] Zacharias, G.; Ranganatham, B. V.. Studies on piping resistance of cohesive soils. Acta Technica (Budapest), 1975, 80(3-4): 449-464
    [134] Zhang, Wo-Hua, Yu, Gong-Shuan, and Cai, Yuan-Qiang. Mechanism model and artificial intelligence method for prediction and judgment of piping occurring in embankment, ournal of Zhejiang University (Engineering Science), 2004, 38(7): 902-908
    [135] 白永年.中国堤坝防渗加固新技术[M].北京:中国水力水电出版社,2001
    [136] 包承纲,饶锡保.土工离心模型的试验原理.长江科学院院报,1998,15(2):1-3
    [137] 贝尔·J 著.多孔介质流体动力学.李竞生译.北京:中国建筑工业出版社,1983
    [138] 播一山、杨小彬、马少鹏,岩石变形破坏局部化的白光数字散斑相关方法研究岩土工程学报,2002b,24(1):98-100
    [139] 曹敦侣,曹罡,邹大元,常耀胜.水工建筑物渗流管涌的Monte-Carlo模拟.人民长江,1997,28(6):11-13
    [140] 曹敦侣.渗流管涌的随机模型.长江科学院院报,1985,(2)
    [141] 陈东平,冯德平.整治管涌的计算方法.广西水利水电,2001,(2):80-81,88
    [142] 陈建生,李兴文,赵维炳.堤防管涌产生集中渗流通道机理与探测方法研究.水利学报,2000,(9):48-54
    [143] 陈建生.堤防管涌渗流破坏机理及地水位综合示踪探测方法研究:[硕士学位论文].南京:河海大学,2000
    [144] 赤井浩一,大西有三,西恒诚.有限元要素法饱和—不饱和渗透流解析.土木学会论文报告集,1997,264:87-96
    [145] 高大钊,土力学与基础工程,北京:中国建筑工业出版社,1998
    [146] 高建新,变形测量的数字图像相关分析法,同济大学学报,1997,25(1):98-103
    [147] 高建新、周辛庚,数字散斑斑相关方法的原理与应用,力学学报,1995,27(6):724-731
    [148] 郭见扬.防汛堤坝、坝基结构与渗透变形.岩石力学与工程学报,1998,17(6):674-6
    [149] 何永红,王建明,李粉灵.粗粒土渗透变形机制浅析.西北水电,2002,(2):44-46
    [150] 洪毓康.土质学与土力学.北京:人民交通出版社,1990
    [151] 胡展飞,张刚,周健.软土基坑突水模拟试验基底变形研究,地下空间与工程学报,2005,1(4):638-641
    [152] 胡展飞.地下水对软土深基坑影响效应试验研究与工程应用[博士学位论文].上海:同济大学.2002
    [153] 黄扬一,彭良余,罗仁辉.阳新长江干堤险工险段工程地质分析与评价.人民长江,2002,33(7):11-12,22
    [154] 冷元宝,李跃伦,黄宜更,陈晓军.流场法探测堤坝管涌渗漏新技术.人民黄河,2001,23(11):36-37
    [155] 李明清.御洪—98湖北省防汛指挥部的日日夜夜.湖北人民出版社,1999,(4):1-2
    [156] 李守德,张晓海,刘志祥.基坑开挖工程管涌发生过程的模拟.工程勘察,2003,(2):14-21
    [157] 李文胜.管涌产生的力学原因及排除方法.物理通报,1999,(1):12-13
    [158] 李兴文.堤防管涌渗透破坏机理及低水位综合示踪探测方法研究:[硕士学位论文].南京:河海大学,2000
    [159] 李元海,数字照相变形量测技术及其在岩土模型试验中的应用,上海:同济大学博士学位论文,2003
    [160] 梁勇然.条形基坑的突涌分析.岩土工程学报,1996.1(18):75-79.
    [161] 廖雄华,周健.粘性土室内平面应变试验的颗粒流模拟,水利学报,2002.12:11-17
    [162] 林志.关于管涌的试验研究和理论分析:[硕士学位论文].上海:同济大学,2001
    [163] 刘建刚,陈建生,焦月宏.砂砾石地基渗漏涌砂模型.大坝观测与土工测试,2001,25(3):41-43
    [164] 刘建刚,陈建生,赵维炳.典型地基渗漏的完整井管涌模型及其涌砂影响范围的估算.工程勘察,2002,(4):26-31
    [165] 刘杰.土的渗透稳定与渗流控制.北京:水力电力出版社,1992
    [166] 刘杰.土石坝渗流控制理论基础工程经验教训.北京:中国水力水电出版社,2006
    [167] 刘洋,砂土液化破坏的细观力学机制与数值模拟[D],上海:同济大学博士学位论文,2006
    [168] 刘忠玉.无粘性土中管涌的机理研究:[博士学位论文].兰州:兰州大学,2001
    [169] 陆培炎.评定渗流管涌公式.岩土力学,2001,22(4):389-394
    [170] 毛昶熙,段祥宝,蔡金傍等.堤防非稳定渗流几个关键值的经验公式.水利学报,2004,1:52-57
    [171] 毛昶熙,段祥宝,蔡金傍等.堤基渗流管涌发展的理论分析.水利学报,2004,12:46-50
    [172] 毛昶熙,段祥宝,蔡金傍等.堤基渗流无害管涌试验研究.水利学报,2004,11:46-53,61
    [173] 毛昶熙,段祥宝,蔡金傍等.悬挂式防渗墙控制管涌发展的理论分析.水利学报,2005,36(2):174-178
    [174] 毛昶熙,段祥宝,蔡金傍等.悬挂式防渗墙控制管涌发展的试验研究.水利学报,2005,36(1):42-50
    [175] 毛昶熙,段祥宝,冯玉宝.管涌与滤层的研究(Ⅱ)滤层.岩土力学,2005,26(5):680-686
    [176] 毛昶熙,段祥宝,毛佩郁等.堤防渗流与防冲.北京:中国水利水电出版社,2003.
    [177] 毛昶熙.管涌与滤层的研究:管涌部分.岩土力学,2005,26(2):209-215
    [178] 毛昶熙.渗流计算分析与控制.北京:水利电力出版社,1990.
    [179] 屈俊童,砂土地基的爆炸法密实试验研究及细观数值模拟[D],上海:同济大学博士学位论文,2006
    [180] 汝乃华,牛运光.大坝事故与安全—土石坝.北京:中国水力水电出版社,2001
    [181] 沙金煊.堤坝下游减压井的渗流近似计算.南京水利科学研究院,水利水运科学研究,1991,(1):85-89
    [182] 沙金煊.多孔介质中的管涌研究.水利水运科学研究,1981,Vol.3:89-93
    [183] 沙金煊.预测堤防背侧管涌的一种方法.水利水运工程学报,2003,(4):57-59
    [184] 沈华中等.长江堤防防洪效果与效益.人民长江,1999,30(2):21-23
    [185] 沈珠江著.理论土力学.北京:中国水利水电出版社,2000
    [186] 时拓青.在钻孔内作管涌试验的方法及其讨论.贵州地质,2000,17(62):66-69
    [187] 唐益群,林志,叶为民等.流土和管涌破坏机理研究.环境岩土工程理论与实践.首届环境岩土工程学术交流会论文集,2002,94-99
    [188] 陶同康.土工合成材料与堤坝渗流控制.北京:中国水力水电出版社,1999
    [189] 滕凯,康百赢.关于堤坝管涌计算方法的进一步研究.岩土工程技术,2003,(1):11-15
    [190] 王孝存,加筋地基的加筋机理和破坏模式试验研究与颗粒流数值模拟[D],上海:同济大学博士学位论文,2006
    [191] 魏山忠,仲志余.结合长江防洪实际做好流域治理专项规划.人民长江,1999,30(2):46-47
    [192] 吴良骥.无粘性土管涌临界坡降的计算.水利水运科学研究,1980,Vol.4:90-95
    [193] 席少霖编著.非线性最优化方法.北京:高等教育出版社,1992
    [194] 谢红,张家发,吴昌瑜,张伟.水布垭水利枢纽三维渗流场有限元分析.长江科学院院报,1999,16(1):37-41
    [195] 叶建忠,砂土中桩端刺入破坏模式的模型试验与颗粒流数值模拟[D],上海:同济大学博士学位论文,2006
    [196] 易朝路,郭志高,汪丙国,李玲,徐贵来.荆江大堤杨家湾险段地下水渗流场特征的模拟研究.岩石力学与工程学报,2002,21(11):1729-1734
    [197] 殷建华.土堤管涌区渗流的有限元模拟.岩石力学与工程学报,1998,17(6):679-686
    [198] 余荣传,基于数字图像技术的砂土模型试验细观结构参数测量[D],上海:同济大学硕士学位论文,2006
    [199] 宇野尚雄.堤防护岸渗透破坏非定常不饱和渗透解析关研究.文部省科学研究费,自然灾害特别研究成果,1997:19-54
    [200] 曾庆有,侧向受荷桩模型试验与颗粒流分析:[同济大学博士学位论文],上海:同济大学土木工程学院,2005.
    [201] 曾远,土体破坏细观机理及颗粒流数值模拟[D],上海:同济大学博士学位论文,2006
    [202] 张家发,王满星,丁金华.典型条件下堤身堤基渗流规律分析.长江科学院院报,2000,17(5):23-27
    [203] 张家发,吴昌瑜,朱国胜.堤基渗透变形扩展过程及悬挂式防渗墙控制作用的试验模拟.水利学报,2002,(9):108-110
    [204] 张家发等.荆南长江干堤加固工程可行性研究阶段渗流控制措施专题研究报告(研究报告).长江水利委员会长江科学院,1998
    [205] 周健,池永.土的工程力学性质的颗粒流模拟,固体力学,2004,25(4):377-382
    [206] 周健,池永.砂土力学性质细观模拟,岩土力学,2003,24(6):901-906
    [207] 周健,池毓蔚,池永,徐建平.砂土双轴试验的颗粒流模拟.岩土工程学报,2000,22(6):701-704
    [208] 周健,张刚,胡展飞.软土基坑突水判断方法研究,岩石力学与工程学报,2006,25(10):2115-2120
    [209] 周健,张刚.渗流的颗粒流理论细观模拟研究,水利学报,2006,1(37):28-32
    [210] 周健,张刚.管涌现象研究的进展与展望,地下空间,2004,24(4):536-542
    [211] 朱伟,山村和也.堤防地基渗透破坏机制及其治理.南京水利科学研究院,水利水运科学研究,1999,(4):338-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700