用户名: 密码: 验证码:
东北地区东部新生代断陷盆地油页岩特征及成矿机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文综合运用沉积学、层序地层学、古湖泊学、古气候学、地球化学、古生物学、矿床学等多学科,首次对我国东北地区东部断陷盆地油页岩的特征及成矿理论进行系统的研究。
     首次对我国油页岩开展古气候、古构造、古沉积环境条件综合研究,揭示出气候和构造在油页岩成矿过程中,对其含油率和厚度起着重要的控制作用。
     运用层序地层学原理,得出油页岩主要发育于水进体系域和高水位体系域。并运用古湖泊学的原理和方法,揭示了古湖泊的水质是三个盆地具有不同成矿特征的主要控制因素,提出淡水湖盆油页岩成矿模式、半咸水湖盆油页岩成矿模式和含湖沼湖盆油页岩成矿模式。
Oil shale is a kind of important alternative source of energy,which can be used to obtain shale oil and relevant products through dry distillation, generate electricity, keep warm and transport as fuel, and produce building materials, cement and chemical fertilizer, or extract chemical product and metal from the burned waste residue (undergoing oil refining and power generation).Currently, with the increasing demand for energy resources, oil shale has aroused the people’s great attention by the world owing to its enormous, potential and comprehensive value. And a meridian of oil shale exploitation is triggered again. However, behind the quick growing up of oil shale industry, enormous disharmony exists. At present, oil shale is discovered often by outcrop and drilling exploration due to weak metallogenic theory. We can not predict regularity of oil shale formation, and proceed reasonable resource evaluation of oil shale through analogy method. On this background, paper focuses on studying the metallogenic mechanism of oil shale.
     The basic theory of oil shale has never been studied systematically in China. In the thesis, thanks to the poor data of previously published, we choose Cenozoic Fushun Basin, Huadian Basin and Yilan Basin ,which have representative metallogenic mechanism and favourable research condition, in eastern Northeast region as target areas for investigating metallogenic mechanism of fault basin. Moreover, during the study of domestic oil shale, we utilized comprehensively sedimentology, sequence stratigraphy, palaeolimnology, palaeoclimatology, geochemistry, palaeontology and gitology in order to determine metallogenic mechanism of rift basin.
     According to comprehensive analysis including Sr/Ba ratios, palaeontologic fossils (Gastropoda, Shell, Frog, etc.), TiO2/K2O ratios, and the characteristic of clay mineral assemblage, the study reveals that oil shale members in Fushun Basin and Yilan Basin are deposited in freshwater lake environment, oil shale members in Huadian Basin are deposited in brackish lake environment, whereas coal-bearing and oil shale members in Yilan Basin are deposited in lacustrine bog environment with mildly brackish water. Organic types of oil shale in target areas consist of the types I, II1 and II2 kerogen. Among them, the type I kerogen is developed in Huadian Basin and low-grade area in Fushun Basin, the type II1 kerogen is developed in high-grade area in Fushun Basin, coal-bearing members and oil shale members in Yilan Basin, and the type II2 kerogen is only developed in oil shale members in Yilan Basin. In brief, Oil shale in fault basin in China is characterized by hybrid origin.
     Based on mineral features of rocks , geochemical ratios of elements (Ni/Co and Sr/Ba ratios, lanthanonδEu, and positive anomaly of Ce), facies indicator, organic geochemical characteristics (organic matter types, normal paraffin hydrocarbons and isoprenoid), it is confirmed that oil shale in target areas is deposited in semi-deep-deep lake, shallow lake and lacustrine bog environment.
     The research on the equilibrium among the organic matter imput,organic preservervation,inorganic matrix dilution of the three basins indicates that the organic matter of the oil shale has three origins: self-productivity of lake,terrigenous organic matter and aquatic plant. And oil shale has three preservervation forms: water body stratified , fast accumulation of organic matter and water-enclosed .Import of inorganic matrix play a role of dilution in the process of oil shale formation. Optimum organic enrichment occurs where production is maximized and destruction and dilution are minimized. However, frequent gravity flow is unfavorable to the oil shale formation. That is why the depositional environments of Fushun and Yilan Basins is the same, but their oil shale quality is different (Fu shun oil shale with high oil yield but Yilan oil shale with low oil yield).Above regularities are not only reveals the conditions of oil shale enrichment, but also will be an inspiration for the hydrocarbon source rock research, for that oil shale is the best hydrocarbon production potential of the source rocks.
     According the analysis of palaeoclimate, palaeosedimentary environment and palaeotectonics of oil shale formation, there are some rules as follows: palaeoclimate and palaeotectonics are the most important controlling factors. The palaeoclimate of the brackish lake controls the oil yield and thickness according affecting the lake chemical nature and lake level. Brackish lake forms in the semiarid, subhumid, and low precipitation climate and the climate fluctuation directly controls the lake level goes up and down. The flood times controls the oil shale layers, and the flood scale controls the oil yield and the thickness. From the first to the last flood, oil yield and the thickness begins ever higher and thicker separately. The oil yield and the thickness change little in early high system tract, and begin decrease in the late high system tract. The palaeoclimate of the fresh lake controls the oil yield and thickness according affecting the productivity of lake and organic preservervation. In the Warmth and humid climate, nutritive substance come from the land by the abundant precipitation accelerate the lake productivity greatly. The organic matter is well preserved in the stable stratification deep lake. So the oil shale formed in the fresh lake often has big thickness and middle oil yield. While there is a abnormal occurrence in Yilan basin with low oil yield for the frequent gravity flow. Basin-controlling faults and synsedimentary faults control the thickness and oil yield of oil shale. Those rules of mineral-formation conditions will provide theory references for the later resource evaluation and oil shale mineralization prediction.
     Based on the sequence stratigraphy theory, this is the first time to study the oil shale metallogenic in the sequence stratigraphy framework. In the chrono-stratigraphic unit, oil shale mainly distribute in the Transgression system tract and High system tract,and is controlled by integrated factors include climate, tectonics, fluctuation of lake horizon and so on.
     Oil shale in the Transgression system tract has the following features: thin-medium thickness, poor-medium oil yield, mixed tape II1-II2 kerogen. Oil shale in the High system tract has the following features: medium-thick thickness, medium-high oil yield, predominantly tape I kerogen. Among those conditions, the climate is the mainly controlling factor. This oil shale mineralization mechanism of the faulted basin will enrich the whole oil shale metallogenic theory greatly.
     In the Transgression system tract and High system tract, different basins express different mineralization characteristics for different oxidizing-reducing atmosphere, production condition, water chemistry condition and so on. This paper covers palaolake research, which further indicates the distribution regulation of thickness, oil yield, and associated mineral of oil shale in the Transgression system tract and High system tract of every basin. Among those conditions, water chemistry is the major controlling factor for the different mineralization rules of the three Basins. Whereas, paper proposes three mineralization models: freshwater lake mineralization model, brackish lake mineralization model, salt water lake mineralization model. These models will be important to oil shale resource evaluation and multi-purpose exploitation.
引文
[1]PAUL .L.Russell.1990. Oil shales of the world, their origin, occurrence, and exploitation[M].Beijing:Pergamon Press,1-20.
    [2]游君君,叶松青,刘招君等.2004. 油页岩的综合开发与利用.世界地质,23(3):261-265.
    [3]刘招君,柳蓉.2005.中国油页岩特征及开发利用前景分析[J].地学前缘,2005,(12)3:315-323.
    [4]柳蓉,刘招君.2006.国内外油页岩资源现状及综合开发潜力分析[J].吉林大学学报(地球科学版),2006,36(6):892-898.
    [5]刘招君,董清水,叶松青,朱建伟,郭巍,李殿超,柳蓉,张海龙,杜江峰.2006.中国油页岩资源现状[J].吉林大学学报,36(6):869-876.
    [6]K. Brendow. 2003. Global oil shale issues and perspectives [J]. Oil Shale, 20(1):81-92.
    [7]J. R. Dyni. 2003. Geology and resources of some world oil-shale deposits [J]. Oil Shale, 20(3):193-252.
    [8]美国能源部能源信息署. 2004.国际能源展望(清华清洁能源研究与教育中心译)[M].北京:清华大学出版社,1-55.
    [9]R. Talumaa. 2005.Oil shale power prevails in Estonia [J] . Oil Shale, 22(2):93-94.
    [10]P. Raesaar, E. Tiigim?gi, J. Valtin. 2005. Assessment of electricity supply interruption costs in Estonian power system [J] Oil shale, Vol. 22, No. 2 Special:217-232.
    [11]Henry W.Roehler.1993.Eocene climate, depositional environments, and geography, Greater Green river basin, Wyoming, Utah, and Colorado[M].Washington: United States government Printing Office:27-33.
    [12]孟庆涛,刘招君,柳蓉,王永莉.2006.松辽盆地农安地区上白垩统油页岩含油率影响因素[J].吉林大学学报,36(6):963-968.
    [13]T.F.YEN , G.V.Chilingarian.1976.Oil shale [M]. Amsterdam: Elsevier scientific publishing company, 1-267.
    [14]Francis P.Miknis , John F. McKay.1983. Geochemistry and chemistry of oil shales[M]. Washington:American Chemical Society, 1-556.
    [15]陈国达.1951.中国油页岩概论[J].地质评论,16(2):109-140.
    [16]抚顺石油一厂等. 1960.中国页岩油工业[M].北京:石油工业出版社,1-5.
    [17]华东石油学院.1984.油页岩科学研究论文集[M].山东:华东石油学院,1-199.
    [18]候祥麟.1984.中国页岩油工业[M].北京:石油工业出版社,1-301.
    [19]Gavin J.M. 1924.Oil shale [M]. Washington: Washington Government Printing Office, 200-201.
    [20]Кузнедов B.T.1975.Горючие сланлы мира М.Недра[M]:1-100.
    [21]Tissot B P and Welte D H.1984.Petroleum Formation and Occurrence[M].Spinger-Verlag,Berlin Heidelberg New York Tokyo:168-178.
    [22]全国矿产储量委员会办公室.1987.矿产工业要求参考手册[M].北京:地质出版社:313.
    [23]赵隆业,陈基娘,王天顺.1991.关于中国油页岩的工业成因分类[J].煤田地质与勘探,9(5):2-6.
    [24]Bradely W H ,Eugster H P.1969.Geochemistry and palimnology of the trona deposits and associated auhigenic minerals of the Green river Formation of Wyoming[A].America :U.S..Geological Survey professional paper 803:53-53.
    [25]Surdam R C , Wolfbauer.1973.Depositional environment of the Green river Formationof Wyoming:A preliminary report [J]. Geological Society of American Bullein, 84:1115-1120.
    [26]Desborough G A.1978.A biogenic-chemical statratified lake model for the origin of oil shale of the Green river Formation:An atternative to the playa-lake model [J].Geological Society of American Bullein,89:961-971.
    [27]Boyer B W.1982.Green river laminites:Does the playa-lake model really invalidate the statratified-lake model? [J]Geology, 10:321-324.
    [28]钱家麟. 1983.中国页岩油工业[M]东营:华东石油学院:1-80.
    [29]钱家麟,王剑秋,李术元. 2006.世界油页岩综述[J]中国能源,28(8):16-19.
    [30]史权,游喆,郭绍辉,钱家麟.2001.油页岩裂解色谱质谱分析[J]分析测试学报,20(1):197-198.
    [31]李术元,钱家麟. 1995.油页岩沸腾炉燃烧效率的数学模型[J].燃烧科学与技术年,1(2):185-189.
    [32]叶淑芬,魏魁生.1996.松辽盆地白垩系的密集段及海水进侵的新证[J],中国地质大学学报(地球科学版),21(3):267-271.
    [33]刘立,王东坡.1996.湖相油页岩的沉积环境及其层序地层学意义[J],石油试验地质,18(3):311-316.
    [34]邓宏文,王红亮,祝永军等.2002.高分辨率层序地层学-原理及应用[M].北京:地质出版社:91-95.
    [35]Stow D A V,Huc A Y and Bertrand P.2001.Depositional processes of biacd shales in deep water [J]. Marine Geology and Petroleum Geology,18(4):491-498.
    [36]Huc, A Yves; Bertrand, P; Stow, Dorrik A V, et al.2001.Organic sedimentation in deep offshore settings; the Quaternary sediments approach [J]. Marine and Petroleum Geology,18(4):513-517.
    [37]汪品先,刘传联.1993.含油盆地古湖泊学研究方法[M]. 北京:海洋出版:27-165.
    [38]朱光有,金强.2002.烃源岩的非均质及其研究—以东营凹陷牛 38 井为例[J].石油学报,23(5):34-39.
    [39]Fleet A J , Kelts K and Talbot M R. 1988.Lacustrine petroleumsource rocks[M]. The Geological Society by Blackwell Scientific Publications ,London:3-27.
    [40]韦朝阳,万国江.1995.用湖泊沉积研究过去气候变化[J].地质地球化学,23(1):54-57.
    [41]王慧中,梅洪明. 1998. 东营凹陷沙三下亚段油页岩中古湖泊学信息[J]. 同济大学学报,26 (3) :315-319.
    [42]吴丰昌,万国江.1992. 湖泊沉积物中的年纹理与近代环境变化研究进展[J]. 地质地球化学,20(2):50-53.
    [43]王五力,郑少林,张立君等. 1995.中国东北环太平洋带构造地层学[M].北京:地质出版社, 1-164.
    [44]刘茂强,杨丙中,邓俊国等. 1993.伊通-舒兰地堑地质构造特征及其演化[M].北京:地质出版社:1-101.
    [45]王小凤,李中坚,陈柏林等. 2000.郯庐断裂带[M].北京:地质出版社:226-237.
    [46]童亨茂.2002. 伊通地堑边界断裂的性质与演化[J]. 地质力学学报,8(1):35-42.
    [47]张世红,施央申,孙岩等. 1991.黑龙江完达山造山带及其与那丹哈达地体的关系[J].南京大学学报(地球科学),3:287-294.
    [48]邵济安等.1999.大兴安岭中生代伸展过程中的岩浆作用[J].地学前缘, 6(4):399-346.
    [49]孙革,郑少林,孙学坤等.黑龙江东部侏罗-白垩纪界限附近地层研究新进展[J].地层学杂志.1992,16(1):48-54.
    [50]张理刚,王可法,陈振胜等. 1993.中国东部中生代花岗岩长石铅同位素组成与铅同位素省划分[J].科学通报,38(3):251-257.
    [51]徐嘉伟,马国锋. 1992.郯庐断裂带研究的十年回顾[J].地质论评,38(4):316-324.
    [52]刘海山,郝天珧. 1992.勃利盆地侏罗系、白垩系、第三系古地磁研究及其意义[J].沈阳地质矿产所集刊.北京:地质出版社.
    [53]荆凤,申旭辉,洪顺英等.2006.基于遥感技术研究依兰-伊通断裂带[J].地震,26 (3):79-84.
    [54]抚顺石油一厂.1960.中国页岩油工业[M].北京:石油工业出版社:5-5.
    [55]厚刚福,董清水,于文斌等.2006.抚顺盆地油页岩特征及其成矿过程[J].吉林大学学报(地球科学版),36(6):991-995.
    [56]辽宁省地质矿产局. 1989.辽宁省区域地质志[M].北京:地质出版社:281-664.
    [57]王集源,王东方.1982.抚顺地区古新世老虎台组玄武岩的 K-Ar 法年龄测定[J].辽宁地质学报,1:110-116.
    [58]王东方. 1996.抚顺古新世玄武岩特征及其在郯庐断裂发展中的构造意义[J].岩石矿学学杂志, 5(3):213-219.
    [59]Wu Chonglong, Yang Qi,Zhuduo,et al.2000.Thermodynamic analasis and simulation of coal metamorphism in Fushun basin,China[J].International Joural Coal Geology, 44:149-168.
    [60]吉林省地质矿产局.1988.吉林省区域地质志[M].北京:地质出版社:260-413.
    [61]张健,刘招君,杜江峰等.2006.黑龙江依兰盆地古近系达连河组油页岩沉积特征[J].吉林大学学报(地球科学版),36(6):980-985.
    [62]姜剑虹,王文化.2005.依兰矿区老第三纪聚煤环境与聚煤模式探讨[J]. 炭技术, 24(2):90-91.
    [63]舒正文.2006.依兰矿区老第三纪达连河组聚煤环境及聚煤规律[J]. 中国煤田地质,18(3):20-252.
    [64]黑龙江省地质矿产局.1993.黑龙江省区域地质志[M].北京:地质出版社:8-43.
    [65]黄清华,孔惠,金玉东.2002.依兰-伊通地堑方正断陷孢粉组合及其地层层序[J]. 微体古生物学报,19 (2):193-198.
    [66]王世辉,陈春瑞,郑玉龙等.2006. 黑龙江省达连河油页岩地球化学特征及成因探讨[J].吉林大学学报(地球科学版),36(6):933-937.
    [67]王永莉,刘招君,荆惠林等.2005. 桦甸盆地古近系桦甸组油页岩矿床沉积特征[J].吉林大学学报,6:720-731.
    [68]Finkelman R B.199a.Trace element in coal. Environment anf health significance.Biological Tace Element Research,67(3):197-204.
    [69]Solari J A, Fiedler H, Schneider C L.1989.Modelling of the distribution of trace elements in coal.Fuel 68(4):536-539.
    [70]Pires M , Fiedler H, Teixeira E C.1997.Geochemical distribution of trace elements in coal: Modelling and Environment aspects.Fuel,30(7):2981-2987.
    [71]王中刚,于学元,赵振华.1989.稀土元素地球化学[M]. 北京:科学出版社:310~313.
    [72]唐修义,黄文辉.2004.中国煤中微量元素[M]. 北京:商务印书馆:1~368.
    [73]陈冰如,钱琴芳,杨亦男等.1985.我国 107 个煤矿中微量元素的浓度分布[J] .科学通报,1:65-80.
    [74]孙景信,Jervis R.E.1986. 煤中微量元素及其在燃烧过程中的分布特征[J] .中国科学(A 辑),12.
    [75]徐琪.1991.中国煤中伴生元素的聚集与扩散[J] .煤炭学报,1:64-72.
    [76]王运泉,任德贻,雷加锦.1997. 煤中微量元素分布特征初步研究[J] .地质科学,1:32-38.
    [77]邵靖邦,曾凡桂,王宇林等.1997.平庄煤田煤中稀土元素地球化学特征[J].煤田地质与勘探:13-16.
    [78]Roser B P. Korsch R J. 1988.Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major element data[J] . Chemical Geology,67:119-139.
    [79]傅家谟,秦匡宗.1995.干酪根地球化学[M].广州:广东科技出版社:28-74.
    [80]瓦尔特.吕尔. 1986.焦油(超重油)砂和油页岩(中译本)[M].地质出版社:97-17.
    [81]张厚富,张万选.1989.石油地质学[M]. 北京:石油工业出版社:10-32.
    [82]赵师庆.1991.实用煤岩学[M].北京:地质出版社:5-91.
    [83]邬立言,顾信章,盛志纬等.1986.生油岩热解快速定量评价[M] . 北京:科学出版社:23-80.
    [84]Michael A. Marchiarullo and Robert T. Ross .1985.Resolution of component spectra for spinach chloroplasts and green algae by means of factor analysis[J] .Biochimica et Biophysica Acta (BBA) - Bioenergetics, 807(1):52-63.
    [85]赵志根.2002.含煤岩系稀土元素地球化学研究[M] . 北京:煤炭工业出版社:30-108.
    [86]石学法,陈丽蓉,马建国等.1996.西菲律滨海沉积物稀土元素地球化学[J]. 矿物学报,16(3):260-266.
    [87]Collers,R.L.1975.Rareearth distributions in clay minerals and Claysized fractinaf of the Lower Permian Havepsville and Eskridge Shales of Kansas and Oklahoma,Geochim.et Cosmochim[J].Acta,39:1691 -1703.
    [88]Bhatia,M.R.and Crook,K.A.W,1986.Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,Contrib[J].Mineral Petrol ,92(2):181-193.
    [89]Hugh R.Rollison. 1986.岩石地球化学[M]. 杨学明,杨晓勇,陈双喜译.北京:中国科技大学出版社:134-164.
    [90]Katz BJ. 1988. An organic geochemical comparison (Green River Formation and East African lake sediments) [A]. (In): Fleet, A J; Kelts, K; Talbot, M R .Clastic and carbonate lacustrine systems[C].Geological Society Special Publications,40:81-90.
    [91]Katz, Barry J; Emeis, K C.1990.Hydrocarbon shows in the scientific ocean drilling programs[J]. AAPG Bulletin, 74(5):691-692.
    [92] Robison Vaughn D,Katz Barry J, Kilgore Laura S.1990.Marine source rock prediction using a GCM; a look at the Paleozoic[J] AAPG Bulletin, 74(5):750.
    [93]Bissada, K,Katz,B J; Barnicle,et al.1988.On the origin of hydrocarbons in the Gulf of Mexico basin; a reappraisal [A].Annual Research Conference. Gulf Coast Section. Society of Economic Paleontologists and Mineralogists. Program and Abstracts, 9:1-1.
    [94]Katz, B J; Emeis, K C.1988.Hydrocarbon shows in scientific ocean drilling Proceedings[J]Offshore Technology Conference, 20(2):423-430.
    [95]Kelts K.1988.Environments of deposition of lacustrine petroleum source rocks:an introduction,in A.J.Fleet,K.Kelts,and M.R.Talbot,eds,.Lacustrine Petroleum Source Rocks:Oxford,Geological Societv Special Paper 40:3-26.
    [96]Kelts, K.1985.Petroleum source rocks in lakes[J]. Episodes, 8(4):267-268.
    [97]Kelts, K.1985.Salt lakes and SLEADS[J]. Episodes, 8(1):58-59.
    [98]Kelts, K; McKenzie, J.1985.Significance of anoxic dolomite in the Laney Shale Member of the Green River Formation[A] Abstracts with Programs - Geological Society of America, 17(7):626.
    [99]Hsue, K J; Kelts, K.1985.Swiss lakes as a geological laboratory; Part 1, Turbidity currents[J]. Naturwissenschaften, 72(6):315-321.
    [100]Hsue, K J; Kelts, K.1984.Quaternary geology of Lake Zurich; an interdisciplinary investigation by deep-lake drilling[A] Contributions to Sedimentology, 13:210.
    [101]Beadle, L C.1981.The inland waters of tropical Africa; an introduction to tropical limnology[M]. United Kingdom :London,1-300.
    [102]Kemp A E S.1996. Palaeoclimatology and Palaeoceanography from Laminated Sediments. London: Geological Society Special Publicacion No.116.1~251.
    [103]King, S C; Murray, J W; Kemp, A E S.1998.Palaeoenvironments of deposition of Neogene laminated diatom mat deposits from the eastern Equatorial Pacific from studies of benthic Foraminifera (sites 844, 849, 851) [J].Marine Micropaleontology, 35(3-4):161-177.
    [104]Cragg, B A; Kemp, A E S.1995.Bacterial profiles in deep sediment layers from the eastern Equatorial Pacific Ocean, Site 851 [A].(in):Stewart, Sondra K. Proceedings of the Ocean Drilling Program, Scientific Results, 138:599-604.
    [105]Pearce, R B; Kemp, A E S; Baldauf, J G.1995.High-resolution sedimentology and micropaleontology of laminated diatomaceous sediments from the eastern Equatorial Pacific Ocean [A].(in):Stewart, Sondra K. Proceedings of the Ocean Drilling Program, Scientific Results, 138:647-663.
    [106]Kemp, A E S.1995.Early sediment fabrics [J].Journal of the Geological Society of London, 152: 117-118.
    [107]Kemp, A E S.1995.Laminated sediments from coastal and open ocean upwelling zones; what variability do they record? [M].(in):Summerhayes, C P; Emeis, K C; Angel, M V,et al. Environmental Sciences Research Report, 18:239-258.
    [108]薛叔浩,刘雯林,薛良清等.2002.湖盆沉积地质与油气勘探[M]. 北京:石油工业出版社:55-73.
    [109]刘传联,徐金鲤. 2002.生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报, 1:144-150.
    [110]汪品先,陈嘉树,刘传联等编译.1991.古湖泊学译文集[M].北京:海洋出版社:1-88.
    [111]K.M.Bohacs,A.R.Carroll,J.E.Neal,P.J.Mankiewicz.2000.Lake-basin Type,Source Potentional, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemichal Framework[A]. In:E.H.Gierlowski-Kordesch,K.r.Kelts. Lake basins through space and time[C]. U.S.A: AAPG studies in Geology:3-33.
    [112]Stephen R.Schutter.1998. characheristics of shale deposition in relation to stratigraphy sequence system tracts[A]. In : Shale and Mudstones I[C]. Stuttgart:E.Schweizerberbart’sche Verlagsbuchhandlung:79-108.
    [113]Dill H ,Teschner M and Wehner H. 1988. Petrography ,inorganic and organic geochemistry of lower Permian carbonaceous fan sequences(“Brandschiefer Series”) Federal Republic of Germany : Constraints to their paleogeography and assessment of their sourcerock potential[J]. Chemical Geology ,67 : 307-325.
    [114]Jones B and Manning D A C. 1994. Comparison of geological indices usedfor the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology ,111 : 111-129.
    [115]Mongenot T ,Tribovillard N P ,Desprairies A ,Lallier-Verges E and Laggoun-Defarge F. 1996. Trace elements palaeoenvironmental markers in strongly mature hydrocarbon source rocks : The CretaceousLa Luna Formation of Venezuela[J]. Sedimentary Geology ,103 : 23-37.
    [116]Singer A.1979.The Paleoclimatic Interpretaion of Clay Minerals in Soil and Weathering-a Review[J].Eath-Sci.Rev.15:303-326.
    [117]Singer A.1984.The Paleoclimatic Interpretaion of Clay Minerals in Sediment-a Review[j].Eath-Sci.Rev,21:251-293.
    [118]Singer, A; Stoffers, P; Heller-Kallai, L, et al.1984.Nontronite in a deep-sea core from the South Pacific[J] Clays and Clay Minerals, 32(5):375-383.
    [119]Deconinck J F,Blanc-Valleron M M,Rouchy J M,et al .2000.Palaeoenvironmental and diagenetic control of the mineralogy of upper Cretaceous-Lower Tertiary deposits of the Central Palaeo-Andean basin of Bolivia(potosi area)[J].Sediment.Geol.,132(3-4):263-278.
    [120]Thiry M.2000.Palaeoclimatic interporetation of clay minerals in marine Deposits an outlook from the continental origin[J].Eath-Sci.Rev.49(1-4):201-221.
    [121]汤艳杰,贾建业,谢先德. 2002 . 粘土矿物的环境意义[J].地学前缘,9(2):337-344.
    [122]蓝先洪.1990.粘土矿物作为古气候指标矿物的探讨[J].地质科技情报,9(4):31-35.
    [123]Singer A and Stoffers P.1980 .Clay-mineral diagenesis in two East African lake sediment[J].ClayMiner.,15:291-307.
    [124]Chamley H.1989.Clay Sedimentology[M].Berlin:Spring-Verlag,55-200.
    [125]邓宏文,钱凯. 1993.沉积地球化学与环境分析[M].甘肃:甘肃科学技术出版社,1-150.
    [126]莱铒曼.1989.湖泊的化学地质学和物理学[M].王苏民等译.北京:地质出版社,2-230.
    [127]Talbot M R Kelts K.1990Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbonrich lacustrine sediments[J].AAPG Memoir,50:61-76.
    [128]Talbot M R .1990.A review of the aeohydmlog eal interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J].Chem Geol(Isotope Geosciences Section),80:261-279.
    [129]Kelts K. Talbot M R.1990.Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[A].Tilzer M M.Serruya C. Gelogical Structure and Function in Large Lakes[C] Madison Wis.,Science Tech:290-3617.
    [130]Lister G S.1988.Stable isotopes from lacustrine ostracoda as traces for continentalpalaeoenvironments[A]De Dsekker P Colin J P . Peypouquet , Ostracoda in the Earth Sciences[C]Amsterdam:Elsevier: 201-218.
    [131]刘传联,赵泉鸿,汪品先.2001. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J].地球化学,30(4):363-367.
    [132]洪友崇,阳自强,王士涛,孙湘君等著.1980.辽宁抚顺煤田地质及其古生物群研究[M].科学出版社:1-95.
    [133]赵传本,叶得泉,魏德恩等.1994.中国油气区第三系[M].北京:石油工业出版社:100-118.
    [134]刘牧灵.1990.黑龙江省依兰煤田始新世达连河组孢粉组合[J].中国地质科学院沈阳地质矿产研究所所刊,20:111-136.
    [135]李思田.1988.断陷盆地分析与聚煤规律[M]. 北京:地质出版社,229-235.
    [136]徐同台,王行信,张有瑜.2003.中国含油气盆地粘土矿物[M].北京:石油工业出版社:535-536.
    [137]南京大学地质系.1984.地球化学[M].北京:科学出版社:357-358.
    [138]Yemel'yanov, Ye M; Trimonis, E S; Shimkus, K M.1975. Fe, Al, Ti, and Mn in suspended matter in the Black Sea [J].Geochemistry International, 12(5):134-148.
    [139]Shimkus, K M; Trimonis, E S.1974.Modern Sedimentation in Black Sea [J]. Memoir - American Association of Petroleum Geologists, 20:249-278.
    [140]Trimonis, E S.1974.Some Characteristics of Carbonate Sedimentation in Black Sea[J]. Memoir - American Association of Petroleum Geologists, 20:279-295.
    [141]Berner, Robert A. 1971.Bacterial processes effecting the precipitation of calcium carbonate in sediments[J]. Studies in Geology, 19:247-251 .
    [142]Berner, Robert A.1971.Worldwide sulfur pollution of rivers[J]. Journal of Geophysical Research, 6(27):6597-6600.
    [143]Berner, Robert A.1970.Sedimentary pyrite formation[J].American Journal of Science, 268(1):1-23.
    [144]Berner, Robert A; Scott, Martha R; Thomlinson, Catherine.1970.Carbonate alkalinity in the pore waters of anoxic marine sediments [J].Limnology and Oceanography, 15(4):544-549.
    [145]李智民.1992. 鄂尔多斯盆地侏罗纪坳陷湖泊的淤浅机制和聚煤作用[M].北京:地质出版社:42-72.
    [146]邵震杰,任文忠,陈家良.1999.煤田地质学[M].北京:地质出版社:240-247.
    [147]张瑞生,王华,吴冲龙等.2001. 抚顺盆地沉积动力学特征及其聚煤意义[J].沉积学报,19(3):375-380.
    [148]吴冲龙,汪新庆,刘刚等.2002.抚顺盆地构造演化动力学研究[J].中国科学 D 辑,31(6):177-485.
    [149]Posamentier H W and Vail P R. Eustatic controls on clastic deposition Ⅱ--Sequence and systems tract models[M]. In: Wilgus C K, et al. (eds), Sea-level changes: an integrated approach. SEPM Special Publication, 1988, 42: 125-154.
    [150]刘招君,董清水,王嗣敏等.2002.陆相层序地层学导论与应用[M],北京:石油工业出版社:1-170.
    [151]刘招君,董清水,郭巍等.1998.断陷湖盆层序地层特征及模式—以松辽盆地梨树断陷为例[J].长春科技大学学报, 28(增刊):54-58.
    [152]刘招君,郭巍,董清水等.1997.湖盆层序地层学术语体系及模式——以松辽盆地西部斜坡为例[J].长春地质学院学报,27(增刊Ⅱ):54-60.
    [153]蔡希源,李思田.2003.陆相盆地高精度层序地层学-隐蔽油气藏勘探基础、方法与实践[M]. 北京:地质出版社:45-52.
    [154]Delorme L. D. and Zoltai S. C.1984.Distribution of an arctic ostracod fauna in space and time[J].Quaternary Research, 21(1):65-73.
    [155]纪友亮,张世奇.2005.陆相断陷湖盆层序地层学[M]. 北京:石油工业出版社:81-81.
    [156]李庆谋,刘少华.2001.地球物理信号能量多维分形及应用。地球物理进展,16(1):24-30.
    [157]王志坤, 王多云, 宋广寿, 等. 2005.测井信号小波分析在高分辨率层序地层划分中的应用[J ]. 大庆石油学院学报, 2005, 29 (6) :17-20.
    [158]威尔格斯 C.K.等著.1993.徐怀大,魏魁生,洪卫东等译.层序地层学原理(海平面变化综合分析).北京:石油工业出版社.
    [159]魏魁生,徐怀大,雷怀玉等.1996.非海相层序地层学——以松辽盆地为例[M].北京:地质出版社.
    [160]李思田等.1992.论沉积盆地的等时地层格架和基本建设单元[J].沉积学报,10(4):11-12.
    [161]李思田.1993.含煤盆地层序地层分析的几个问题[J].煤田地质与勘探,21(4):18-25.
    [162]刘招君,王东坡,何起祥.1985.攀西地区上三叠统湖泊浊积岩和沉积特征及其地质意义[A].见张云湘主编:中国攀西裂谷文集.北京:地质出版社:298-306.
    [163]顾家裕.1995.陆相盆地层序地层学格架概念及模式[J].石油勘探与开发,22(4):6-10.
    [164]顾家裕等.1997.层序地层学及其在油气勘探开发中的应用[M].北京:石油工业出版社.
    [165]胡受权,颜其彬.1998.泌阳断陷双河—赵凹地区陆相层序地层学模式[J].地质科学,33(4):435-446.
    [166]胡受权.1997.试论构造因素对泌阳断陷陆相层序形成的影响机制[J].大地构造与成矿学, 21(4):315-322.
    [167]纪友亮,张世奇等.1998.层序地层学原理及层序成因机制模式[M].北京:地质出版社.
    [168]姜在兴,李华启等.1996.层序地层学原理及应用[M].北京:石油工业出版社.
    [169]姜在兴,操应长等.2000.砂体层序地层及沉积学研究[M].北京:地质出版社.
    [170]郭占谦,迟元林.1991.依兰一伊通地堑南北两段地质差异及油气勘探前景[J].大庆石油勘探与开发,10(3):1-12.
    [171]柳蓉,刘招君,杨建国等. 2006.汤原断陷古近系层序地层及沉积体系分析[J].世界地质,6(36):963-968.
    [172]Stumm and Morgan. 1970. Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters [M]. United States:Spring-Verlag:55-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700