用户名: 密码: 验证码:
Nd:LuVO_4晶体特性及其全固态激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的不断发展,激光器在军事、工业、医疗、科研以及我们的日常生活中发挥着越来越重要的作用。LD泵浦的全固态激光器由于其结构简单紧凑、效率高、光束质量好、稳定性好,成为目前激光器件的研究热点。激光晶体是全固态激光器的重要组成部分,它的物理和光谱性质决定了激光器的输出特性。近几年来,在一些新研究的激光晶体中,Nd:LuVO_4激光晶体由于具有优良的激光特性而受到人们的重视。首先,Nd:LuVO_4晶体具有大的吸收截面和吸收带宽,适中的激光上能级寿命,可以应用到低阈值的微片激光器中。而且,Nd:LuVO_4晶体在1.06μm的发射截面高于其它钒酸盐晶体,拥有比Nd:YVO_4晶体更高的热导率,可以在大功率泵浦中获得稳定、高效的激光输出。另外,Nd:LuVO_4激光器的输出具有很好的偏振特性,在频率转换中能得到较高的转换效率。Nd:LuVO_4晶体是在2002年被首次报道,目前对它的激光研究开展的还不多,只有少量的连续和声光Q特性研究。本论文对提拉法生长的Nd:LuVO_4晶体的结构、热学、光谱、全固态激光器输出特性进行了较系统的理论和实验研究。主要研究内容概括如下:
     (1)介绍了LD泵浦的全固态激光器的发展历史及LD泵浦的全固态激光器的优点,并对几种常用激光晶体的物理和光学特性作了比较分析。对Nd:LuVO_4晶体的研究现状进行了全面的概括和总结,并就Nd:LuVO_4晶体今后可能应用于全固态激光器的几个热点领域进行了展望。
     (2)对拉曼散射理论及Nd:LuVO_4晶体结构的研究。从经典和量子理论两个方面研究了拉曼散射谱线的频移和强度。通过商群理论对Nd:LuVO_4晶体对称性分类进行了计算,结果为:Γ=5A_(1g)+7B_(1g)+2B_(2g)+10E_g,最多可以观察到34支拉曼活性光学模。通过选取X(ZZ)(?),X(YY)(?),Z(XY)(?),Y(XZ)(?)的几何配置,利用共焦显微拉曼光谱仪获得了A_(1g)、A_(1g)+B_(1g)、B_(2g)、E_g模,并对获得的谱线进行了指认。除了A_(1g)中的ν_2模由于和ν_4模重叠而有所加宽外,其余的谱线都很细锐,细锐的拉曼谱线证明了Nd离子的掺入并没有使晶体微观结构产生大的位错和形变。而且X(ZZ)(?)配置中,A_(1g)对称类的ν_1模(V-O对称伸缩振动)对应的拉曼峰903cm~(-1)强度最大,是实现拉曼激光器的首选谱线,可以沿着a轴通光实现自拉曼输出。
     (3)对Nd:LuVO_4晶体热学特性(热导率、热膨胀系数、比热)的研究。通过用激光闪烁法测量Nd:LuVO_4晶体的热扩散系数,利用公式k=αρC_P计算了Nd:LuVO_4晶体的热导率。热导率随着温度的升高而降低,而且c向热导率大于a向热导率。在330K时,a轴热导率为7.9W/mK,c轴热导率为9.7W/mK,高于Nd:YVO_4晶体。测量的比热为0.45J/gK,比热大,在晶体内部引起的温度梯度小,所能承受的抗损伤阈值高。而且Nd:LuVO_4晶体具有适中的热膨胀系数,因而Nd:LuVO_4晶体拥有优良的热学性能,适合中高功率激光泵浦。
     (4)对Nd:LuVO_4晶体光谱特性的研究,包括偏振吸收谱、荧光谱、透过谱。利用光谱仪测量了Nd:LuVO_4晶体的偏振吸收谱。利用JO理论并使用Origin软件对Nd:LuVO_4晶体吸收和发射的光谱参数进行了计算,结果表明:Nd:LuVO_4晶体对π偏振光的吸收明显强于σ偏振。计算了~4F_(3/2)态的能级寿命以及由此态向低能态跃迁的荧光分支比、受激辐射几率、谱线强度、振子强度、积分发射截面。得出~4F_(3/2)的能级寿命为129μs。1.06μm的荧光分支比最大,为50.22%,有最强的激光振荡强度和积分发射截面,是最容易实现振荡的一条谱线。0.9μm的谱线具有较大的荧光分支比和基态斯塔克分裂值,也是很有应用价值的一条谱线。而且,Nd:LuVO_4晶体在近红外波段有较高的透过率。
     (5)从四能级的速率方程出发,推导了激光器稳态条件下,连续运转激光的输入输出特性,讨论了LD端面泵浦固态激光器的阈值和斜效率。对连续运转的a-cut轴和c-cut轴1.06μm和1.34μm的Nd:LuVO_4激光器进行了实验研究,讨论了输出镜对激光输出特性的影响以及激发态吸收对1.34μm激光输出的影响。当T=10%,泵浦功率为19W时,a-cut轴的Nd:LuVO_4激光器最大输出功率为7.67W,光-光转换效率和斜效率分别为40.3%和50.5%;对于1.34μm,当T=4%,泵浦功率为16.18W时,c-cut轴的Nd:LuVO_4激光器得到了2.015W的输出,其光-光转换效率和斜效率分别为12.5%和14.2%。对于1.34μm的激光器,a-cut轴的Nd:LuVO_4激光器输出效率低于c-cut轴的Nd:LuVO_4激光器。
     (6)考虑饱和吸收体的激发态吸收,对被动调Q的速率方程进行了研究,得到了速率方程的解,并模拟了脉宽、重复频率、峰值功率、单脉冲能量随Cr~(4+):YAG初始透过率和输出镜透过率的变化关系。首次对Nd:LuVO_4晶体被动调Q激光特性进行了研究,分析了Q参数的影响因素。得到的最高光-光转换效率为10.7%,斜效率为17.6%(T_0=85%,T=40%);最窄脉宽为12ns(T_0=70%,T=40%);最高重复频率为156kHz(T_0=85%,T=10%);最大单脉冲能量为33.9μJ,最大峰值功率为2.83kW(T_0=70%,T=40%)。并和Nd:YVO_4晶体的调Q输出特性进行比较,发现Nd:LuVO_4晶体比Nd:YVO_4晶体拥有更窄的脉宽和更低的重复频率,因而Nd:LuVO_4激光器能得到更高的单脉冲能量和峰值功率。
     (7)首次开展了Nd:LuVO_4晶体锁模激光器的研究。利用折叠腔理论,考虑泵浦光在Nd:LuVO_4晶体内引起的热透镜效应,对锁模激光器的谐振腔进行了优化设计。实验中,采用V型腔并使用不同输出镜透过率和不同初始透过率的饱和吸收体,实现了锁模激光器的稳定运转。在激光晶体上的光斑半径为200μm,饱和吸收体上的光斑半径为34μm,光斑压缩比为6,锁模调制深度达到了40%-50%。并讨论了Cr~(4+):YAG初始透过率对锁模调制深度的影响。
     (8)从耦合波方程出发,对光学参量振荡原理进行了研究。通过非线性晶体KTP的折射率方程,采用Ⅱ类相位匹配,得出当θ=90°,φ=0°,1.06μm泵浦时,可以得到1.57μm波长人眼安全激光输出。使用内腔式单谐振OPO,声光调Q方式,KTP为Ⅱ类非临界相位匹配,首次对Nd:LuVO_4晶体1.57μm光参量振荡激光器进行了实验研究。获得1.57μm最短脉宽为4ns,实现了对泵浦光有效的脉宽压缩,压缩比为6,最大的单脉冲能量和峰值功率分别为24μJ、4.8kW。讨论了声光开关频率对激光器泵浦阈值的影响,对1.57μm激光出现的次级脉冲进行了分析,并提出了减小次级脉冲的方法。使用KTP晶体的临界相位匹配,声光调Q方式,实现了Nd:LuVO_4晶体的脉冲绿光输出,单脉冲能量和峰值功率分别达到了66μJ和2.6kW。
With the development of laser technique, lasers are widely used in fields of military, industry, medical treatment, scientific research and our daily life. Diode pumped solid state lasers (DPSSL) have become the central focus of the field of lasers due to their many advantages such as compactness, high efficiency, good quality of light beam, high stability and etc. Laser crystal is an important part of laser system and its physical and spectral properties make a significant role on characteristics of laser output. Now, Nd:LuVO_4 crystal attracts our attention among new crystals. Firstly, Nd:LuVO_4 crystal can be used in low threshold microchip laser system due to its large absorption cross-section, wider absorption band and medium life time. Secondly, Nd:LuVO_4 lasers can obtain high and efficient output in high pump laser system because it has higher emission cross-section and thermal conductivity than Nd:YVO_4 crystal. At last, the output is polarized light with which high efficiency can be obtained in frequency conversion. Nd:LuVO_4 crystal was firstly reported in 2002, so only a little research work on its CW and acousto-optically Q switched properties has been done. This dissertation presents much work on theoretical and experimental researches which contains structure, spectra, thermal and laser properties of Nd:LuVO_4 crystal. The main context can be outlined as follows:
     (1) The history and merit of laser diode pumped all solid-state lasers were introduced and physical and optical charateristics of several laser crystals were also discussed. The work of Nd:LuVO_4 crystal at present was summarized and the expections of Nd:LuVO_4 crystal was given at the same time.
     (2) Raman shift and intensity were studied from classical and quantum theory. And we calculate the symmetry species of Nd:LuVO_4 crystal by group theory. The Raman-active optical phonon modes of zero wave vector were:r = 5A_(1g) + 7B_(1g) +2B_(2g) +10E_g. In theory, no more than 34 Raman peaks can be measured. Raman spectra were measured with scattering geometry X(ZZ)X, X(YY)X, Z(XY)Z, and Y(XZ)Y, whichcorresponds to symmetry species modes of A_(1g), A_(1g)+B_(1g), B_(2g) and E_g, respectively. The Raman spectra were measured by micro-Raman spectrophotometer and Raman spectra peaks were assigned one by one. Raman spectra peaks were narrow except in v_2, which implies that VO_4 and Lu/NdO_8 groups were undistorted. And intensity of 903cm~(-1) inmode A_(1g) with scattering geometry X(ZZ)X was the strongest, whichcan be used in self-Raman lasers along a-cut Nd:LuVO_4 crystal.
     (3) The thermal diffusion coefficient of Nd:LuVO_4 crystal was measured by the laser flash method and then thermal conductivity could becalculated according toλ=αρC_p. Thermal conductivity decreased whenthe temperature increased, and it was larger in [001] dierection than that of [100] direction. The thermal conducitivty is 7.9Wm~(-1)K~(-1) at 330K for a-axis while 9.7Wm~(-1)K~(-1) for c-axis. The specific heat is 0.45Jg~(-1)K~(-1), which is larger than that of Nd:LuVO_4 crystal and lower thermal gradient will be induced in laser crystal. So, Nd:LuVO_4 crystal have well thermal properties and is an prosperous candidate for high pump power laser system.
     (4) We measured the polarized absorption spectra, luminescence spectra and transmission spectra of Nd:LuVO_4 crystal. By using JO theory and Origin software, the optical parameters such as absorption cross-section,life time of metastable state ~4F_(3/2), branching ratio, oscillator strength and integrated emission cross-section were calculated. The life time of ~4F_(3/2) is 129μs. It can be seen from the calculated results that the valuesof absorption cross-section ofπpolarization are higher than that of a polarization. Nd:LuVO_4 crystal can provide some practical applications at 1.06μm due to the larger fluorescence branching ratio of 50.22%, oscillator strength, and integrated emission cross-section when pumped at 0.8μm. And 0.9μm laser emission is also a prosperous spectrum for its large fluorescence branching ratio and Stark split.
     (5) From four energy level rate equation, we obtain input and output relationship of solid-state lasers under stable conditions. The threshold and slope efficiency were also discussed for end pumped laser systems. We demonstrated a-cut and c-cut Nd:LuVO_4 laser systems with radiation at 1.06μm and 1.34μm. The transmission T of output couplers impacts the output power. At the incident pump power of 19W, output power of 7.67W was obtained, corresponding to the optical conversion efficiency of 40.3% and the slope efficiency of 50.5% with transmission T=10% at 1.06μm while for 1.34μm, the output of 2.015W was obtained for T=4% at the incident pump power of 16.18W, given optical conversion efficiency of 12.5% and slope efficiency of 14.2%. The excited absorption played an important role on radiation of 1.34um and a-cut Nd:LuVO_4 laser had lower conversion efficiency than that of c-cut Nd:LuVO_4 laser.
     (6) The excited absorption of saturable absorber was taken into account in passively Q-switched rate equations. By numerically solving these rate equations, a group of curves were generated. These curves clearly show the dependence of the Q-switched characteristics such as pulse width, repetition rate, peak power and pulse energy on the T_0 of saturable absorber and T of output coupler. We demonstrated an LD pumped Nd:LuVO_4 passively Q-switched laser for the first time. The higest opt-opt conversion efficiency and solpe efficiency were 10.7% and 17.6% (T_0=85%,T=40%), respectively. The narrowest pulse width was 12ns (T_0=70%,T=40%), the higest pulse repetition was 156kHz(T_0=85%,T=10%)> the maximum pulse energy and peak power were 33.9μJ and 2.83kW (T_0=70%,T=40%) , respectively. Comparison was also done between passively Q-switched characteristics of Nd:LuVO_4 and Nd:YVO_4 laser. Narrower pulse width and lower repetition rate can be obtained in Nd:LuVO_4 laser, therefore higher pulse energy and peak power can be gained.
     (7) A passively mode-locked Nd:LuVO_4 laser was performed for the first time. Using different output couplers and saturable absorber, we realized the stable operation of Nd:LuVO_4 mode-locked laser by using 'V-shaped' folded cavity when thermal lens effect was considered. The spot size on Nd:LuVO_4 crystal was 200μm while 34μm on the Cr~(4+):YAG crystal, giving the compression ratio of 6. The modulation depth of mode-locking pulse train reached 40%-50%, and also discussed the influence of small-signal transmission of saturable absorber on modulation depth.
     (8) The principle of OPO was studied by means of coupled wave equations. Meanwhile the researches on KTP crystal were done and when the KTP was cut with angleθ=90°andφ=0°, 1.57μm signal wave can be obtained at pump wave of 1.06um. We reported an intracavity optical parametric oscillator at 1.57μm based on non-critically nonlinear crystal KTP driven by an end-pumped acousto-optically Q-switched Nd:LuVO_4 laser. The narrowest pulse width of 1.57μm was 4ns, which was six times shorter than that of 1.06μm, indicating an efficient shorter mechanism took place in our IOPO systems. The pulse energy and peak power of 24μJ, 4.8kW were obtained respectively with pulse repetition frequency of 5kHz. The reason why the satellite pulse emerged was given and we also gave a method to reduce it. In addition, the Nd:LuVO_4/KTP pulsed green laser was performed for the first time.The maximum pulse energy and peak power were 66μJ and 2.6kW, respectively.
引文
[1] T. H. Maiman, Nature, 187 (1960) 493.
    [2] R. N. Hall, G. E. Fenner, Phys. Rev. Lett., 9 (1962) 366.
    [3] R. J. Keyes, T. M. Quist, Appl. Phys. Lett., 14 (1964) 50.
    [4] M. Ross, Proc. IEEE, 56 (1968) 196.
    [5] F. W. Ostermayer, R. B. Allen, E. G. Dierschke, Appl. Phys. Lett., 19 (1971) 289.
    [6] B. J. Le Garret, G. J. Raze, P. Y. Thro et al., Opt. Lett., 21 (1996) 1990.
    [7] T. Kojima, S. Konno, S. Fujikawa et al., Opt. Lett., 25 (2000) 58.
    [8] J. M. Liu, J. K. Chee, Opt. Lett., 15 (1990) 685.
    [9] A. Agnesi, S. Dell et al. IEEE J. Quantum Electron., 14 (1998) 1480.
    [10] M. K. Reed, W. J. Kozlovsky, R. L. Byer et al., Opt. Lett., 13 (1988) 204.
    [11] E. C. Honea, R. J. Beach, S. C. Mitchell et al., Opt. Lett., 25 (2000) 805.
    [12] D. Gola, S. Knoke, W. Schone et al., Opt. Lett., 20 (1995) 1148.
    [13] R. A. Fields, M. Birnbaum, C. L. Fincher et al., Appl. Phys. Lett., 51 (1987) 1885.
    [14] J. Liu, Z. Shao, H. Zhang et al., Appl. Phys. B, 69 (1999) 241.
    [15] B. Frei, J. E. Balmer, Appl. Opt., 33 (1994) 6942.
    [16] K. C. Peng, Q. Pan, H. Wang et al., Appl. Phys. B, 66 (1998) 775.
    [17] 路鑫超,柴路,张伟力等,激光与光电子学进展,40(2003)11.
    [18] S. A. Payne, L. K. Smith, L. D. Deloach et al., IEEE J. Quantum electron., 30 (1994) 170.
    [19] G. Valentine, A. Kemp, D. J. Birkin et al., Electron. Lett., 36 (2000) 1621.
    [20] H. Liu, J. Nees, G. Mourou, Opt. Lett., 26 (2001) 1723.
    [21] A. Lagatsky, A. Abdolvand, N. V. Kuleshov, Opt. Lett., 25 (2000)616.
    [22] M. J. Lederer, M. Hildebrand, V, Z. Kolev et al., Opt. Lett., 27 (2002) 436.
    [23] F. Druon, F. Balembois, P. Georges et al., Opt. Lett., 25 (2000) 423.
    [24] R. A. Fields, M. Birnbaum, C. L. Fincher et al., Appl. Phys. Lett., 51 (1987) 1885.
    [25] J. Liu, Z. Shao, H. Zhang et al., Opt. Commun., 173 (2000) 311.
    [26] H. Cen, E. Wu, H. P. Zeng, Opt. Commun., 230 (200) 175.
    [27] C. Li, J. Song, D. Shen et al., Appl. Phys. B, 70 (2000) 471.
    [28] A. I. Zagumennyi, V. G. Ostroumov, I. A. Sheherbakov et al., Sov. J. Quantum Electron., 22 (1992) 1071.
    [29] C. P. Wyss, W. Luthy, H. P. Weber et al., Appl. Phys. B, 68 (1999) 659.
    [30] N. P. Barnes, Pro. SPIE, 2-9 (1995) 2379.
    [31] O. B. Noel, B. Bellamy, B. Viana et al., Phys. Rev. B, 60 (1999) 1668.
    [32] C. Maunier, J. L. Doualan, R. Moneorge, J. Opt. Soc. Am. B, 19 (2002) 1794.
    [33] H. J. Zhang, H. K. Kong, S. R. Zhao et al., J. Crystal Growth, 256 (2003) 292.
    [34] S. R. Zhao, H. J. Zhang, J. Y. Wang et al., Opt. Mater., 26 (2004) 319.
    [35] S. R. Zhao, H. J. Zhang, J. H. Liu et al., J. Crystal Growth, 279 (2005) 146.
    [36] 马丽丽,胡小波,张怀金等,人工晶体学报,34(2005)238.
    [37] 赵守仁,张怀金,胡小波等,人工晶体学报,33(2004)363.
    [38] M. Higuchi, T. Shimizu, J. Takahashi et al., J. Crystal Growth, 283 (2005) 100.
    [39] J. H. Liu, H. J. Zhang, Z. P. Wang et al., Opt. Lea., 29 (2004) 168.
    [40] S. R. Zhao, H. J. Zhang, Y. B. Lu et al., Opt. Mater., 28 (2006) 950.
    [41] H. J. Zhang, J. H. Liu, J. Y. Wang et al., Appl. Opt., 44 (2005) 7439.
    [42] C. Y. Zhang, L. Zhang, Z. Y. Wei et al., Opt. Lett., 31 (2006) 1435.
    [43] X. L. Wang, K. M. Wang, G. Fu et al, Opt. Exp., 13 (2005) 675.
    [44] A. Agnesi, A. Guandalini, G. Reali, Opt. Lett., 29 (2004) 56.
    [45] T. Kojima, S. Fujikawa, K. Yasui, IEEE J. Quantum Electron., 35 (1999) 377.
    [46] C. Czeranowsky, H. Eeumann, G. Huber, Opt. Lett., 28 (2003) 432.
    [47] J. H. Yi, H. J. Moon, J. M. Lee, Appl. Opt., 43 (2004) 3732.
    [48] R. S. Conroy, C. F. Rae, G. J. Friel et al., Opt. Lett., 23 (1998) 1348.
    [49] L. Qian, S. D. Benjamin, P. W. E. Smith, Opt. Commun., 127 (1996) 73.
    [50] L. R. Marshll, A. Kaz, O. Aytur, IEEE J. Quantum Electron., 32 (1996) 177.
    [51] T. T.Basier, A. A. Sobol, Y. K. Voronko et al., Opt. Mater., 15 (2000) 205.
    [52] H. M. Pask, Prog. Quantum Electron., 27 (2003) 3.
    [53] P. Cemy, H. Jelinkova, P. G. Zverev et al., Prog. Quantum Electron., 28 (2004) 113.
    [54] Y. Shimony, Z. Burshtein, A. B. Amar et al., IEEE J. Quantum Electron., 32 (1994) 305.
    [55] J. J. Zayhowsk, C. Dill, Opt. Lett., 19 (1994) 1427.
    [56] Y. Yankov, J. Phys. D, 27 (1994) 1118.
    [57] E. Goulielmakis, G. Nersisyan, N. A. Papadogiannis et al., Appl. Phys. B, 74 (2002) 197.
    [58] H. Niikura, F. Legare, R. Hasbani et al., Nature, 417 (2002) 917.
    [59] U. Keller, D. A. B. Miller, G. D. Boyd et al., Opt. Lett., 17 (1992) 505.
    [1] C.V. Raman, K. S. Krishman, Nature, 121 (1928) 501.
    [2] P. Grunberg, J. A. Koningstein, J. Chem. Phys., 53 (1970) 4584.
    [3] 郑顺旋,激光拉曼光谱,上海科学技术出版社,1983
    [4] 张光寅,蓝国祥,王玉芳,晶格振动光谱学,高等教育出版社,2001.
    [5] 赵守仁,张怀金,胡小波等,人工晶体学报,33(2004)363.
    [6] T. Hahn, The International Tables for Crystallography, D. Reidel Publishing Company, 1983.
    [7] J. A. Baglio, B. Gashurov, Acta. Cryst. B, 24 (1968) 292.
    [8] A. I. Zagumennyi, V. G.Ostroumov, I. A. Shcherbakov et al., J. Quantum Electron., 22 (1992) 1071.
    [9] H. Siebert, Z. Anorg. Allgem. Chem., 275 (1955) 225.
    [10] N. Weinstock, H. Schulze, A. Muller, J. Chem. Phys., 59 (1973) 5063.
    [11] H. R. Xia, L. J. Hu, J. H. Zou et al., Cryst. Res. Technol., 33 (1998) 807.
    [12] H. R. Xia, L. X. Li, H. J. Zhang et al., J. Appl. Phys., 87 (2000) 269.
    [13] S. A. Miller, H. H. Caspers, H. E. Rast, Phys. Rev., 168 (1968) 964.
    [14] A. Chaves, S. Porto, Sodid State Common., 10 (1972) 1075.
    [15] J. E. Graebner, M. E. Reiss, L. Seibles, Phys. Rev., 50 (1994) 3702.
    [16] 卢贵武,夏海瑞,孟宪林等,物理学报,51(2002)424.
    [17] H. R. Xia, G. W. Lu, P. Zhao et al., J. Mater. Res., 20 (2005) 30.
    [18] Y. F. Chen, Opt. Lett., 29 (2004) 1915.
    [1] U. O. Farrukh, P. Brockman, Appl. Opt., 32 (1993) 2075.
    [2] B. Comaskey, B. D. Moran, G. F. Albrecht et al., IEEE J. Quantum Electron., 31 (1995) 1261.
    [3] J. L. Blows, J. M. Dawes, T. Omatsu, J. Appl. Phys., 83 (1998) 2901.
    [4] T. Y. Fan, IEEE J. Quantum Electron., 29 (1993) 1457.
    [5] W. W. Ge, H. J. Zhang, J. Y. Wang et al., J. Appl. Phys., 98 (2005) 013542.
    [6] 邱宏伟,钟鹤裕,李红军等,中国激光,2(2002)173.
    [7] S. R. Zhao, H. J. Zhang, J. Y. Wang et al., Opt. Mater., 26 (2004) 319.
    [8] M. E. Irmocenzi, H. T. Yura, C. L. Fincher et al., Appl. Phys. Lett., 56 (1990) 1831.
    [9] 张克从,张乐穗,晶体生长科学与技术,科学出版社,1997.
    [10] H. J. Zhang, L. Zhu, X. L. Meng et al., Cryst. Res. Technol., 34 (1999) 1011.
    [11] H. J. Zhang, J. H. Liu, J. Y. Wang et al., J. Opt. Soc. Am. B, 19 (2002) 18.
    [12] 杜洛金,Y S.Touloukian,固体热物理性质导论-理论和测量,中国计量出版社,1987.
    [13] 奚同康,无机材料热物性学,上海科学技术出版社,1981.
    [14] 肖定全,王民,晶体物理学,四川大学出版社,1989.
    [15] X. Peng, Z. Asundi, Y. Chen et al., Appl. Opt., 40 (2001) 1396.
    [16] S. R. Zhao, H. J. Zhang, J. Y. Wang et al., Opt. Mater., 26 (2004) 319.
    [1] B. R. Judd, Phys. Rev., 127 (1962) 750.
    [2] G. S. Ofelt, J. Chem. Phys., 37 (1962) 511.
    [3] F. Ramos, D. Jaque, J. Romero et al., J. Phys: Condens. Matter, 11 (1999) 3201.
    [4] G. H. Jia, C. Y. Tu, J. F. Li et al., J. Appl. Phys., 11 (2004) 6263.
    [5] 姜本学,赵志伟,徐军等,中国稀土学报,23(2005)27.
    [6] J. A. Caird, L. G. Deshaser, IEEE J. Quantum Electron., 11 (1975) 97.
    [7] H. R. Xia, H. D. Jiang, W. Q. Zhang et al., J. Appl. Phys., 90 (2005) 4433.
    [8] P. A. Studenikin, A. I. Zagumermyi, Y. D. Zavartsev et al., Quantum Electron., 25 (1995) 1162.
    [9] 史宏生,张戈,沈鸿元,人工晶体学报,30(2001)85.
    [10] W. T. Carnall, P. R. Fields, K. Rajnak, J. Chem. Phys., 49 (1968) 4424.
    [11] D. K. Sardar, P. D. Bella, J. Appl. phys., 76 (1994) 5900.
    [12] H. R. Xia, X. L. Meng, M. Guo, J. Appl. Phys., 88 (2000) 5134.
    [13] H. D. Jiang, H. J. Zhang, J. Y. Wang et al., Opt. Commun., 198 (2001) 447.
    [14] T. S. Lomheim, L. G. Deshazer, J. Appl. Phys., 49 (1978) 5517.
    [15] S. R.. Zhao, H. J. Zhang, Y. B. Lu et al., Opt. Mater., 28 (2006) 950.
    [16] C. Maunier, J. L. Doualan, R. Moncorge et al., J. Opt. Soc. Am. B, 19 (2002) 1794.
    [17] G. H. Dieke, H. M. Crosswhite, Appl. Opt., 2 (1963) 675.
    [18] R. T. Wegh, A. Meijerink, R. J. Lamminmaki et al., J. Luminescence, 87 (2000) 1002.
    [19] C. Y. Zhang, L. Zhang, Z. Y. Wei et al., Opt. Lett., 31 (2006) 1435.
    [20] H. J. Zhang, J. H. Liu, J. Y. Wang et al., J. Opt. Soc. Am. B, 19 (2002) 18.
    [21] T. Jensen, V. G. Ostroumov, J. P. Meyn et al., Appl. Phys. B, 58 (1994) 373.
    [1] A. J. Alfrey, IEEE J. Quantum Electron., 25 (1989) 760.
    [2] L. W. Casperson, Appl. Opt., 19 (1980) 422.
    [3] M. J. F. Digonnet, C. J. Gaeta, Appl. Opt., 24 (1985) 333.
    [4] P. Laporta, M. Brussard, IEEE J. Quantum Electron., 27 (1991) 2319.
    [5] T. Y. Fan, R. L. Byer., IEEE J. Quantum Electron., 24 (1988) 895.
    [6] 何京良,博士论文,中国科学院物理研究所,1998.
    [7] D. J. Hall, R. J. Smith, R. R. Rice, Appl. Opt., 19 (1980) 3041
    [8] J. Liu, Z. Shao, H. Zhang et al., Appl. Phys. B, 69 (1999) 241.
    [9] 何京良,侯伟,张恒利等,中国激光,20(2000)481.
    [10] S. Konno, T. Kojima, S. C. Fujikawa et al., Opt. Lett., 25 (2000) 105.
    [11] M. E. Innocenzi, H. T. Yura, C. L. Fincher et al., Appl. Phys. Lett., 56 (1990) 1831.
    [12] M. Okida, M. Itoh, T. Yatagai et al., Opt. Exp., 13 (2005) 4909.
    [13] L. Fornasiero, S. Kuck, T. Jensen et al., Appl. Phys. B, 67 (1998) 549.
    [14] J. L. Blows, T. Omatsu, J. Dawes et al., IEEE Photon. Tech. Lett., 10 (1998) 1727.
    [15] J. L. Blows, J. M. Dawes, T. Omatsu et al., J. Appl. Phys., 83 (1998) 2901.
    [16] H. J. Zhang, J. H. Liu, J. Y. Wang et al., Appl. Opt., 44 (2005) 7439.
    [17] C. Maunier, J. L. Doualan, R. Moncorge et al., J. Opt. Soc. Am. B, 19 (2002) 1794.
    [18] V. Ostroumov, T. Jensen, J. P. Meyn et al., J. Opt. Soc. Am. B, 15 (1998) 1052.
    [19] L. Fornasiero, S. Kuck, T. Jensen et al., Appl. Phys. B, 67 (1998) 549.
    [20] L. Fornasiero, S. Kuck, T. Jensen et al., Appl. Phys. B, 67 (1998) 549.
    [21] H. Y. Shen, X. L. Meng, G. Zhang et al., Appl. Opt., 43 (2004) 955.
    [22] Y. Inoue, S. Konno, T. Kojima et al., IEEE J. Quantum Electron., 35 (1999) 1737.
    [23] A. Agnesi, A. Guandalini, G. Reali, Opt. Lett., 29 (2004) 56.
    [24] J. L. He, G. Z. Luo, H. T. Wang, Appl. Phys. B, 74 (2002) 537.
    [1] N. B. Angert, N. I. Borodin, V M. Garmash et al., Sov. J. Quantum Electron., 18 (1998) 73.
    [2] Y. Ishida, K. Naganuma, Opt. Lett., 21 (1996) 51.
    [3] A. Sennaroglu, C. R. Pollock, H. Nathel, J. Opt. Soc. Am. B, 12 (1995) 930.
    [4] P. J. Cordon, Y. P. Tong, P. M. French et al., 19 (1994) 1468.
    [5] H. Eilers, K. R. Hoffman, W. M. Dennis et al., Appl. Phys. Lett., 61 (1992) 2958.
    [6] J. Miller, OSA Proceeding on Advanced Solid State Lasers, 13 (1992) 322.
    [7] S. Kuck, K. Petemtann, U. Pohlmann et al., Phys. Rev. B, 51 (1995) 17323.
    [8] S. Alphan, R. P. Clifford, J. Opt. Soc. Am. B, 12 (1995) 930.
    [9] A. Suda, A. Kadoi, K. Nagasaka et al., IEEE J. Quantum Electron., 35 (1999) 1548.
    [10] 万小坷,林礼煌,欧和斌等,光学学报,17(1997)1567.
    [11] J. Song, C. Li, K. Ueda, Opt. Commun., 177 (2000) 307.
    [12] Y. Shimony, Z. Burshtein, A. B. Amar et al., IEEE J. Quantum Electron., 32 (1994) 305.
    [13] J. J. Zayhowski, C. Dill, Opt. Lett., 19 (1994) 1427.
    [14] Y. Yankov, J. Phys. D, 27 (1994) 1118.
    [15] X. Zhang, S. Zhao, Q. Wang et al., Opt. Commun., 155 (1998) 55.
    [16] Y. F. Chen, S. W. Tsai, IEEE J. Quantum electron., 37 (2001) 580.
    [17] P. K. Mukhopadhyay, M. B. Alsous, K. Ranganthan, Opt. Laser Technol., 37 (2005) 157.
    [18] P. Wang, S. H. Zhou, K. K. Lee et al., Opt. Commun., 114 (1995) 439.
    [19] A. Sennaroglu, C. R. Pollock, Opt. Lett., 19 (1994) 390.
    [20] J. J. Degnan, IEEE J. Quantum Electron., 31 (1995) 1890.
    [21] X. Y. Zhang, S. Z. Zhao, Q. P. Wang et al., IEEE J. Quantum Electron., 33 (1997) 2286.
    [22] J. G. Liu, D. Kim, IEEE J. Quantum Electron., 35 (1999) 1724.
    [23] J. Dong, Opt. Commun., 226 (2003) 337.
    [24] Y. Kalisky, Pro in Quantum Electronics, 28 (2004) 249.
    [25] T. Dascalu, G. Philipps, H. Weber, Opt. Laser Technol., 29 (1997) 145.
    [26] 周炳琨,高以智,激光原理,北京国防工业出版社,2001.
    [27] H. A. Haus, J. Appl. Phys., 46 (1975) 3049.
    [28] R. Wilbrandt, H. Weber, IEEE J. Quantum Electron., 11 (1975) 186.
    [29] H. C. Geoffrey, Proceedings of the IEEE, 67 (1979) 380.
    [30] J. A. Fleck, Phy. Rev. B, 1 (1970) 84.
    [31] 王加贤,张文珍,王清月等,中国激光,26(1999) 1.
    [32] Y. F. Chen, S. W. Tsai, IEEE J. Quantum Electron., 37 (2001) 580.
    [33] Y. X. Leng, H. H. Lu, L. H. Lin et al., Opt. Laser Technol., 33 (2001) 403.
    [34] P. K. Mukhopadhyay, M. B. Alsous, Opt. Commun., 222 (2003) 399.
    [35] 吕百达,激光光学,高等教育出版社,2003.
    [36] M. E. Innocenzi, H. T. Yura, C. L. Fincher et al., Appl. Phys. Lett., 56 (1990) 1831.
    [1] 范琦康,吴存恺,毛少卿,非线性光学,江苏科学技术出版社,1989.
    [2] J. A. Armstrong, N. Bloembergen, Phys. Rev., 127 (1962) 1918.
    [3] R. H. Kingston, Proc. IRE, 50 (1962) 472.
    [4] N. M. Kroll, Phys. Rev., 127 (1962) 1207.
    [5] S. A. Akhmanov, R. V. Khoklov, Sov. Phys. JETP., 16 (1963) 252.
    [6] C. C. Wang, G. W. Racette, Appl. Phys. Lett., 6 (1965) 169.
    [7] J. A. Giordmaine, R. C. Miller, Phys. Rev. Lett., 6 (1965) 973.
    [8] H. H. Zenzie, P. F. Moulton, Opt. Lett., 19 (1994) 963.
    [9] S. Wu, G. A. Blake, Z. S. Sun et al., Appl. Opt., 36 (1997) 5898.
    [10] R. C. Eckardt, Y. X. Fan, R. L. Byer et al., Appl. Pys. Lett., 49 (1986) 608.
    [11] E. O. Ammann, J. M. Yarborough, M. K. Oshman et al., Appl. Phys. Lett., 16 (1970) 309.
    [12] J. Falk, J. M. Yarborough, E. O. Ammann, IEEE J. Quantum Electron., 7 (1971) 359.
    [13] K. Kato, IEEE J. Quantum Electron., 27 (1991) 1137.
    [14] 石顺祥,陈国夫,赵卫等,非线性光学,西安电子科技大学出版社,2003.
    [15] 赵庆春,郭晶华,陆雨田等,光学学报,15(1993)115.
    [16] 姚建铨,非线性光学频率变换及激光调谐技术,北京科学出版社,1995.
    [17] Y. F. Chen, S. W. Chen, S. W. Tsai et al., Appl. Phys. B, 76 (2003) 263.
    [18] Y. F. Chen, S. W. Chen, S. W. Tsai et al., Appl. Phys. B, 77 (2003) 505.
    [19] R. Dabu, C. Fenic, A. Stratan, Appl. Opt., 40 (2001) 4334.
    [20] L. Neagu, C. Ungureanu, R. Dabu, Opt. Laser Technol., 39 (2007) 973.
    [21] S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron., 15 (1979) 415.
    [22] L. R. Marshall, A. Kaz, J. Opt. Soc. Am. B, 10 (1993) 1730.
    [23] J. G. Miao, H. M. Tan, H. K. Bian et al., Opt. Commun., 265 (2006) 349.
    [1] A. Agnesi, S. D. Acqua and G. C. Reali, Opt. Commun. 133, 211 (1997).
    [2] K. Yamakawa, H. Sugio, H. Daido, M. Nakatsuka, Y. Kato and S. Nakai, Opt. Commun. 112, 37 (1994).
    [3] W. A. Clarkson, P. J. Hardman, D. C. Hanna, Opt. Lett. 23, 1363 (1998).
    [4] A. Brenier, I. V. Kityk, A. Majchrowski, Opt. Commun. 203,125 (2002).
    [5] D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, R. Jollay, IEEE J. Quantum Electron.36, 991 (2000).
    [6] R. A. Fields, M. Bimbaum, and C. L. Fincher, Appl. Phys. Lett. 51, 1885 (1987).
    [7] Y. F. Chen, L. J. Lee, T. M. Huang, and C. L. Wang, Opt. Commun. 163, 198 (1998).
    [8] A. Agnesi, G. Reali, and P. G. Gobbi, IEEE J. Quantum Electron. 34, 1297 (1998).
    [9] A. I. Zagmennyi, V. G. Ostromov, I. A. Shcherbarkov, T. Jensen, J. P. Meyn, and G. Huber, Sov. J. Quantum Electron. 22, 1071 (1992).
    [10] C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, J. Opt. Soc. Am. B. 19, 1794 (2002).
    [11] P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, Quant. Electron. 25, 1162 (1995).
    [12] H. J. Zhang, H. K. Kong, S. R. Zhao, J. H. Liu, J. Y. Wang, Z. P. Wang, L. Gao, C. L. Du, X. B. Ho, and X. G. Xu, J. Crystal Growth. 256, 292 (2003).
    [13] J. H. Liu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Z. S. Shao, and M. H. Jiang, Opt. Lett. 29, 168 (2004).
    [14] S. R. Zhao, H. J. Zhang, J. H. Liu, J. Y. Wang, X. G. Xu, Z. W. Zhao, J. Xu, and M. H. Jiang, J. Crystal Growth. 279, 146 (2005).
    [15] L. J. Qin, X. L. Meng, J. G. Zhang, L. Zhu, H. J. Zhang, B. C. Xu, H. D. Jiang, J. Crystal Growth 242. 183 (2002).
    [16] H. R. Xia, H. D. Jiang, W. Q. Zhang, G. W. Lu, X. L. Meng, H. J. Zhang, X. S. Liu, L. Zhu, and J. Y. Wang, J. Appl. Phys. 90, 4433 (2005).
    [17] B. R. Judd, Phys. Rev. 127, 750-(1962).
    [18] G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
    [19] D. K. Sardar, and P. D. Bella, J. Appl. Phys. 76, 5900 (1994).
    [20] H. D. Jiang, H. J. Zhang, J. Y. Wang, H. R. Xia, X. B. Hu, B. Teng, and C. Q. Zhang, Opt. Commun. 198, 447 (2001).
    [21] W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
    [22] T. S. Lomheim, and L. G. Deshazer, J. Appl. phys. 49, 5517 (1978).
    [23] S. R. Zhao, H. J. zhang, Y. B. Lu, J. H. Liu, J. Y. Wang, X. G. Xu, H. R. Xia, and M. H. Jiang, Opt Mater. 28, 950 (2006).
    [24] C. Y. Zhang, L. Zhang, Z. Y. Wei, C. Zhang, Y. B. Long, Z. G. Zhang, H. J. Zhang, and J. Y. Wang, Opt. Lett. 31, 1435 (2006).
    [25] Ralph Koch, Guenter Hollemann, R. Clemens, Hermann A. Voelckel, Adolf Giesen, Andreas Voss, in: Leo H. J. F. Beckmann (Eds.), Proceedings of SPIE on Lasers in Material Processing, vol. 3097, The International Society for Optical Engineer, Bellingham, WA, USA, 1997, P. 633.
    [26] J. Liu, J. M. Yang, and J. L. He, Opt. Commun. 219, 317 (2003).
    [1] Spuhler GJ, Paschotta R, Fluck R, Braun B, Moser M, Zhang G, Gini E, Keller U, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J Opt Soc Am B 1999; 16(3): 376-88.
    [2] Forget S, Balembois F, Lucas-Leclin G, Georges P, Picosecond laser source at 1MHz with continuous tunability in the visible red band. Opt Commun 2002; 220: 187-92.
    [3] Zayhowski JJ, Wilson A, Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr~(4+):YAG passively Q-switched microchip lasers. IEEE J Quant Electron 2003; 39: 1588-93.
    [4] Zayhowski JJ, Dill Ⅲ C. Diode-pumped passively Q-switched picosecond microchip lasers. Opt Lett 1994; 19: 1427-9.
    [5] Liu J, Yang JM, He JL, High repetition rate passively Q-switched diode-pumped Nd:YVO_4 laser. Opt Laser Technol 2003; 35: 431-4.
    [6] Zhang HJ, Kong HK, Zhao SR, Liu JH, Wang JY, Wang ZP, et al. Growth of new laser crystal Nd:LuVO_4 by the Czochralski method. J Crystal Growth 2003; 256: 292-7.
    [7] Zhang CY, Zhang L, Wei ZY, Zhang C, Long YB, Zhang ZG, et al. Diode-pumped continuous-wave Nd:LuVO_4 laser operating at 916nm. Opt Lett 2006; 31: 1435-7.
    [8] Zhang HJ, Liu JH, Wang JY, Xu XG, Jiang MH. Continuous-wave laser performance of Nd:LuVO_4 crystal operating at 1.34μm. Appl Opt 2005; 44: 7439-41.
    [9] Maunier C, Doualan JL, Moncorge R, Speghini A, Bettinelli M, Cavalli E. Crowth, spectroscopic characerization, and laser performance of Nd:LuVO_4, a new infrared laser material that is suitable for diode pumping. J Opt Soc Am B 2002; 19: 1794-800.
    [10] Ge WW, Zhang HJ, Wang JY, Liu JH, Xu XG, Hu XB, Jiang MH, Ran DG, Sun SQ, Xia HR, Boughton RI, Thermal and mechanical properties of BaWO_4 crystal, J Appl Phys 2005; 98: 0135421-6.
    [11] Liu JH, Zhang HJ, Wang ZP, Wang JY, Shao ZS, Jiang MH. Continuous-wave and pulsed laser performance of Nd:LuVO_4 crystal. Opt Lett 2004; 29: 168-70.
    [12] Zhang XY, Zhao SZ, Wang QP, Sun LK, Zhang SJ, Yao GT, Zhang ZY, Laser diode pumped Cr~(4+):YAG passively Q-switched Nd~(3+):S-FAP laser. Opt Commun 1998; 155: 55-60.
    [13] Montes M, Heras CDL, Jaque D, Passive Q-switching of a diode pumped Nd~(3+):CGGG crystal: Benefits of inhomogeneous line broadening and short pulse generation, Opt Mater 2006; 28: 408-14.
    [14] Shen D, Li C, Song J, Kobayashi T, Ueda K, Diode-pumped Nd:S-VAP lasers passively Q-switched with Cr~(4+):YAG saturable absorber. Opt Commun 1999; 169: 109-13.
    [15] Liu J, Jia YL, Yang JM, Du J, He JL, Efficient diode-pumped passively Q-switched Nd:GdVO_4 lasers, Chin Phys Lett (In Chinese) 2003; 1: 337-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700