用户名: 密码: 验证码:
川西亚高山暗针叶林小流域生态水文过程耦合及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统上,多采用造林或采伐面积比例来研究森林植被变化对其流域水文效应的影响,虽然植被的数量变化得以反映,但植被的质量及空间分布变化无法体现。叶面积指数(Leaf area index,LAI)既能反映植被的数量和质量特征,也能描述植被的空间分布以及动态变化,可以充分体现植被特征的变化。川西亚高山暗针叶林是长江上游重要的森林植被类型,在涵养水源、保持水土、维护生态平衡等方面起着巨大的作用。本文以川西亚高山暗针叶林的主要类型之一——岷江冷杉(Abies faxoniana)林为研究对象,采用试验观测与模型模拟相结合的方法,在小流域尺度和林分尺度上,首先,以LAI为主研究了植被结构及空间分布特征;然后,分别研究了植被对降水的截留、土壤水分的时空分布及变异性以及植被蒸发散的时空变化特征;之后,模拟了小流域湿润指数(Wetness index)的时空分布,分析了湿润指数与植被、地形、土壤和气候之间的关系;最后,基于上述研究,评价了川西亚高山暗针叶林的生态水文功能,探讨了植被变化对其生态水文功能的影响。目的是揭示川西亚高山暗针叶林与水的相互作用关系,阐明其对流域水资源的调控机理。研究结果表明:
     试验小流域的植被主要为岷江冷杉原始林(面积占88%),其次为青海杜鹃(Rhododendron przewalskii)灌丛(面积占12%)。岷江冷杉林可分为4个林分类型,依次为藓类-箭竹-岷江冷杉林、草类-箭竹-岷江冷杉林、草类-杜鹃-岷江冷杉林和藓类-杜鹃-岷江冷杉林。在生长季节,岷江冷杉林的LAI平均值为5.44±0.83,不同林分之间差异极显,顺序为:藓类-箭竹-岷江冷杉林>草类-箭竹-岷江冷杉林>草类-杜鹃-岷江冷杉林>藓类-杜鹃-岷江冷杉林;LAI的时间动态变化为单峰曲线,峰值在8月中旬,为5.82±1.32;随着海拔升高,LAI先增加后减小,转折点约在3000m处;不同坡向之间LAI的差异显,半阴坡LAI大于半阳坡;LAI的变异系数在林分尺度上为10.02~12.22%,在小流域尺度上为19.79~22.80%,在海拔梯度上为7.64~23.09%,在半阴坡上为16.58%,在半阳坡上为13.44%。
     试验区降水量充沛,雨日多,以小雨和中雨为主。岷江冷杉林冠层截留系数在33~72%之间,平均值为48%。在生长季节,冠层最大截留量平均值为1.74mm,不同林分之间差异明显,顺序为:藓类-箭竹-岷江冷杉林>草类-箭竹-岷江冷杉林>藓类-杜鹃-岷江冷杉林>草类-杜鹃-岷江冷杉林;冠层截留量、冠层最大截留量、附加截留量分别约占同期降雨量的39%、25%和14%。模型对日降水截留量模拟效果不理想,对整个生长季节平均截留量模拟效果较好,相对误差的平均值分别为33~35%、9~14%。地被物层最大持水率、最大持水量平均值分别约为700%、10.5mm,不同林分之间差异明显。
     试验小流域土壤容重小,孔隙发达,持水能力强,水分入渗率高,平均值分别为0.96g/cm~3、65%(总孔隙)和11%(非毛管孔隙)、276.7mm(0~40cm土层最大持水量)和51.4mm(0~40cm土层非毛管持水量)、2.63 mm/min(稳渗率),在不同群落类型之间差异较小,但在不同土层深度之间差异较大。研究期间,土壤容积含水量在0.59~0.66之间,不同群落类型之间差异明显,杜鹃冷杉林最高,箭竹冷杉林其次,杜鹃灌丛最低。土壤含水量在土壤表层最高,45cm土层深度最低;随着海拔升高呈增加趋势,但超过3700m则减小;在不同坡向之间,0~30cm土层半阴坡高于半阳坡,30cm以下则相反;在不同坡位之间,下坡最高,上坡最低,中坡居中。土壤水分变异系数在0.22~0.41之间,随着土壤含水量增加而增大,随着土层深度增加或海拔升高而减小,半阴坡高于半阳坡,下坡大于中坡和上坡。
     用Priestley-Taylor模型改进式与Rithchie(1972)方法计算出,2005年,试验流域实际蒸发散为350.8mm,其中生长季节占55%;不同群落类型之间差异明显,草类-箭竹-岷江冷杉林最大(422.0mm),杜鹃灌丛最小(248.4mm),其它介于中间,依次为藓类-杜鹃-岷江冷杉林(363.1mm),草类-杜鹃-岷江冷杉林(355.6mm)和藓类-箭竹-岷江冷杉林(323.4mm)。年蒸发散约占年降水量的35%,生长季节较低,非生长季节较高,分别占同期降水量的25%、71%。影响该区蒸发散的主导因子是太阳总辐射。生长季节降雨天数多,雾同多,日照时数短,太阳总辐射量少,是该区蒸发散低的主要原因。
     湿润指数在试验流域沟底较高,坡面较低;中部较高,上部和下部降低;半阴坡较高,半阳坡较低。不同群落类型之间,杜鹃冷杉林最大,箭竹冷杉林居中,杜鹃灌丛最小。降水量越大,太阳辐射越小,湿润指数越大;土壤水分含量越高,扩散速率越小,湿润指数越大;蔽阴系数越小,植被越稀疏,湿润指数越大。
     川西亚高山暗针叶林生态系统截留降水的综合能力较强,为89.5mm。其中,土壤层约占86%,地被物层约占12%,林冠层仅占2%。不同林分类型之间,林冠层、地被物层的截留能力、土壤层的蓄水能力以及植被蒸发散均存在差异,综合能力也不相同,顺序为:藓类-箭竹-岷江冷杉林>草类-箭竹-岷江冷杉林>藓类-杜鹃-冷杉林>草类-箭竹-岷江冷杉林。随着LAI、植被盖度增加,最大冠层截留量与蒸发散增加,土壤含水量减少。但当植被盖度超过70%、LAI超过4.8时,蒸发散的变化不再明显。
The proportion of cutting/forestation area is ususally adopted to quantify vegetation changes instudies of eco-hydrological influences of forest ecosystems. This may rational to some extentin quantifying vegetation changes, the change of vegetation in quality and spatial patternhowever, can not be mirrored. Leaf area index (LAI) can not only describe quantitative andqualitative characteristics of vegetation, but also exhibits its efficacy mapping spatial pattern aswell as temporal dynamic of vegetation. Sub-alpine dark coniferous forest in western Sichuanprovince, which is one of major natural vegetation types in the upper reaches of Yangtse River,plays a crucial role in waterhead protection, soil and water conservation and ecologicalequilibrium maintaining. Several key issues were addressed in this paper based on fieldobservation and experiment at both catchment scale and at stand scale, firstly, the quantitativeanalysis of vegetation structure and spatial pattern of Minjiang fir forest Minjiang fir (Abiesfaxoniana) stand, particularly the spatial and temporal pattern in terms of LAI; secondly,ecohydrological functions including canopy interception, soil moisture variability andevapotranspiration; thirdly, the spatio-temporal distribution of wetness index in the catchmentwas simulated by using TOPOG model, and the relationship between wetness index andvegetation, terrains, soil and climate; lastly, responses of these above-mentionedeco-hydrological functions to vegetation changes were therefore evaluated. The objective ofthis paper is to reveal the interactions between sub-alpine dark coniferous forest and water andilluminate the mechanism in regulating stream flows. The results showed as follows:
     The dominant vegetation in the catchment is Minjiang fir natural forest (occupies 88% of thecatchment area) and the secondary species are mainly Rhododendron przewalskii shrubs,(occupies about 12% of the catchment area). Minjiang fir forest can be classified into thefollowing four stand types based on difference in their understories: moss-bamboo-fir,grass-bamboo-fir, moss-rhododendron-fir and grass-rhododendron-fir. Single peak curve ofLAI seasonal change pattern occurred in sub-alpine dark coniferous forest during growingseason, with the peak value of 5.82±1.32 in the mid-August. Four stands showed significantdifferences in their LAI values (p<0.001), with the mean LAI value of 5.44±0.83. The highestLAI occurred in the moss-bamboo-fir, followed by the grass-bamboo-fir and thegrass-rhododendron-fir, the lowest LAI value was in the moss-rhododendron-fir. Withincreasing altitude, LAI increased slightly at the beginning and followed by a dramaticallydecrease with the increasing elevation when exceeded 3000 m. LAIs at northeast-aspect standswas larger than those at southwest-aspect, the difference of LAIs between the two aspectswere signifcant (p<0.05). The coefficient of variability (CV) of LAI at whole catchment scale is varies from 19.79% to 22.80%, this value was approximate twice in amount compared withstand scale (10.02~12.22%). CV varied with altitudinal gradients, the highest CV (23.09%)was occured at the elevation of 3800 m, while the lowest (7.64%) was at 3500 m. The CV atnortheast-aspect (16.58%) was higher than that of southwest-aspect (13.44%).
     Furry and moderate rains are the majority in this area and with abundant rainy days. Monthlyinterception rate of bamboo-Minjiang fir old-growth ranged from 33% to 72%, with theaverage of 48%. In growing season, there was a linear or powerful or exponential relationshipbetween rainfall and interception volume and a negatively exponential relationship betweenrainfall and interception rate when the amount rainfall was less than 10mm. The meanmaximum canopy interception by the vegetation in the catchment of 1.44km~2 in area was1.74mm and the marked differences among the five communities occurred in the followingsequence: moss-bamboo-fir>grass-bamboo-fir>moss-rhododendron-fir>grass-rhododendron-fir>rhododendron shrub. The simulated value of canopy interception rate,maximum canopy interception rate and addition interception rate of the vegetation in thecatchment were 39.24%, 25.36% and 13.88%, respectively. Simulation of the canopyinterception model was poor at daily scale but it is better at the overall growing season scale.The mean relative error of daily canopy interception was 33~35% and that over the wholegrowing season was 9~14%. In addition, the litter and moss layer had a higher water holdingcapacity (WHC) due to moss plant and more litter accumulation, the mean maximum waterstorage was 10.5mm, the highest was up to 20mm.
     Sub-alpine dark coniferous forest ecosystem showed a deep soil layer, a low bulk density, ahigh soil porosity, a fast infiltration velocity and a high soil water holding capacity. The meanvalues of these parameters were respectively 80~120cm, 0.96g/cm~3, 65%(total porosity)and11% (noncapillary), 2.63 mm/min(saturated soil infiltration rate), 414.3mm(0~40cm soil waterstorage)and 51.4mm(0~40cm noncapillary water storage). Interestingly, these parametersshowed slightly differences among different communities while significant differences amongdifferent soil depths. From July to October, the mean volumetric soil moisture content in thecatchment varied from 0.59 to 0.66. The highest soil moisture content occurred in thesubsurface soil layer while the lowest soil moisture content in below 45cm soil depth. Withascending of altitude, increasing trend was firstly found in soil moisture content (SMC),however, when altitude exceeded 3700m, SMC showed inversely decreasing trend. Comparedwith southwest-aspect slope, northeast-aspect slope showed higher SMC in 0~30cm soil depthwhile lower SMC in soil depth below 30cm. Soil moisture of the lower slopes were higherthan those of upper slopes. The coefficient of variability (CV) of soil moisture at catchmentscale was 0.22~0.41. The CV increased with increasing SMC while decreased with increasingsoil depth. The CV at northeast-aspect was higher than that at southwest-aspect, at lower slope higher than that at middle slope and upper slope.
     Annual actual evapotranspiration (ETa) in sub-alpine dark coniferous forest ecosystem wascaculated by using modified Priestley-Taylor formula and Rithchie (1972) method, was350.8mm, growing season, the seasons when this study were conducted, was found accountedfor 55% of the annual ETa. Significant difference was found in ETa of different communities(p<0.001), the highest ETa occurred in the grass-bamboo-fir (422.0mm), followed by themoss-rhododendron-fir(363.1mm), the grass-bamboo-fir(355.6mm)and the moss-bamboo-fir(323.4mm), the lowest LAI value was in the rhododendron shrubs (248.4mm). Total solarradiation is the predorminant factor of evapotranspiration. ETa was relatively lower thanexpected (about 35% of rainfall), this may due largely to a fact that more rainy and foggy daysand less sunlight hours and solar radiation in growing season in this area.
     Wetness index at the bottom of the catchment was higher than that at hill slope, at the middleelevation higher than that at the lower elevation and higher elevation, and at northeast-aspecthigher than that at southwest-aspect. The highest wetness index occurred in the rhododendronfir stands, followed by the bamboo-fir stands, the lowest wetness index was in rhododendronshrubs. Moreover, wetness index increased with the increases of precipitation, solar radiationand vegetation density.
     Sub-alpine dark coniferous forest ecosystem showed strong capacity of rainfall interceptionand soil water storage, with a sum of 89.5mm, including 86% of soil, 12% of litter and mossand only 2% of canopy. Different sub-alpine dark conifer forest types showed significantdifferences in their canopy interception, litter and moss interception and soil water content andevapotranspiration. The decreasing sequence of the total capacities are as follows:moss-bamboo-Minjiang fir, grass-bamboo-Minjiang fir, moss-rhododendron-Minjiang fir,grass-rhododendron-Minjiang fir. As expected, strong linear relationship was found betweenleaf area index (LAI) and maximum canopy interception. With the increasing vegetationcoverage and LAI, maximum canopy interception and evapotranspiration increase whereas soilmoisture decrease. When vegetation coverage is higher than 70% or LAI value greater than 4.8,the increase in evapotranspiration is not evident.
引文
[1] 李承彪.四川森林生态研究.成都:四川科技出版社,1990
    [2] 姚建,丁晶,艾南山 岷江上游生态脆弱性评价 长江流域资源与环境,2004,13(4):380-383
    [3] 管中天.森林生态研究与应用.成都:四川科技出版社,2005,192
    [4] 刘庆.亚高山针叶林生态学研究.成都:四川大学出版社,2002
    [5] 张远东,赵常明,刘世荣 川西亚高山人工云杉林和自然恢复演替系列的林地水文效应自然资源学报,2004,19(6):761-768
    [6] 樊宏 岷江上游近50a土地覆被的变化趋势 山地学报,2002,20(1):64-69
    [7] 包维楷,王春明 岷江上游山地生态系统的退化机制 山地学报,2000,18(1):57-62
    [8] 叶延琼,陈国阶,杨定国岷江上游生态环境问题及整治对策重庆环境科学,2002,24(1):2-6
    [9] 刘丽娟 岷江上游植被格局动态及其生态水文功能的研究,北京师范大学硕士学位论文,2004
    [10] 李崇巍 岷江上游生态系统空间格局与生态水文过程模拟,北京师范大学博士学位论文,2005
    [11] Richard L. Forest Hydrology. New York: Columbia University Press, 1980
    [12] 刘世荣,温远光,王兵等.中国森林生态系统水文生态规律.北京:中国林业出版社,1996
    [13] 马雪华.森林水文学.北京:中国林业出版社,1993
    [14] Andre assian V. Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 2004, 291:1-27
    [15] 魏晓华,李文华,周国逸等.森林与径流关系——一致性和复杂性 自然资源学报,2005,20(5):761-770
    [16] 陈军锋,李秀彬 森林植被变化对流域水文影响的争论 自然资源学报,2001,16(5):474-480
    [17] 周晓峰 正确评价森林水文效应研究.李文华 森林的水文气候效应研究进展(之一)[C].北京;中国科学院地理科学与资源研究所,2001,35-40
    [18] 李文华 森林生态系统水文生态功能综述[A].李文华.森林的水文气候效应研究进展(之一)[C].北京;中国科学院地理科学与资源研究所,2001.10-16.
    [19] MacDonald L H, Stednick J D. Forests and Water: A State-of-the-Art Review for Colorado[R] CWRRI Completion Report. 2003
    [20] 刘世荣,孙鹏森,王金锡等.长江上游森林植被水文功能研究自然资源学报,2001, 16(5):451-456
    [21] 刘世荣,孙鹏森,温远光 中国主要森林生态系统水文功能的比较研究 植物生态学报,2003,27(1):16-22
    [22] 王礼先,孙宝平 森林水文研究及流域治理综述 水土保持科技情报,1990,2:10-15
    [23] Bosch J M, Hewlett J L. A review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration. J. Hydrol., 1982, 55:3-23
    [24] 王根绪,钱鞠,程国栋 生态水文科学研究的现状与展望地球科学进展,2001,16(3):314-323
    [25] 严登华,何岩,邓伟等.生态水文学研究进展地理科学,2001,21(5):467-473
    [26] 赵文智,程国栋生态水文学揭示生态格局和生态过程——水文学机制的科学冰川冻土,2001,23(4):451-457
    [27] 夏军,丰华丽,谈戈等.生态水文学概念、框架和体系灌溉排水学报,2003,22(1):4-10
    [28] 张志强 森林水文:过程与机制 北京:中国环境科学出版社,2003
    [29] Calder I R. Water use by forests, limits and controls. Tree Physiology, 1998, 18:625-631
    [30] 张志强,王礼先,余新晓等.森林植被影响径流形成机制研究进展 自然资源学报,2001,16(1):79-84
    [31] Jones J A. Hydrologic processes and peak discharge response to forest removal, regrowth and roads in 10 small experimental basins, western Cascades, Oregon. Water Resources Research, 2000, 36:2621-2642
    [32] Huber L, Gillespie T J. Modeling leaf wetness in relation to plant disease epideniology. Ann Rev Phytopathology, 1992, 30:553-577
    [33] Paw U K T, Falk M, Suchanek T H, et al. Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems, 2004, 7:513-524
    [34] 郭明春,于澎涛,王彦辉等.林冠截持降雨模型的初步研究 应用生态学报,2005,16(9):1633-1637
    [35] Honmann G. et al. Calculation and simulation of wind controlled canopy interception of a beech forest in Northern German. Agricultural and Forest Meteorology, 1996, 79: 131-148
    [36] Crochford R H, Richardson D P. Partitioning of into throughfall, stemflow and interception: effect of forest types, ground cover and climate. Hydrological Processes, 2000, 14: 2903-2920
    [37] Calder I R, Wright I R. Gamma ray attenuation studies of interception from Sitka spruce: Some evidence for an additional transport mechanism. Water Resour. Res., 1986, 22: 409-427
    [38] Bouten W, Bosveld F C. Microwave transmission: A new tool in forest hydrological research. J. Hydrol., 1991, 125: 313-370
    [39] Bouten W P, Swart J F, DeWater E. Microwave transmission: A new tool in forest hydrological research. J. Hydrol., 1991, 124:119-130
    [40] Vrugt J A, Dekker S C, Bouten W. Identification of rainfall interception model parameters from measurements of rainfall and forest canopy storage. Water Resources Research, 2003, 39(9): 1251
    [41] 吴钦孝,赵鸿雁,刘向东等.森林枯枝落叶层涵养水源保持水土的作用评价 水土保持学报,1998,4(2):23-28
    [42] 程金花,张洪江,史玉虎 林下地被物保水保土作用研究进展 中国水土保持科学,2003,1(2):96-101
    [43] 张元明,曹同,潘伯荣 干早与半干旱地区苔藓植物生态学研究综述 生态学报,2002,22(7):1129-1134
    [44] 王佑民 国林地枯落物持水保土作用研究概况 水土保持学报,2000,14(4):108-113
    [45] 闫文德,张学龙,王金叶等.祁连山森林枯落物水文作用的研究 西北林学院学报,1997,12(2):7-14
    [46] 张志强,赵玉涛,余新晓等.长江上游暗针叶林流域水文过程分析 北京林业大学学报,2002,24(5/6):25-29
    [47] 杨立文,石清峰 太行山主要植被枯枝落叶层的水文作用 林业科学研究,1997,10(3):283-288
    [48] 林波,刘庆,吴彦等.森林凋落物研究进展 生态学杂志,2004,23(1):60-64
    [49] 林波,刘庆,吴彦等.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能 应用与环境生物学报,2002,8(3):234-238
    [50] 陈丽华,余新晓,张东升等.贡嘎山冷杉林区苔藓层截持降水过程研究 北京林业大学学报,2002,24(4):60-63
    [51] 黄昌勇.土壤学.北京:中国农业出版社,2000
    [52] Wei M Y. Soil moisture: Report of a workshop held in Tiburon, California, 25-27 January 1994. NASAConference Publication 3319, 80 pp. 1995.
    [53] 华孟,王坚 土壤物理学 北京:北京农业大学出版社,1993
    [54] 赵西宁,吴发启 土壤水分入渗的研究进展和评述 西北林学院学报,2004,19(1):42-45
    [55] 秦耀东.土壤物理学.北京:高等教育出版社,2003,97-110
    [56] 袁建平,雷延武,郭索彦等.黄土丘陵区小流域土壤入渗速率空间变异性 水利学报,2001,10:88-92
    [57] 王军,傅伯杰,蒋小平 土壤水分异质性的研究综述 水土保持研究,2002,9(1):1-5
    [58] Gimona A, Bimie R V. Spatio-temporal modelling of broad scale heterogeneity in soil moisture content: a basis for an ecologically meaningful classification of soil landscapes. Landscape Ecology, 2002, 17:27-41
    [59] Teuling A J, Troth P A. Simulating soil moisture variability dynamics, in Proceedings of the 2nd international CAHMDA workshop on: The Terrestrial Water Cycle: Modelling and Data Assimilation Across Catchment Scales, edited by A.J. Teuling, H. Leijnse, P. A. Troth, J. Sheffield and E. F. Wood, pp. 81-85, Princeton, NJ, October 25-27. 2004
    [60] Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology, 1998, 210:259-281
    [61] Western A, Zhou S, Grayson R, et al. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol., 2004, 286: 113-134
    [62] Western A W, Bloschl G, Grayson R B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment. J. Hydrol., 1998, 205:20-37
    [63] Charpentier M A, Groffman P M. Soil moisture variability within remote sensing pixels. Journal of Geophysical Research, 1992, 97:18987-18995
    [64] 王安志,裴铁璠 森林蒸散测算方法研究进展与展望 应用生态学报,2001,12(6):933-937
    [65] 刘京涛,刘世荣 植被蒸散研究方法的进展与展望 林业科学,2006,42(6):108-114
    [66] 闫俊华,周国逸,黄忠良 鼎湖山亚热带季风常绿阔叶林蒸散研究 林业科学,2001,37(1):37-45
    [67] 刘世荣 森林的生态水文功能 中国可持续发展林业战略研究森林问题卷,中国可持续发展林业战略研究项目组 北京:中国林业出版社,2003
    [68] 程根伟,陈梓蓉 森林流域蒸散发的控制要素与区域异探讨 山地学报,2004,22(2):175-178
    [69] Boegh E, Soegaard H. Remote sensing based estimation of evapotranspiration rates. International Journal of Remote Sensing, 2004, 25(13): 2535-2551
    [70] Mo X G, Liu S, Lin Z, et al. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 2004, 285:125-142
    [71] Bruijnzeel L A. Hydrological functions of tropical forests; not seeing the soil for the tree? Agricyulture, Ecosystems and Environment, 2004, 104:185-228
    [72] Vertessey R A, Zhang L, Dawes W R. Plantations)river flows and river salinity. Australian Forestry, 2003, 66:901-999
    [73] Austin S A. Streamflow Response to Forest Management; A Meta-analysis Using Published Data and Flow Duration Curves. 1999, Colorado State University: Colorado, USA.
    [74] Refsgaard J C. Terminology, modelling protocol and classification of hydrological model codes. In: Refsgaard, J. C. and Abbott, M. B. (Eds), Distributed Hydrological Modelling, Kluwer, Dordrecht, The Netherlands, 1996, 17-40
    [75] Singh V P. Computer Models of Watershed Hydrology. Water Resources Publications: Highlands Ranch, Colorado, 1995, 11-30
    [76] Grayson R, Bloschl G, Spatial patterns in catchment hydrology: observations and modelling. Cambridge, United Kingdom: Cambridge University Press. 2000, 54
    [77] 李景文 森林生态学 北京:中国林业出版社,1994
    [78] 刘贤赵,康绍忠 林冠截留模型评述 西北林学院学报,1998,13(1):26-30
    [79] 王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律研究 北京林业大学学报,1998,20(6):25-29
    [80] 张光灿,刘霞,赵玖 树冠截留降雨模型研究进展及其述评 南京林业大学学报,2000,24(1):64-68
    [81] 黄志宏 雷州桉树人工林水文学与模型模拟,中国科学院研究生院中国科学院华南植物研究所博士学位论文,2003
    [82] Carlyle-Moses D E, Priceb A G. An evaluation of the Gash interception model in a northem hardwood stand. Journal of Hydrology, 1999, 214:103-110
    [83] Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications I: Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 1998, 42:125-154
    [84] 何东进,洪伟 植被截留降水量公式的改进 农业系统科学与综合研究,1999,15(3):200-202
    [85] Jasper, K., J. Gurtz, L. Herbert, Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. Journal of Hydrology, 2002, 267(1-2): 40-52
    [86] 夏军,谈戈 全球变化与水文科学新的进展与挑战 资源科学,2002,24(3):1-7
    [87] 仪垂祥,刘开瑜,周涛 植被截留降水量公式的建立 土壤侵蚀与水土保持学报,1996,2(2):47-49
    [88] Van Dijk A I J M, Bruijnzeel L A. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1: Model description. Journal of Hydrology, 2001, 247(34): 230-238
    [89] 周国逸.生态系统水热原理及其应用.北京:气象出版社,1997
    [90] 王力,邵明安,王全九 林地土壤水分运动研究述评 林业科学,2005,41(2):147-157
    [91] 赵西宁,吴发启 土壤水分入渗的研究进展和评述 西北林学院学报,2004,19(1):42-45
    [92] 吴长文,王礼先 林地土壤的入渗及其模拟研究 水土保持研究,1995,2(1):71-75
    [93] 时忠杰 六盘山香水河小流域森林植被的坡面生态水文影响,中国林业科学研究院博士学位论文,2006
    [94] 裴铁璠,李金中 壤中流模型研究的现状及存在问题 应用生态学报,1998,9(5):543-548
    [95] 李金中,裴铁藩,牛丽华,等 森林流域坡地壤中流模型与模拟研究 林业科学,1999,35(4):2-8
    [96] 邵爱军,段生贵,彭建萍 田间非饱和土壤水分运动的数值模拟-Ⅰ.源汇项及上边界条件的研究 河北地质学院学报,1995,18(4):355-364
    [97] 王印杰,王玉珉 非饱和土壤水分函数解析与Richards方程入渗新解 水文,1996,2:1-9
    [98] Sloan P G, Moore I D. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resour. Res., 1984, 20(12): 1815-1822
    [99] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708
    [100] Saxton K E, Rawls W J, Romberger J S, et al. Estimating generalized soil-water characteristics from texture. Soil Science, 1986, 50(4): 1031-1036
    [101] Ritchie J T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research, 1972, 8(5): 1024-1213
    [102] Stannard D I. Comparison of Penman-Monteith, shuttleworth-Wallace and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland. Water Resources Research, 1993, 29:1379-1392
    [103] Federer C A, Vrrrsmarty C J, Fekete B. Intercomparision of methodes for calculating potential evapotranspiration in regional and global water balance models. Water Resources Research, 1996, 32(7): 2315-2321
    [104] Vorosmarty, C. J., C. A. Federer, A. L. Schloss, Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology, 1998, 207: 147-169
    [105] Thornthwaite C W. An approach toward a rational classification of climate. Geographical Review 1948, 38:55-94
    [106] Pereira A R, Pruitt W O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agricultural Water Management, 2004, 66(3): 251-257
    [107] Hargreaves G H, Samani Z A. Estimation of potential evapotranspiration. Journal of Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers. 1982, 108:223-230
    [108] Priestley C H B, Taylor R J, On the assessment of surface heat fluxes and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100:81-92
    [109] Flint A L, Childs S W. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology, 1991, 56:247-260
    [110] Pereira A R, Villa N N A. Analysis of the Priestley-Taylor parameter. Agricultural and Forest Meteorology, 1992, 61 : 1-9
    [111] Angel U, Imma F, Antonio M C. Comparing Penman-Monteith and Priestley-Taylor approaches as reference evapotranspiration inputs for modelling maize water-use under Mediterranean conditions. Agricultural Water Management, 2004, 66:205-219
    [112] Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophysical Research Letters, 1999, 26(17): 2773-2776
    [113] Jiang H, Liu S R, Sun P S, et al. The influence of vegetation type on the hydrological process at the landscape scale. Can. J. Remote Sensing, 2004, 30(5): 743-763
    [114] 刘京涛 岷江上游植被蒸散时空格局及其模拟研究,中国林业科学研究院博士学何论文,2006
    [115] Monteith J L. Evaporation and the environment. Symposium of the Society of Exploratory Biology, 1965, 19:205-234
    [116] 刘昌明,王会肖.土壤-作物大气界面水分过程与节水调控.北京:科学出版社,1999
    [117] Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society 1985, 111:839-855
    [118] Bawazir A S. Saltcedar and cottonwood evapotranspiration in the middle Rio Grande. 2000, New Mexico State University: Las Cruces.
    [119] Norman J M, Kusts W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 1995, 77:263-293
    [120] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resources Research, 1979, 15(2): 443-450
    [121] Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces. Journal of Hydrology 1989, 111: 21-29
    [122] Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 1983, 66:71-76
    [123] Bouchet R J. Evapotranspiration reelle et potentielle, signification climatique, in Symposium on Surface Waters. lASH Press: Wallingford. 1963, 134-142
    [124] 胡继超,张佳宝,冯杰 蒸散的测定和模拟计算研究进展 土壤,2004,36(5):492-497
    [125] Xu C Y, Chen D. Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes, 2005, 19:3717-3734
    [126] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology, 2005, 308:105-121
    [127] Hobbins M T, Ramirez J A, Brown T C, et al. The complementary relationship in estimation of regional evapotranspiration: the complementary relationship areal evapotranspiration and advection-aridity models. Water Resources Research, 2001, 37(5): 1367-1387
    [128] Hobbins M T, Ramirez J A, Brown T C. The complementary relationship in estimation of regional evapotranspiration: an enhanced advection-aridity model. Water Resources Research, 2001, 37(5): 1389-1403
    [129] Xu Z X, Li J Y. A distributed approach for estimating catchment evapotranspiration: comparison of the combination equation and the complementary relationship approaches. Hydrological Processes, 2003, 17:1509-1523
    [130] 顾慰祖 利用环境同位素及水文实验研究集水区产流方式 水利学报,1995,5:9-17
    [131] Bonell M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. J. Ameri. Water Resource Assoc., 1998, 34(4): 765-785
    [132] Pearce J. Sreamflow generation processes: an Australian view. Water Resour. Res., 1990, 26: 3037-3047
    [133] Peters D L, Buttle J M, Tayler C H et al. Runoff production in a forested, shallow soil, Canadian Shield basin. Water Resour. Res., 1995, 31: 1291-1304
    [134] 芮孝芳 产流理论与计算方法的若干进展与评述 水文,1997,4:16-19
    [135] Wood E F, Sivapalan M, Beven K, et al. Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology, 1988, 102:29-47
    [136] Beven K. on subsurface stormflow: prediction with simple kinematic theory for saturated and unsaturated flows. Water Resour. Res.,, 1982, 18(6): 1627-1633
    [137] 万洪涛,万庆,周成虎 流域水文模型研究的进展 地球信息科学,2000,4:46-50
    [138] 沈焕庭 中国河口数学模拟研究的进展 海洋通报,1997,16(2):81-85
    [139] 李孟国,曹祖德 海岸河口潮流数值模拟的研究和进展 海洋学报,1999,21(1):111-125
    [140] Anderson M G. Hydrological Forecasting. 1985, New York: John Wiley & Sons.
    [141] Colosimo C M G. GIS for distributed Rainfall-runoff Modeling. In: Vijay P.Singh. Fiorentino M. Geographical Information Systems in Hydrology[M]. Netherlands: Kluwer Academic Publishers., 1996, 195-235
    [142] Beven K. Changing ideas in hydrology-The case of physically-based models. Journal of Hydrology, 1989, 105:157-172
    [143] Swanson R H. Forest hydrology issues for the 21 century: A consultant's viewpoint. Journal of the American Water Resources Association, 1998, 34(4): 755-763
    [144] Beven K J, Kirkby N J. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. B., 1979. 24. 43-69.
    [145] 刘建梅,裴铁璠 水文尺度转换研究进展 应用生态学报,2003,14(12):2305-2310
    [146] Abbort M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system-Systeme Hydrologique Europeen, "SHE", 1: History and philosophy of a phydically-based, distributed modeling system. Journal of Hydrology, 1986, 87:45-59
    [147] Abbort M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system-Systeme Hydrologique Europeen, "SHE", 2: Structure of a physically-based distributed modeling system. Journal of Hydrology, 1986, 87:61-77
    [148] 于澎涛 分布式水文模型的理论、方法与应用,中国林业科学研究院博士学位论文,2001
    [149] Henrik R S, Kjelds J T, Deckers F, et al. Application of GIS in hydrological and hydraulic modelling:DLIS and MIKEII-GIS. Hydro GIS 96:Application of Geographic Information Systems in Hydrology and Water Resources Management Proceedings of the Vienna Conference, April1996). IAHS Publ. No.235, 1996
    [150] Connolly R D, Ciesiolka C A A, Silburn D M, et al. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data. Evaluating pasture catchment hydrology. Journal of Hydrology, 1997, 201:311-323
    [151] Connolly R D, Silbum D M. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data : Application to spatially uniform catchment. Journal of hydrology, 1995, 172:105-125
    [152] Mackay D S, Band L E. Forest ecosystem processes at the watershed scale: dynamic coupling of distributed hydrology and canopy growth. Hydrological Processes, 1997, 11: 1197-1217
    [153] Sun G, Riekerk H, Comerford N B. Modeling the forest hydrology of wetland-upland ecosystems in Florida. Journal of the American Water Resources Association, 1998, 34(4): 827-840
    [154] Dunn S M, McAlister E, Ferrier R C. Development and application of a distributed catchment-scale hydrological model for the River Ythan, NE Scotland. Hydrological Processes, 1998, 12:401-416
    [155] 于澎涛 分布式水文模型在森林水文学中的应用 林业科学研究,2000,13(4):431-438
    [156] 孙鹏森,岷江上游大尺度生态水文模型研究.2002,中国林科院博士后出站报告:北京.
    [157] 任立良,刘新仁 基于DEM的水文物理过程模拟 地理研究,2000,19(4):369-376
    [158] 郭生练,熊立华,等基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000.33(6).1-5
    [159] 李兰 流域水文数学物理耦合模型 朱乐明 中国水利学会优秀论文集 北京:中国三峡出版社,2000,48-54
    [160] 唐莉华,吕贤弼 分布式小流域产汇流及输沙模型研究 基于3S技术的北京市水土保持生态环境管理系统专题报告集,2002
    [161] 杨井,郭生练 基于GIS的分布式月水量平衡模型及其应用 武汉大学学报(工学版),2002,35(4):22-26
    [162] 张建云 气候异常对水资源影响评估中的关键性技术研究 水文,1998(增刊)
    [163] 俞鑫颖,刘新仁 分布式冰雪融水雨水混合水文模型 河海大学学报,2002,5:23-27
    [164] Moore I D, Grayson R B, Ladson A R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process, 1991, 5:3-30
    [165] Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain. Wat. Resour. Res., 1994, 30(6): 1665-1679
    [166] Grayson R B, Moore I D, McMahon T A. Physically based hydrologic modeling, 1, A terrain-based model for investigative purposes. Water Resour. Res., 1992, 28:2639-2658
    [167] Palacios-Ve' lez O L, Gandoy-Bernasconi W, Cuevas-Renaud B. Geometric analysis of surface runoff and the computation order of unit elements in distributed hydrological models. J. Hydrology, 1998, 211(1-4): 266-274
    [168] Smith R E, Goodrich D R, Woolhiser D A, et al. KINEROS-A KINematic Runoff and EROSion Model, in Computer Models of Watershed Hydrology, V. P. Singh, Editor. Water Resources Publications: Highlands Ranch, Colorado. 1995, 697-732
    [169] Ying F, Bras R L. On the concept of a representative elementary area in catchment runoff. Hydrological Processes, 1995, 9:821-832
    [170] Leavesley G H, Stannard L G. The precipitation-runoff modelling system -PRMS. in Computer Models of Watershed Hydrology, V. P. Singh, Editor. 1995, Chapter 9: Highlands Ranch, Colorado. 281-310
    [171] Watson F G R, Grayson R B, Vertessy R A, et al. Large scale distribution modelling and the utility of detailed data. Hydrological Processes, 1998, 12(6): 873-888
    [172] Bloschl G, Sivapalan M. Scale issues in hydrological modelling: A review. Hydrol. Process, 1995, 9:251-290
    [173] Bloschl G, Sivapalan M. Scale issue in hydrological modelling-a review. Hdrological Process, 1995, 9(3-4): 251-290
    [174] 夏军 水文尺度问题 水利学报,1993,5:32-27
    [175] 吕一河,傅伯杰 生态学中的尺度及尺度转换方法 生态学报,2001,21(12):2097-2105
    [176] 马雪华 四川米亚罗地区高山冷杉林水文作用的研究 林业科学,1987,23(3):253-265
    [177] 谢春华,关文彬,吴建安等.贡嘎山暗针叶林生态系统林冠截留特征研究 北京林业大学学报,2002,24(4):68-71
    [178] 李振新,郑华,欧阳志云等.岷江冷杉针叶林下穿透雨空间分布特征 生态学报,2004.24(5):1014-1021
    [179] 黄礼隆,马雪华 川西米亚罗林区冷杉林下水文特征的初步观测 四川高山朴业研究资料季刊,1979,1:101-110
    [180] 黄礼隆 川西亚高山暗针叶林森林涵养水源性能的研究 中国森林生态系统定位研究[C].林业部科技司 哈尔滨:东北林业大学出版社,1994,410-412
    [181] 赵玉涛,余新晓,张志强等.长江上游亚高山峨嵋冷杉林地被物层界面水分传输规律研究水土保持学报,2002,16(3):118-121
    [182] 张洪江,程金花,余新晓等.贡嘎山冷杉纯林枯落物储量及其持水特性 林业科学,2003,39(5):147-151
    [183] 程金花,张洪江,余新晓等.贡嘎山冷杉纯林地被物及土壤持水特性 北京林业大学学报,2002,24(3:45-49
    [184] 高甲荣,尹婧,牛健植等.长江上游亚高山暗针叶林林地水文作用初探 北京林业大学学报,2002,24(4):75-79
    [185] Chang, Z. -h., Z. -h. Lu, W.-b. Guan, Water holding effect of subalpine dark coniferous forest soil in Gongga Mountain, China. Journal of Forestry Research, 2003.14 (3). 205-209.
    [186] 张保华,何毓蓉,周红艺等.贡嘎山东坡亚高山森林土壤水分动态变化分析 西南农业学报,2003,16(增刊):98-100.
    [187] 余新晓,赵玉涛,张志强等.长江上游亚高山暗针叶林土壤水分入渗特征研究 应用生态学报,2003,14(1):15-19
    [188] 张保华,何毓蓉,周红艺等.长江上游亚高山针叶林土壤水分入渗性能及.影响因子四川林业科技,2003,24(1):61-64
    [189] 程根伟,余新晓,赵玉涛等.贡嘎山亚高山森林带蒸散特征模拟研究 北京林业大学学报,2003,25(1):23-27
    [190] 刘丽娟,昝国盛,葛建平 岷江上游典型流域植被水文效应模拟 北京林业大学学报,2004,26(6):20-24
    [191] 卧龙自然保护区管理局 卧龙植被及资源植物 成都:四川科学出版社,1987
    [192] Running S W, Nemani R R, Hungerford R D. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res, 1987, 17:472-483
    [193] Hatton T J, Dawes W R. The impact of tree planting in the Murray-Darling Basin: The use of the TOPOG-IRM hydroecological model in targeting tree planting sites in catchments, D.o.W.R.T.M. Australia: CSIRO, Editor. 1991: Canberra.
    [194] Hatton T J, Dawes W R, Walker J, et al. Simulations of hydroecologieal responses to elevated CO2 at the catchment scale, Australia. Journal of.Botany, 1992, 40:679-696
    [195] O' Loughlin E M. Saturation regions in catchments and their relations to soil and topographic properties. J. Hydrol., 1981, 53:229-246
    [196] O' Loughlin E M. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour. Res., 1986, 22:794-804
    [197] O' Loughlin E M Modelling soil water status in complex terrain. Agricultural and Forest Meteorology, 1990, 50:23-38
    [198] Hutchinson M E A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol., 1988, 106:211-232
    [199] Dawes W R, Short D L. The significance of topology for modelling the surface hydrology of fluvial landscapes. Water Resour. Res., 1994, 30(4): 1045-1055
    [200] Band L E, Vertessy R A, Lammers R. The effect of different terrain representations and resolution on simulated watershed processes. Zeitschrift fur Geomorphologie, Suppl.-Bd., 1995, 101:187-199
    [201] Maunder C J. An automated method for constructing contour-based digital elevation models. Water Resources Research, 1999, 35(12): 3931-3940
    [202] O'Loughlin E M, Short D L, Dawes W R. Modelling the hydrological response of catchments to landuse change. In: Proceedings of the 1989 Australian Institution of Engineers Hydrology and Water Resources Symposium. Nat. Conf. Publ., 1989, 89/19: 335-340
    [203] Nandakumar N, Lane P N J, Vertessy R A, et al. Prediction of soil moisture variability using wetness indices. In: Water Down Under 94: Proceedings of the Australian Institution of Engineers Hydrology and Water Resources Symposium, Adelaide, 21-25 November, 1994, 3:49-54
    [204] Vertessy R A, Wilson C J, Silbeurn D M, et al. Predicting erosion hazard areas using digital terrain analysis. IAHS AISH Publication, 1990, 192:298-308
    [205] Dietrich W E, Wilson C J, Montgomery D R, et al. Erosion thresholds and land surface morphology. Geology, 1992, 20:675-679
    [206] Prosser I P, Soufi M. Controls on gully erosion following forest clearing in a humid temperate environment. Water Resources Research, 1998, 34:3661-3671
    [207] Prosser I P, Abernethy B. Increased erosion hazard resulting from log-row construction during conversion to plantation forest. Forest Ecology and Management, 1999, 123: 145-155
    [208] Mein R G, O'Loughlin E M. A new approach to flood forecasting. In: Proceedings of the 1991 Australian Institution of Engineers Hydrology and Water Resources Symposium. Nat. Conf. Publ., 1991, 91/22(1): 219-224
    [209] Zhang L, Dawes W R, Hatton T J, et al. Estimating episodic recharge under different crop/pasture rotations in the Mallee region. Part 2: Recharge control by agronomic practices. Agricultural Water Management, 1999, 42:237-249
    [210] Zhang L, Dawes W R, Walker G R. Presicting the effect of vegetation changes on catchment average water balance. 1999
    [211] Zhu T X, Band L E, Vertessy R A. Continuous modelling of intermittent stormflows on a semi-arid agricultural catchment. J. Hydrol., 1999, 226:11-29
    [212] Vertessy R A, Elsenbeer H. Distributed modeling of stormflow generation in an Amazonian rain forest catchment: Effects of model parameterization. Water Resources Research, 1999, 35(7): 2173-2187
    [213] Silberstein R P, Vertessy R A, Morris J, et al. Modelling the effects of soil moisture and solute conditions on long term tree growth and water use: a case study from the Shepparton irrigation area, Australia. Agricultural Water Management, 1999, 39:283-315
    [214] Huang Z H, Zhou G Y, Zhou G Y, et al. Terrain analysis and steady-state hydrological modelling of a small catchment in southern China. Ecology and Environment, 2005, 14(5): 700-705
    [215] 程根伟 贡嘎山极高山区的降水分布特征探讨 山地研究,1996,14(3):177-182
    [216] 程根伟,陈桂蓉 贡嘎山暗针叶林区森林蒸散发特征与模拟 水科学进展,2003,14(5):617-621
    [217] 巩合德,王开运,杨万勤 川西亚高山3种森林群落穿透雨和茎流养分特征研究 林业科学,2005,41(5):14-20
    [218] 何其华,何永华,包维楷 岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态 应用与环境生物学报,2004,10(1):68-74
    [219] 李崇巍,刘世荣,孙鹏森等.岷江上游植被冠层降水截留的空间模拟 植物生态学报,2005,29(1):60-67
    [220] 李林,王振宁,秦宁生等.长江上游径流量变化及其与影响因子关系分析 自然资源学报,2004,19(6):694-700
    [221] 刘庆 亚高山针叶林生态学研究 成都:四川大学出版社,.2002
    [222] 石辉,陈凤琴,刘世荣 岷江上游森林土壤大孔隙特征及其对水分山流速率的影响 生态学报,2005,25(3):507-512
    [223] 徐庆,安树青,刘世荣等.四川卧龙亚高山暗针叶林降水分配过程的氢稳定同位素特征 林业科学,2005,41(4):7-12
    [224] 易立群,缪韧,林三益 贡嘎山森林小流域水文特性探索 四川大学学报(工程科学版),2000,32(1):87-92
    [225] 余新晓,赵玉涛,张志强等.长江上游亚高山暗针叶林土壤水分入渗特征研究 应用生态学报,2003,14(1):15-19
    [226] 昝国盛 岷江流域植被水文模拟,北京师范大学硕士学位论文,2003
    [227] 张保华,何毓蓉,周红艺等.长江上游典型区亚高山不同林型土壤的结构性与水分效应 水土保持学报,2002,16(4):127-129
    [228] 张保华,何毓蓉,周红艺,et al.,贡嘎山东坡亚高山不同林地土壤水分特性与生态环境效应.山地学报,2004.22(2).207-211.
    [229] 李承彪 四川森林生态研究 成都:四川科技出版社,1990
    [230] Lee K S, Cohen W B, Kennedy R E, et al. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment, 2004, 91:508-520
    [231] Asner G P, Scurlock J M O, Hicke J A. Global sythesis of leaf area index observation: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 2003, 12:191-205
    [232] Barclay H G. Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiology, 1998, 18:185-193
    [233] Chen J M, Black T A. Defining leaf-area index for non-fiat leaves. Plant Cell Environment, 1992, 15:421-429
    [234] Chen J M, Rich P M, Gower S T, et al. Leaf area index of boreal forests: Theory, Techniques, and measurements. Journal of Geographical Research, 1997, 102:29429-29443
    [235] 王希群,马履一,贾忠奎等.叶面积指数的研究和应用进展 生态学杂志,2005,24(5):537-541
    [236] Boman G B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment, 1993, 43:303-314
    [237] Sellers P J, Dickinson R E, Randall D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997,275:502-509
    [238] Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 1988, 42:125-154
    [239] Luo T X, Li W H, Zhao S D. Distribution patterns of leaf area index for major coniferous forest types in China. Journal of Chinese Geography, 1997, 7:61-73
    [240] Lu J H., J. J. Ji A simulation study of atmosphere-vegetation interaction over the Tibetan Plateau part Ⅱ: net primary productivity and leaf area index Chinese Journal of Atmosphere Science, 2002, 26:255-262
    [241] Luo T X, Neilson R P, Tian H Q, et al. A model for seasonality and distribution of leaf area index of forests and its application to China. Journal of Vegetation Science, 2002, 13: 817-830
    [242] Chen J M. Optically-based methods for measuring seasonal variation in leaf area index of boreal conifer forests. Agriculture and Forest Meteorology, 1996, 80:135-146
    [243] 管中天 森林生态研究与应用 成都:四川科技出版社,2005
    [244] Cihlar J. Identification of contaminated pixels in AVHRR composite images for studies of land biosphere. Remote Sensing of Environment, 1996
    [245] 周宇宇,唐世浩,朱启疆,等长白山自然保护区叶面积指数测量及其结果 资源科学,2003,25(5):38-42
    [246] Wirth R B, Weber R, Ryel J. Spatial and temporal variability of canopy structure in a tropic moist forest. Acta Oecologica, 2001, 22:1-10
    [247] Asner G P, Scurlock J M O, Hicke J A. Global sythesis of leaf area index observation: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 2003, 12:191-205
    [248] Jonckheere I, Fleck S, Nackaerts K, et al. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 2004, 121:19-35
    [249] Aragao L E O C, Shimabukuro Y E, Santo F D B E, et al. Landscape pattern and spatial variability of leaf area index in Eastern Amazonia. Forest Ecology and Management, 2005, 211:240-256
    [250] Hashino M Y, Huaxiaa, et al. Studies and evaluations on interception processes during rainfall based on a tank model. Journal of Hydrology, 2002, 255(14): 1-11
    [251] Kimball J S, White W A, et al. BIOME-BGC simulations of stand hydrologic processes for BOAEAS. Journal of Geoohysical Research, 2000, 102:29043-29051
    [252] 刘建梅,裴铁璠,王安志,等高山峡谷地区森林流域分布式降雨-径流模型的构建与验证 应用生态学报,2005,16(9):1638-1644
    [253] Calder I R. Dependence of rainfall interception on drop size I: Development of two-layer stochastic model. Journal of Hydrology, 1996, 185:363-378
    [254] Keim R F. Comment on "Measurement and modelling og growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada". Agricultural and Forest Meteorology, 2004
    [255] Fleischbein K E A. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrological Processes, 2005, 19:1355-1371
    [256] Wu W, Dickinson R E. Time Scales of Layered Soil Moisture Memory in the Context of Land-Atmosphere Interaction. Journal of Climate, 2004, 17:2752-2764
    [257] Iverson L R, Dale M E, Scott C T, et al. GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests USA. Landscape Ecology, 1997, 12: 331-348
    [258] Rodrigo A, Recous S, Neil C, et al. Modelling temperature and moisture effects on C-N transformations in soils: comparions of nine models. Ecological Modelling, 1997, 102: 325-339
    [259] Neave H M, Cunningham R B, Norton T W, et al. Biological inventory for conservation evaluation 3. Relationships between birds, vegetation and environmental attributs in souther Austrilia. Forest Ecology and Management, 1998, 85:197-218
    [260] Neave H M, Norton T W. Biological inventory for conservation evaluation IV. Composition, distribution and spatial prediction of vegetation assemblages in southern Austrilia. Forest Ecology and Management, 1998, 106:259-281
    [261] Xiong S, Johansson M E, Hughes F M R, et al. Interactive effects of soil moisture, vegetation canopy, plant, litter and seed addition on plant diversity in a wetland community. Ecology, 2003, 91:976-986
    [262] 陈东立,余新晓,廖邦洪 中国森林生态系统水源涵养功能分析 世界林业研究,2005,18(1):49-54
    [263] 王玉杰,王云琦 森林对坡面产流的影响研究 世界林业研究,2005,18(3):12-15
    [264] Hutjes R W A, Kabat P, Running S W, et al. Biospheric aspects of the hydrological cycle. Journal of Hydrology, 1998, 212:1-21
    [265] Savabi M R, Stockle C O. Modeling the possible impact of increased CO2 and temperature on soil water balance, crop yield and soil erosion. Environmental Modelling & Software, 2001, 16(7): 631-640
    [266] Fisher J B, DeBiase T A, Qi Y, et aL Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling and Software, 2005, 20:783-796
    [267] Fontenot R L. An evaluation of reference evapotranspiration models in Louisiana. 2004, Louisiana State University and A&M College.
    [268] Doorenbos J, Pruitt W O. Guidelines for predicting crop water requirements.FAO Irrigation and Drainage Paper 24. Food and Agriculture Organization. Rome. 1977
    [269] Jensen M E, Burman R D, Allen R G. Evapotranspiration and Irrigation Water Requirements. ASCE Mannuals and Reports of Engineering Practice No. 70. New York: ASCE, 1990
    [270] Blaney H F, Criddle W D. Determining water requirements in irrigated areas from climatological and irrigation data. Soil Conservation Service Technical Paper 96. Soil Conservation Service, U.S. Dept. of Agriculture: Washington, D.C., 1950
    [271] Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1985, 1: 96-99
    [272] Makkink G F.Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers, 1957, 11(3): 277-288
    [273] Turc L. Evaluation des besoins en eau d'irrigation, evapotranspiration potentielle, formule climatique simplifee et raise jour (In French). Annales Agronomiques, 1961, 12(1): 13-49
    [274] Linacre E T. A simple formula for estimating evaporation rates in various climates, using temperature alone. Agricultural Meteorology, 1977, 18(6): 409-424
    [275] Hargreaves G H. Moisture availability and crop production. Transactions of the ASAE, 1975, 18:980-984
    [276] Hargreaves G H, Allen R G. History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 2003, 129(1): 53-63
    [277] Brutsaert W F.Evaporation Into the Atmosphere. D. Reidel, Not'well, Mass. 1982, 299
    [278] Jiang L, Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research, 2001, 37(2): 329-340
    [279] Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observation. Geographical Research Letters, 1999, 26(17): 2773-2776
    [280] Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL)I: Formulation. Journal of Hydrology, 1998, 212-213: 198-212
    [281] Spittlehouse D L, Black T A. A growing season water balance model applied to two Douglas-fir stands. Water Resources Research, 1981, 17:1651-1656
    [282] Choudhury B J, Idso S B, Rejinato R J. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agricultural and Forest Meteorology, 1987, 37:75-88
    [283] Budyko M I. The heat balance of the Earth's surface. Washington, D.C. 1958
    [284] Basstiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL): Formulation. Journal of Hydrology, 1998, 212-213:198-212
    [285] Dawes W R, Short D L. TOPOG Series topographic analysis and catchment drainage modeling package: user manual, Canberra: CSIRO Division of Water Resources. 1988, 74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700