用户名: 密码: 验证码:
DFI体内筛选肺炎链球菌致脑膜炎相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管抗生素治疗已取得了长足的进步,细菌性脑膜炎仍是中枢神经系统发生最频繁,最严重的感染性疾病,其比例至少占脑膜炎总数的60%以上。引起细菌性脑膜炎最常见的三种病原菌依次为流感嗜血杆菌、肺炎链球菌和脑膜炎奈瑟菌。目前对于肺炎链球菌(streptococcus pneumoniae,S.pn)引起脑膜炎的机制并未完全清楚,因此发现S.pn致脑膜炎相关的毒力基因,不仅有助于进一步理解其致病机理,还可为新药开发和研发新型蛋白类疫苗提供候选基因。
     细菌进入宿主体内就如同进入一个生存竞争的“战场”,要在体内生存就必须表达一些使自身毒力增强或对宿主损伤加剧的基因,因此细菌在宿主体内表达的基因往往就是与致病紧密相关的毒力基因。本研究利用小鼠脑膜炎模型和差异荧光诱导技术(differential fluorescence induction,DFI),在体内大规模地筛选鉴定在肺炎链球菌性脑膜炎感染过程中表达或表达增强的基因,这些基因很可能就是肺炎链球菌引起脑膜炎的相关基因,在很大程度上影响着肺炎链球菌通过血脑屏障(blood-brain barrier,BBB)的侵袭力。研究内容包括以下四个部分。
     1.肺炎链球菌性脑膜炎动物模型的建立。将冻存的TIGR4在新鲜TSA血平板上培养16~18h后,刮取细菌并稀释成三种不同密度的菌液,每种密度分成2份,其中一份加入一定量的透明质酸酶,另一份不加。对小鼠行浅麻醉,用卡介苗注射器将上述菌悬液缓缓逐滴滴至小鼠鼻腔处,待其自动吸入,每只小鼠50μl。每天观察小鼠情况,于感染后24h、48h和72h处死小鼠,取心脏血和一半脑组织匀浆做细菌计数,另一半脑组织用于组织病理学检查。结果表明:①透明质酸酶并不能促进鼻腔滴注TIGR4致小鼠脑膜炎的发生;②小鼠脑膜炎的发生率与鼻腔感染TIGR4剂量有关,3×10~7CFU已足够,但低于该剂量脑膜炎的发生率会大大降低;③小鼠嗜睡、弓背症状与脑组织病理学改变显著相关。模拟S.pn在人类感染途径,通过鼻腔滴注TIGR4成功建立了小鼠脑膜炎模型,并且证实小鼠可出现嗜睡、弓背等脑膜炎典型症状,为下一步研究S.pn致脑膜炎的分子机制奠定了基础。
     2.肺炎链球菌绿色荧光蛋白报告质粒的构建及评价。DFI是以绿色荧光蛋白(GFP)为报告基因的筛选病原菌体内诱导基因的技术,必须要构建一个可高效报告基因表达的绿色荧光蛋白报告质粒。质粒pGreenTIR含有SD序列和翻译增强子ENH及无启动子的增强型绿色荧光蛋白基因(gfp),将其中的SD-ENH-GFP片段经BamHⅠ酶切后插入含氯霉素抗性基因的自杀质粒pEVP3中,构建了以绿色荧光蛋白为报告基因的自杀质粒pEVP3-SDGFP。为了评价新建质粒pEVP3-SDGFP报告上游基因表达的情况,我们将肺炎链球菌的溶血素基因(pneumolysin, ply)上游约500bp片段插入到该质粒报告基因上游的多克隆位点中,得到质粒pEVP3-SDGFP-Ply,将其转化入肺炎链球菌TIGR4中,由于溶血素基因在体内、外均可表达,通过体内、外实验证实其不但可以报告肺炎链球菌溶血素基因的表达,并且比已有质粒pEGFP-1报告上游基因表达的能力显著增强。表明构建的肺炎链球菌绿色荧光蛋白报告质粒pEVP3-SDGFP可以用于DFI筛选肺炎链球菌脑组织内诱导基因所需的启动子诱捕文库的构建。
     3.肺炎链球菌启动子诱捕文库的构建与初步分析。用DFI筛选病原菌体内诱导的基因,首先要构建一个包含无启动子序列的报告基因的启动子诱捕文库。以第一部分构建的自杀质粒pEVP3-SDGFP为骨架,将Sau3AI酶切的肺炎链球菌基因组DNA随机片段(200~800bp)克隆到此载体GFP基因上游的BglⅡ位点,将连接产物转化大肠杆菌DH5α,获得了约58 000个重组子,提取质粒,即为含有肺炎链球菌基因组DNA随机酶切片段的质粒库。考虑到DNA片段的插入方向和大小(200~800bp,平均400bp),该质粒库大约覆盖肺炎链球菌基因组全长(2.2Mb)的5倍,插入率达到90%以上,且有较强的随机性,质量较高。将该质粒库转化入肺炎链球菌TIGR4菌株,获得包含约500 000个肺炎链球菌转化子的菌株库。经过体内和体外实验表明,其包含插入了S.pn体内、外表达基因片段的细菌,可以报告在特定条件下的基因表达,并且可通过流式细胞仪识别、分选。该文库的成功构建为进一步利用差异荧光诱导技术筛选肺炎链球菌脑组织内诱导基因奠定了良好的基础。
     4.小鼠脑组织中诱导表达的S.pn基因的筛选及生物信息学分析。将构建好的肺炎链球菌菌株库鼻腔滴注感染BALB/c小鼠,出现嗜睡、弓背等脑膜炎症状后取小鼠脑组织,匀浆,流式细胞仪分选(fluorescence-activated cell sorting, FACS)收集脑组织内有荧光的细菌,体外培养一定时间后,再用流式细胞分选术剔除那些在体外也表达荧光的细菌,收集无荧光表达的细菌,得到只在脑组织内发荧光的细菌,经过两轮筛选,最后我们共挑取220个菌落进行进一步分析。为了克隆这些细菌中包含的脑组织内诱导基因的片段,我们应用酶切自连法,即提取这些菌株的染色体DNA,用BamHI酶切,并自身环化,使整合到染色体上的重组自杀质粒脱落下来并重新环化。对插入的随机片段进行测序后进行生物信息学分析,共证实有24个不同的基因片段,在TIGR4全基因组里面,这24个基因片段所处的操纵元结构中,总共包括51个开放阅读框,其中多数为含有多个ORFs的操纵元结构。这些基因包括参与氨基酸转运和代谢、碳水化合物转运和代谢、DNA复制与重组、细胞壁合成、转录调节、离子摄取以及功能未知的基因,其中有些基因的功能已有一些初步的研究,但其在脑膜炎发生过程中的作用并不清楚,如cbpD、pspA、操纵子psa和操纵子dlt;有一些基因功能完全不清楚。进一步分析和阐明这些基因在脑膜炎发生过程中的作用非常重要。
Bacterial meningitis is still the most frequent and severest infectious disease despite the treatment of antibiotic. The three main pathogens of bacterial meningitis are hemophilus influenz, streptococcus pneumoniae and diplococcus meningitis. The pathogenesis of pneumococcal meningitis is not well understood. The identification of new virulence factors of pneumococcal meningitis is very important in investigating more effective drug and vaccine.
     Upon entering the host, many pathogenic organisms involve themselves in a battlefield where the pathogens have to face the defenses of host immune system for survival. Bacteria respond to this change in circumstances by modulating their patterns of gene expression accordingly, downregulating the expressions of some genes that are no longer necessary, and upregulating those that are specifically required for survival in the host. It seemed reasonable that at least some in vivo-induced genes would play critical roles in the survival and pathogenesis, and serve as potential drug targets and vaccine candidates. In the present work, we employed the differential fluorescence induction and a mouse model of meningitis and identified the genes expressed in the process of meningitis due to streptococcus pneumoniae .These genes are probably the virulence factors of meningitis caused by streptococcus pneumoniae and may play important roles in its ability to transverse the blood-brain barrier. The research work included the following four parts.
     Firstly, the development of an animal model of pneumococcal meningitis. The animal model of pneumococcal meningitis is necessary to identify virulence factors associated with pneumococcal meningitis. TIGR4 was inoculated from frozen stocks onto tryptic soy agar (TSA) plates supplemented with 5% defibrinated rabbit blood and incubated for 16~18h at 37°C. Bacterial growth was scraped from fresh plates and suspended in phosphate-buffered saline (PBS), and the suspensions were diluted in PBS to the appropriate cell density. They were divided into two parts, and added with or without hyaluronidase respectively. BALB/c mice were anesthetized and infected with 50μl of the suspension via intranasal instillation. At 24h, 48 h and 72h postinfection respectively, mice were sacrificed, blood and half of brains were recovered for bacterial enumeration, and the orther half of brain for histopathologic study. It was found that hyaluronidase was not a necessary factor to establish apneumococcal meningitis via intranasal instillation. The occurance rate of meningitis was related to amount of inoculum. The symptoms of mice were correlated to histologic changes in its brain and this indicated that we can judge the occurance of meningitis through by the symptoms of mice.
     Secondly, the construction and analysis of a suicide plasmid which employed gfp as a reporter gene. DFI relies on the use of a reporter gene, gfp. The plasmid pGreenTIR has a mutated gfp gene and contains an improved translation initiation region (TIR) for prokaryotes, including the translational enhancer (ENH) and the Shine–Dalgarno (SD) regions of phage T7 gene 10, so that synthesis of GFP is enhanced. The SD-ENH-GFP region of plasmid pGreenTIR was cloned into a suicide plasmid pEVP3 which contains a cat gene encoding resistance protein to chloramphenicol, and a suicide plasmid pEVP3-SDGFP was constructed. To evaluate the function of this plasmid, a 500bp fragment of the pneumolysin gene(ply) of TIGR4 was coloned in the upstream of gfp and then was transformed into streptococcus pneumoniae TIGR4. The results indicated that the plasmid pEVP3-SDGFP could report the expression of ply both in vivo and in vitro, and it can be used to construct the promoter-trap library which is needed in DFI.
     Thirdly, the construction and analysis of promoter-trap library of S.pneumoniae. The promoter-trap library is very important to screen the in vivo-induced genes by DFI. 200 to 800bp Sau3AI fragments of S. pneumoniae TIGR4 DNA were cloned upstream of the promoterless gfp gene in pEVP3-SDGFP. The ligation was then transformed into E. coli DHα. 58 000 recombinants were obtained. Considering insert DNA orientation and insert size, this represents 5 coverages of the 2.2Mb S.pneumoniae genome, 90% of these clones had 200 to 800bp inserts and the library is random. Transformation by this plasmid library yielded 500 000 S. pneumoniae transformants. Analysed by fluorescence microscope and flow cytometry, this library contains both the in vivo-induced gene fragment and in vitro-expressing fragment. The promoter-trap library is suitable for screening genes induced expression in brain of S. pneumoniae.
     Lastly, screening of genes induced in brain by DFI and bioinformatics analysis. BALB/c mice were infected intranasally with the promoter-trap library according to the method described in first part. When the mice occurred lethargy and hunched appearance, bacteria were harvested from the brain tissues and sorted by flow cytometry, clones with increased fluorescence were used to reinfect animals for enrichment. After cultured about 48h in vitro, sorted by flow cytometry, clones with low fluorescence were collected. 220 clones were analyzed. To clone the induced fragments, each chromosomal DNA was digested with BamHI, self ligated, and transformed into E coli DH5α. All the recombined suicide plasmids were successfully obtained and sequenced, and 24 unique sequences were identified. Bioinformatics analysis showed that there were 51 ORFs in the 24 operons. These genes involve in the process of amino acid transport and metabolism, carbohydrate transport and metabolism, DNA replication and recombination, cell envelope biogenesis, transcription, and anion/cation acquisition, and some of them, the functions are unknown. Among them, cbpD、pspA、operon psa and operon dlt have been shown that they may involved in the pathogenesis of S. pneumoniae. But the roles of them in pneumococcal meningitis are unknown. It is necessary for further research about these genes in pathogenesis of pneumococcal meningitis.
引文
[1]Sarz-Llorens X, McCracken GH Jr. Bacterial meningitis in children[J]. Lancet. 2003;36(9375): 2139-2148
    [2]Davision KL, Ramsay ME. The epidemiology of acute meningitis in children in England and Wales[J]. Arch Dis Child. 2003; 88(8): 662-664
    [3]Greenwood B. The epidemiology of pneumococcal infection in children in the developing world[J]. Philos Trans Soc Lond B Biol Sci. 1999; 354(1389): 777-785
    [4]Huang SH, Jong AY. Cellular mechanism of microbial proteins contributing to invasion of the blood-brain barrier[J]. Cell Microbiol. 2001; 3(5): 277-287
    [5]Oggioni MR, Trappetti C, Kadioglu A, et al. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis[J]. Molecular Microbiology. 2006;61(5): 1196-1210
    [6]Zwijnenburg PJG, van der Poll T, Florquin S, et al. Experimental pneumococcal meningitis in mice: a model of intranasal infection[J]. J Infect Dis. 2001;183: 1143-1146
    [7]Tettelin H, Nelson KE, Paulsen LT, et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae[J]. Science. 2001; 293(5529): 498-506
    [8]Marra A, Asundi J, Barstilson M, et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis[J]. Infect Immun. 2002;70(3): 1422-1433
    [9]Bumann D, Valdivia RH. Identification of host-induced pathogen genes by differential fluorescence induction reporter systems[J]. Nat Protoc. 2007;2(4): 770-777
    [1]Sarz-Llorens X, McCracken GH Jr. Bacterial meningitis in children[J]. Lancet. 2003;36: 2139-2148
    [2]Koedel U, Scheld W, Pfister HW: Pathogenesis and pathophysiology of pneumococcal meningitis[J]. Lancet Infect Dis. 2002;2:721-736
    [3]van de Beek D, Schmand B, de Gans J, er al. Cognitive impairment in adults with good recovery after bacterial meningitis[J]. J Infect Dis. 2002;186:1047-1052
    [4]Iizawa Y, Hiroe K, Nakao M, et al. Therapeutic efficacy of cefozopran in a murine model of haematogenous pneumococcal meningitis[J]. Chemotherapy. 1998; 44:265-271
    [5]Tsao N, Chang WW, Liu CC, et al. Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-α[J]. FEMS Immunol Med Microbiol. 2002;32:133-140.
    [6]Marra A, Brigham D. Streptococcus pneumoniae causes experimental meningitis following intranasal and otitis media infections via a non hematogenous route[J]. Infect Immun. 2001;69:7318-7325
    [7]Zwijnenburg PJG, van der Poll T, Florquin S, et al. Experimental pneumococcal meningitis in mice: a model of intranasal infection[J]. J Infect Dis. 2001;183: 1143-1146
    [8]Gerber J, Raivich G, Wellmer A, et al. A mouse model of Streptococcus pneumoniaemeningitis mimicking several features of human disease[J]. Acta Neuropathol. 2001; 101:499-508
    [9]Shapiro MA, Donovan KD, Gage JW. Comparative efficacy of clinafloxacin in a pneumococcal meningitis mouse model[J]. J Antimicrob Chemother. 2000;45: 489-492
    [10]Koedel U, Paul R, Winkler F, et al. Lack of endothelial nitric oxide synthase aggravates murine pneumococcal meningitis[J]. J Neuropathol Exp Neurol. 2001; 60:1041-1050.
    [11]Obaro S, Adegbola R. The pneumococcus: carriage, disease and conjugate vaccines[J]. J Med Microbiol. 2002;51:98-104
    [12]Chiavolini D, Tripodi S, Parigi R, et al. Method for inducing experimental pneumococcal meningitis in outbred mice[J]. BMC Microbiol. 2004;4(1):36-41
    [13]Tuomanen EI, Gao GL, Orihuela CL, et al. Organ-specific models of Streptococcus pneumoniae disease. Scand J Infect Dis. 2003;35(9): 647-652
    [14]Leib SL, Clements JM, Lindberg RL, et al. Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis[J]. Brain. 2001;124(Pt 9):1734-1742
    [15]Sellner J, Leib SL. In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation[J]. Neurobiol Dis. 2006;21(3):647-656
    [16]Pfister LA, Tureen JH, Shaw S, et al. Endothelin inhibition improves cerebral blood flow and is neuroprotective in pneumococcal meningitis[J]. Ann Neurol. 2000; 47(3):329-335
    [17]Berry AM, Paton JC. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins[J]. Infect Immun. 2000;68(1):133-140
    [18]Zwijnenburg PJ, van der Poll T, Florquin S, et al. Experimental pneumococcal meningitis in mice: a model of intranasal infection[J]. J Infect Dis. 2001;183(7):11431146
    [1]Wellmer A, Zysk G, Gerber J, et al. Decreased Virulence of a Pneumolysin-Deficient Strain of Streptococcus pneumoniae in Murine Meningitis[J]. Infect Immun. Nov. 2002;70(11):6504-6508
    [2]Jedrzejas, M.J. Pneumococcal virulence factors:structure and function[J]. Microbiol Mol Biol Rev. 2001;65: 187-207
    [3]Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescenceinduction[J]. Mol Microbiol. 1996;22:367-378
    [4]Bumann D, Valdivia RH. Identification of host-induced pathogen genes by differential fluorescence induction reporter systems[J].Nat Protoc. 2007;2(4):770-777
    [5]Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection[J]. Sicence. 1995;269: 400-403
    [6]Dario EL, Roger CL. Detection of genes essential in specific niches by signature-tagged mutagenesis[J]. Current Opinion in Biotechnology. 2000;11: 434-439
    [7]Orihuela CJ, Radin JN, Sublett JE, et al. Microarray analysis of pneumococcal gene expression during invasive disease[J]. Infect Immun. 2004;72(10):5582-96.
    [8]Weiss DS, Brotcke A, Henry T, et al. In vivo negative selection screen identifies genes required for Francisella virulence[J]. Proc Natl Acad Sci U S A. 2007 3;104(14):6037-42
    [9]Gort AS, Miller VL. Identification and characterization of Yersinia enterocolitica genes induced during systemic infection[J]. Infect Immun. 2000;68:2359-2362
    [10]Hang L, John M, Asaduzzaman M, et al. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae[J]. Proc Natl Acad Sci U S A. 2003;100(14):8508-13
    [11]Kim YR, Lee SE, Kim CM, et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients[J]. Infect Immun. 2005;71(10):5461-71
    [12]Marra A, Asundi J, Barstilson M, et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis[J]. Infect Immun. 2002; 70(3): 1422-1433
    [13]Ciu W, Niwa Y, Zeng W, et al. Engineered GFP as a vital reporter in plants[J]. Curr Biol. 1996;6(3):325-30
    [14]Samel S, Keese M, Laning S, et al. Supplementation and inhibition of nitric oxide synthsis influences bacterial transit time during bacterial translocation in rats[J]. Shock. 2006;19(4):78-82
    [15]Acebo P, Nieto C, Corrales MA, et al. Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein[J]. Microbiology. 2000;146 ( Pt 6):1267-73
    [16]Claverys JP, Dintilhac A, Pestova EV, et al. Construction and evaluation of new drug- resistance cassettes for gene disruption mutagenesis in Streptococcus pneumoniae, using an ami test platform[J]. Gene. 1995;164(1):123-128
    [1]Gort AS, Miller VL. Identification and characterization of Yersinia enterocolitica genes induced during systemic infection[J]. Infect Immun. 2000;68:2359-2362
    [2] Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues[J]. Science. 1993;259:686-688
    [3]Mahan MJ, Tobias JW, Slauch JM, et al. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host[J].Proc Natl Acad Sci U S A. 1995;92(3):669-673
    [4]Wang J, Mushegian A, Lory S, et al. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection[J]. Proc Natl Acad Sci USA.1996;93(19):10434-10439
    [5]Gort AS, Miller VL. Identification and characterization of Yersinia enterocolitica genes induced during systemic infection[J].Infect Immun 2005;68:2359-2362
    [6]Camilli A, Mekalanos JJ. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection[J].Mol Microbiol.1995;18(4):671-683
    [7]Lowe AM, Beattie DT, Deresiewicz RL. Identification of novel staphylococcal virulence genes by in vivo expression technology[J]. Mol Microbiol 1998; 27(5):967-796
    [8]Marra A, Asundi J, Barstilson M, et al. Differential fluorescence induction analysis ofStreptococcus pneumoniae identifies genes involved in pathogenesis[J]. Infect Immun. 2002; 70(3): 1422-1433
    [9]Bumann D, Valdivia RH. Identification of host-induced pathogen genes by differential fluorescence induction reporter systems. Nat Protoc. 2007;2(4):770-777
    [10]Badger JC, Wass D, Kim K. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction[J].Mol.Microbiol. 2003;36:174-182
    [11]Schneider WP, Ho SK,Christine J,et al.Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture[J].Infect Immun.2002;70(3):1326-33
    [12]J.萨姆布鲁克, D.W.拉塞尔. 分子克隆实验指南[M].第三版.北京:科学出版社,2002.302-303
    [13]Kilic AO, Herzberg MC, Meyer MW, et al. Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes[J]. Plasmid. 1999;42:67-72
    [1]Su LC, David WH. In vivo genetic analysis of bacterial virulence[J].Annu Rev Microbiol.1999;53:129-154
    [2]Huang SH, Jong AY. Cellular mechanism of microbial proteins contributing to invasion of the blood-brain barrier[J]. Cell Microbiol. 2001; 3(5): 277-287
    [3]Wang JY, Mushegian A, Lory S, et al. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection[J]. PNAS. 1996;93: 10434-10439
    [4]Kilic AO, Herzberg MC, Meyer MW,et al. Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes[J]. Plasmid.1999;42:67-72
    [5]Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues[J]. Science,1993;259:686-688
    [6]Law J, Buist G, Haandrikman A, et al.A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes[J]. J Bacteriol. 1995;177(24):7011-7018
    [7]Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans[J]. PNAS. 1979;76(4):1648-1652
    [8]Beyer D, Kroll HP, Endermann R, et al. New class of bacterial Phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity[J]. Antimicrobial Agents and Chemotherapy. 2004; 48(2):525-532
    [9]Yu XY, Finn J, Hill JM, et al. A series of heterocyclic inhibitors ofphenylalanyl-tRNA synthetases with antibacterial activity[J]. Bioorg Med Chem Lett. 2004;14(5):1343-1346
    [10]Berry, AM., and JC, Paton. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae[J]. Infect. Immun. 1996; 64:5255-5262.
    [11]Dintilhac, A., G. Alloing, C. Granadel, and J. P. Claverys. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases[J]. Mol. Microbiol. 1997; 25:727-739.
    [12]Marra AS, Lawson JS, Asundi D,te al. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection[J]. Microbiology. 2002;148(Pt 5):1483-1491
    [13]Tseng HJ, McEwan AG., Paton JC, et al. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress[J]. Infect. Immun. 2002; 70:1635-1639
    [14]Johnston JW, Lisa EM, Ochs MM, et al. Lipoprotein PsaA in Virulence of Streptococcus pneumoniae: Surface Accessibility and Role in Protection from Superoxide[J]. Infect. Immun. 2004;72(10): 5858-5867
    [15]Ogunniyi AD, Folland RL, Briles DE, et al. Immunization of Mice with Combinations of Pneumococcal Virulence Proteins Elicits Enhanced Protection against Challenge with Streptococcus pneumoniae[J]. Infection and Immunity, 2000; 68(5):3028-3033
    [16]Pimenta FC, Miyaji EN, Areas AP. Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice[J]. Infect Immun. 2006;74(8):4939-4944.
    [17]Kovacs M, Halfmann A, Fedtke I, et al. A Functional dlt Operon, Encoding Proteins Required for Incorporation of D-Alanine in Teichoic Acids in Gram-PositiveBacteria, Confers Resistance to Cationic Antimicrobial Peptides in Streptococcus pneumoniae [J]. J Bacteriol. 2006 Aug;188(16):5797-805
    [18]Collins LV, Kristian C, Weidenmaier M, et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice[J]. J. Infect. Dis. 2002;186:214-219.
    [19]Poyart CE, Pellegrini M, Marceau M, et al. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells[J]. Mol. Microbiol. 2003; 49:1615-1625
    [20]Abachin EC, Poyart E, Pellegrini E, et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes[J]. Mol. Microbiol. 2002;43:1-14
    [21]Novak R, Charpentier E, Braun JS, et al. Extracellular targeting of choline-binding proteins in Streptococcus pneumoniae by a zinc metalloprotease[J]. Mol Microbiol. 2000;36(2):366-376
    [22]Berge M,Garcia P, Iannelli F, et al. The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae[J]. Mol Microbiol.2001;39(6):1651-1660
    [23]Garcia JL,Sanchez-Beato AR,Medrano FJ,et al. Versatility of choline-binding domain. Microb[J]. Drug Resist.1998; 4:25–36
    [24]Wren BW. A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences[J]. Mol.Microbiol.1991;5:797-803
    [25]Rosenow C, Ryan P, Weiser JN,et al. Contribution of novel choline-binding proteins to adherence,colonization and immunogenicity of Streptococcus pneumoniae[J]. Mol Microbiol. 1997;25:819-829
    [26]Orihula CJ, Gao G, Francis KP, et al. Tissue-specific contributions of Pneumococcal virulence factors to pathogenesis[J]. J Infect Dis 2004;190:1661-1669
    [27]Tuomanen EI,Masure HR,Gosink KK,et al. Role of novel choline binding proteinsin virulence of Streptococcus pneumoniae[J]. Infect Immun.2000;68(10):5690-5695
    [28]Kausmally L, Johnsborg O, Lunde M, et al. Choline-Binding Protein D (CbpD) in Streptococcus pneumoniae Is Essential for Competence-Induced Cell Lysis[J]. J Bacteriol. 2005;187(13):4338-4345
    [29]Gosink, KK., Mann ER, Guglielmo C, et al. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae[J]. Infect. Immun. 2000; 68:5690-5695
    [30]Orihuela CJ, Radin JN, Sublett JE, et al. Microarray analysis of pneumococcal gene expression during invasive disease[J]. Infect Immun. 2004;72(10):5582-5596
    [31]Crain, MJ, Waltman WD, Turner JS, et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae[J]. Infect.Immun. 1990;58:3293-3299
    [32]Vela Coral, Fonseca MD, E. Castaneda, et al. J. Pneumococcal surface protein A of invasiveStreptococcus pneumoniae isolates recovered from Colombian children.Emerg[J]. Infect. Dis. 2001;7:832–836
    [32]Bogaert D, De Groot R, Hermans PW, et al.. Streptococcus pneumoniae colonization: the key to pneumoncoccal disease [J]. Lancet Infect Dis, 2004; 4(3): 144-154
    [33]Briles DE, Hollingshead SK, Nabors GS, et al. The potential for using protein vaccines to protect against otitis media caused by streptococcus pneumoniae [J]. Vaccine, 2001; 19(S11): S87-95
    [34]Ko KS, Park S, Oh WS, et al. Comparative Analysis of Growth-Phase-Dependent Gene Expression in Virulent and Avirulent Streptococcus pneumoniae Using a High-Density DNA Microarray [J]. Mol. Cells. 2006; 21(1): 82-88
    [35]Marra A, Asundi J, Bartilson M, et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis [J]. Infect Immun. 2002;70(3):1422-1433
    [1]Su LC, David WH. In vivo genetic analysis of bacterial virulence[J]. Annu Rev Microbiol, 1999;53:129-154
    [2]Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues[J]. Science,1993;259:686-688
    [3]Wang J, Mushegian A, Lory S, et al. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection[J]. Proc Natl Acad SciUSA,1996;93(19):10434-10439
    [4]Gahan CG, Hill C. The use of listeriolysin to identify in vivo induced genes in the gram-positive intracellular pathogen Listeria monocytogenes[J]. Mol Microbiol 2000;36(2):498-507
    [5]Mahan MJ, Tobias JW, Slauch JM, et al. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host[J]. Proc Natl Acad Sci U S A , 1995;92(3):669-673
    [6]Wang J, Mushegian A, Lory S, et al. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection[J]. Proc Natl Acad Sci USA, 1996;93(19):10434-10439
    [7]Kili AO, Herzberg MC, Meyer MW, et al. Streptococcal reporter gene-fusion vector for identification of in vivo expressed genes[J]. Plasmid. 1999;42(1):67-72
    [8]Gort AS, Miller VL. Identification and characterization of Yersinia enterocolitica genes induced during systemic infection[J]. Infect Immun,2000;68:2359-2362
    [9]Young GM, Miller VL. Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis[J]. Mol Microbiol.1997;25:319-328
    [10]Angelichio MJ, Camilli A. In vivo expression technology[J]. Infect Immun. 2002;70(12):6518-6523.
    [11]Camilli A, Mekalanos JJ. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection[J]. Mol Microbiol. 1995;18(4):671-683
    [12]Lowe AM, Beattie DT, Deresiewicz RL. Identification of novel staphylococcal virulence genes by in vivo expression technology[J]. Mol Microbiol. 1998;27(5):967-976
    [13]Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction[J]. Mol Microbiol. 1996;22:367-378
    [14]Valdivia RH, Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells[J]. Science,1997;277:2007-2011
    [15]Barker LP, Brooks DM, Small PL. The identification of Mycobacterium marinumgenes differentially expressed in macrophage phagosomes using promoter fusions to green fluorescent protein[J]. Mol Microbiol.1998;29(5):1167-1177
    [16]Badger J, Wass C, Kim K. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction[J].Mol Microbiol.2000;36:174-182
    [17]Wilson RL, Tvinnereim AR, ones BD, et al. Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting[J]. Infect Immun. 2001;69:5016-5024
    [18]Schneider WP, Ho SK, Christine J, et al. Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture[J]. Infect Immun. 2002;70(3): 1326-1333
    [19]Hensel M, Shea JE, Gleeson C, et al. Simultaneous identification of bacterial virulence genes by negative selection[J]. Sicence 1995;269: 400-403
    [20]Dario EL, Roger CL. Detection of genes essential in specific niches by signature-tagged mutagenesis[J]. Current Opinion in Biotechnology. 2000;11: 434-439
    [21]Schoolnik GK. Microarray analysis of bacterial pathogenicity[J]. Adv Microb Physiol. 2002;46:31-45
    [22]Davis PH, Schulze J, Stanley SL Jr. Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin[J]. Mol Biochem Parasitol. 2007;151(1):118-128
    [23]Nakamura MM, Liew SY, Cummings CA, et al. Growth phase- and nutrient limitation-associated transcript abundance regulation in Bordetella pertussis[J]. Infect Immun. 2006;74(10):5537-5548
    [24]Murphy JT, Sommer S, Kabara EA, et al. Gene expression profiling of monocyte-derived macrophages following infection with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies paratuberculosis[J].Physiol Genomics. 2006;28(1):67-75
    [25]Larocque RC, Harris JB, Dziejman M, et al. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection[J]. Infect Immun. 2005;73(8):4488-4493
    [26]Smith H. What happens to bacterial pathogens in vivo[J]. Trends Microbiol. 1998;6:239-243
    [27]Handfield M, Brady LJ, Progulske-Fox A, et al. IVIAT: a novel method to identify microbial genes expressed specifically during human infections[J]. Trends Microbiol.2000;8(7):336-339.
    [28]Deb DK, Dahiya P, Srivastava KK, et al. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach[J]. Tuberculosis. 2002;82(4-5):175-182
    [29]Hang L, John M, Asaduzzaman M, et al. Use of in vivo-induced antigen technology (IVIAT)to identify genes uniquely expressed during human infection with Vibrio cholerae[J]. Proc Natl Acad Sci U S A. 2003;100(14):8508-8513
    [30]Kim YR, Lee SE, Kim CM, et al. Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients[J]. Infect Immun. 2003;71(10):5461-5471
    [31]宫霞,赵骏,郭本恒. 蛋白质组学及其在病原微生物研究中的应用进展[J].乳业科学与技术.2006,118(3):105-107
    [32]Rosenkrands I, Weldingh K, Jacobsen S, et a1. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection[J]. Electr0phoresis. 2000;21(5):935-948
    [33]Ziebandt AK, Becher D, Ohlsen K, et al. The influence of agr and sigmaB in growth phase dependent regulation of virulence factors in Staphylococcus aureus[J]. Proteomics. 2004;4(10):3034-47
    [34]Nakamura T, Hasegawa T, Torii K, et al. Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes[J]. Arch Microbiol. 2004;181(1):74-81
    [35]Cole JN, Ramirez RD,Currie BJ, et a1. Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus[J]. Infect Immun. 2005;73(5):3137-3146
    [36]Luo Q, Tang K, Yang F, et al. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry[J]. J Proteome Res. 2006;5(5):1091-1097
    [37]Horner SR, Mace CR, Rothberg LJ, et al. A proteomic biosensor for enteropathogenic E. coli[J]. Biosens Bioelectron. 2006;21(8):1659-1663
    [1]Isfelt M, van de Beek D, Spanjaard L, et al. Clinical features, complications, and outcome in adults with pneumococcal meningitis: a prospective case series[J]. lancet neurol. 2006;5(2):123-129
    [2]Davision KL, Ramsay ME. The epidemiology of acute meningitis in children in England and Wales[J]. Arch Dis Child. 2003; 88(8): 662-664
    [3]Greenwood B. The epidemiology of pneumococcal infection in children in the developing world[J]. Philos Trans Soc Lond B Biol Sci. 1999; 354(1389): 777-785
    [4] Hansson K, sundstrom L, pelletier A, et al. IntI2 integron integrase in Tn7. J Bacteriol. 2002;184(6):1712-1721
    [5]Obaro S, Adegbola R. The pneumococcus: carriage, disease and conjugate vaccines[J]. J Med Microbiol. 2002;51:98-104
    [6]Paton JC, Andrew PW, Boulnois GJ, et al. Molecular analysis of the pathogenicity of Streptococcus pneumoniae the role of pneumococeal proteins[J]. Annu Rev Microbiol. 1993;47:89-115
    [7] Novak R, Tvomanen E. Pathogenesis of pnuemococcal pneumonia[J]. Semin Respirinfect.1999;14(3):209-217
    [8]Vander-Filer M, Chhun N, Wizmann TM, et al. Adher-ence of streptococcus pneumonia to immobilized fibronectin[J]. Infect immune. 2000;63(11):4317-4322
    [9]Daniela Pracht, Christine Elm, Joachim Gerber, et al. PavA of Streptococcus pneumoniae Modulates Adherence, Invasion, and Meningeal Inflammation[J]. Infection and Immunity. 2005;73(5): 2680-2689
    [10]Huang SH, Jong AY. Cellular mechanism of microbial proteins contributing to invasion of the blood-brain barrier[J]. Cell Microbiol. 2001; 3(5): 277-287
    [11]Jones ME, Peters E, Weersink AM, et a1. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria[J]. Lancet. l997;349(9067): 1742-1743
    [12]Rosenow C, Ryan P, Weiser JN, et al. Contribution of novel choline-binding proteins to adherence,colonization and immunogenicity of Streptococcus pneumoniae[J]. Mol Microbiol. 1997;25:819-829
    [13]Murdoch C, Read RC, Zhang Q, et al. Choline-binding protein A of Streptococcus pneumoniae elicits chemokine production and expression of intercellular adhesion molecule 1 (CD54) by human alveolar epithelial cells[J]. J Infect Dis. 2002 Nov 1;186(9):1253-1260
    [14]Orihuela CJ, Radin JN, Sublett JE, et al. Microarray analysis of pneumococcal gene expression during invasive disease[J]. Infect Immun. 2004;72(10):5582-96
    [15]Rubins JB, Jan offEN. Pneumolysin:a multifunctional pneumococcal virulence factor[J]. J Lab Clinl Med. 2005;131(1):21-27
    [16]Cundell DR, Gerard NP, Gerard C, et al. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor[J]. Nature. 1995;{63(7):435-438
    [17]Zwijnenburg PJ, van der Poll T, Florquin S, et al. Experimental pneumococcal meningitis in mice: a model of intranasal infection[J]. J Infect Dis. 2001;183(7):1143-1146
    [18]Wellmer A, Zysk G, Gerber J, et al. Decreased virulence of a pneumolysin- deficientstrain of Streptococcus pneumoniae in murine meningitis[J]. Infect Immun. 2002;70(11):6504-6508
    [19]Scheld WM, Koedel U, Nathan B,et al. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury[J]. J Infect Dis. 2002;186 Suppl 2:S225-233
    [20]Daniela Bermpohl, Annett Halle, Dorette Freyer, et al. Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways[J]. The Journal of Clinical Investigation. 2005;115 (6):1607-1615
    [21]Schneider O, Michel U, Zysk G, er al. Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations[J]. Neurology. 1999;53:1584-1587
    [22]刘心洁,孙若鹏,雷革非等.大鼠肺炎链球菌脑膜炎病理机制及干预措施的初步研究[J].中华儿科杂志,2005;43(4):294-296
    [23]Meli DN, Christen S, Leib SL. Matrix metalloproteinase-9 in pneumococcal meningitis: activation via an oxidative pathway[J]. J Infect Dis. 2003 ,187(9):1411-1415
    [24]Sellner J, Leib SL. In bacterial meningitis cortical brain damage is associated with changes in parenchymal MMP-9/TIMP-1 ratio and increased collagen type IV degradation[J]. Neurobiol Dis. 2006 ,21(3):647-656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700