用户名: 密码: 验证码:
大功率高亮度固体激光器及其谐波产生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的内容分为两个部分,其中前五章的内容是作者作为浙江大学和德国柏林工业大学(Technische Universitat Berlin)联合培养的博士研究生,在柏林工业大学光学与原子物理研究所进行的为期两年的研究工作,主要内容是大功率高亮度固体激光器及其谐波的产生;第六章的内容是作者在攻读博士学位前一年半期间在国内所从事的工作,受篇幅所限,主要总结了针对外腔反馈的半导体激光器进行的一些理论研究。
     论文的第二章至第四章对闪光灯连续抽运的、大功率高亮度、KHz量级高重复频率的调Q固体激光器进行了理论和实验的研究。固体激光器中的热致双折射效应严重地限制了基模输出功率的提高,为了获得大功率高质量的激光输出,需要对热致双折射效应进行补偿。
     文中首先在理论上对双棒在腔内串接补偿热致双折射效应的条件进行了改进,然后通过设计合理的腔结构和腔内元器件,应用4f成像系统空间滤波器并考虑石英旋光器的厚度,使得腔内光束的退偏率降至2.5%以下,在基模输出的情况下,退偏率可以降至1%以下。
     使用矩阵光学的方法简化了对含有这样一个复杂光学系统的谐振腔稳定性和腔内光束半径等特性的分析。设计并实现了大基模体积动态稳定腔,理论分析了内含辅助透镜的谐振腔的设计方法。通过在腔内加入一个正透镜来扩大基模体积,使用双氪灯连续抽运的Nd:YAG激光器,实验中得到了61W的基模输出,光束质量因子M~2为1.4。实验表明在大基模体积谐振腔的设计中,双折射效应的补偿时十分必要的。加入声光调Q开关,在脉冲重复频率为18kHz的情况下,输出功率为54W,脉冲宽度为240ns。理论和实验研究了声光调Q开关在腔内的位置对于腔内光强分布的影响,解决了调Q激光对于腔内元件的损伤问题。
     研究了固体激光器中热透镜的球差效应及其对激光器性能的影响。使用Fox-Li的迭代算法计算了球差效应作用下激光谐振腔的本征模,并分析了在不同谐振腔结构的条件下,球差效应对腔内光束单程损耗因子以及激光器的输出功率、光束质量等性能的影响。计算表明,在大基模体积的动态稳定腔中,即使很微弱的球差效应,都会使激光器的基模产生旁瓣,理论分析表明,光束填充因子是动态稳定腔的设计中的一个重要因素,选择恰当的填充因子,既可以获得较高的输出功率,又可以保证输出光束的光束质量。最后,通过实验结果验证了上述理论分析,理论计算和实验结果符合的很好。
     在上述研究的基础上,论文的第五章分别使用KTP晶体和BBO晶体对红外光进行了频率转换的研究,产生了二次谐波的绿光和四次谐波的紫外光。在二倍频的实验中,实验测量了灰迹效应产生的阈值和对倍频后绿光的光束质量的影响,表明了实验中影响灰迹效应的主要因素是KTP晶体出射面上的绿光功率密度的大小,通过调节晶体与会聚透镜的距离,成功地消除了灰迹效应,在基频光调Q输出42W的条件下,获得了18W的绿光,转换效率为44%。最后使用BBO晶体进行四倍频,获得了紫外光功率为1.9W。
     最后一章中讨论了外腔反馈对半导体激光器输出光束质量的变化,以及外腔反馈对半导体激光器的阈值电流和输出功率等振荡性能的影响。首先从理论上分析了外腔反馈对BAL半导体激光器空间模式的影响,导出了反馈注入外腔BAL输出激光的光场分布。然后通过有效反射系数的引入,根据激光腔谐振的自再现条件和对腔内光子密度、载流子密度方程的求解,分析了外腔反馈对半导体激光器的阈值增益、输出频率和输出功率等振荡特性的影响。
This dissertation is composed of two parts. As a Ph. D candidate of Zhejiang University and Technische Universitat Berlin (TU Berlin), the author had studied in Institut für Optik und Atomare Physik, TU Berlin for two years for some research work. The first five chapters are based on the work finished in TU Berlin. The topic is high power high brightness solid state lasers and their harmonic generation. The 6th chapter is based on the work finished in Zhejiang University, the topic of which is the theoretical study on external cavity feedback semiconductor lasers.
     A lamp-pumped high power high brightness Q-switched laser system is investigated theoretically and experimentally in this dissertation. The thermal induced birefringence is a key factor of the improvement of output power of the laser system in fundamental mode. Birefringence compensation is mandatory for high power lasers with good beam quality.
     The principle of birefringence compensation using two Nd: YAG rods are investigated in Chapter 2. Considering the thickness of the quartz polarization rotator, a revised model is presented for the condition of birefringence compensation. The depolarization ratio of less than 2.5% is achieved experimentally.
     By means of matrix optics, a cavity containing a two-rod system is simplified as a thin lens, which allows one to analyze the properties of the system such as stability of the resonator and beam radius in the cavity. Inserting a positive lens into the cavity to enlarge the fundamental mode volume, 61W linearly polarized output is obtained in a lamp cw-pumped Nd:YAG laser. It is shown that the birefringence compensation is essential for a dynamic stable resonator with lager fundamental mode volume.
     The spherical aberration of the thermal lens of the active media is obvious when the solid state lasers are strongly pumped. It can change the mode profile, the single-pass loss, the output power and so on, especially in a large-volume TEM_(00)-mode resonator. The self-consistent mode is calculated using Fox-Li diffraction iterative algorithm. There are side lobes with the fundamental mode when the spherical aberration is introduced, hence the beam quality is decreased. The calculation results agree well with the experimental results. The beam filling factor plays an important role in the design of a laser system. The optimized value of the beam filling factor should be decided by the experimental results according to the spherical aberration effect.
     Second harmonic generation (SHG) and fourth harmonic generation (FHG) are investigated with KTP and BBO crystals respectively. Due to the high repetition rate and long pulse width, the grey tracking effect is obvious in the experiment of SHG. By enlarge the beam size of the green light on the output surface of the KTP crystal, the grey tracking effect is successfully eliminated. 18W green laser with 10kHz repetition rate is obtained with converge efficiency of 44%. Ultraviolet light generation by FHG with BBO crystal is investigated. 1.9W ultraviolet is achieved experimentally.
     The influence of the external cavity feedback on the output beam quality, thereshold curruent and output power of a semiconductor laser is discussed in the 6th chapter. In according the theory of self-consistency, the wave propagation of the output laser of external cavity BAL is calculated. Through the introduction of effective reflectivity, the influence of external optical feedback on the oscillating characteristics of a semiconductor laser is discussed such as threshold gain, laser frequency and output power, according to the self-consistency condition and the photon and carrier density ratio equation.
引文
1. S. C. Tidwell, J. F. Seamans, and M. S. Bowers, "Highly efficient 60-W TEM00 cw diode-end-pumped Nd:YAG laser", Opt. Lett., 1993(18), 116-118
    2. D. Golla, M. Bode, S. Knoke, W. Schoene, and A. Tünnermann, "62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers", Opt. Lett., 1996 (21), 210-212
    3. S. Konno, S. Fujikawa, and K. Yasui, "80 W cw TEM00 1064 nm beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser", Appl. Phys. Lett., 1997(70), 2650-2651
    4. W. C. Scott and M. de Wit, "Birefringence compensation and TEM00 mode enhancement in a Nd:YAG Laser", Appl. Phys. Lett., 1971(18), 3-4
    5. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Muller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical laser rods", Opt. Quantum Electron. 1996(28), 57-69
    6. M. Frede, R. Wilhelm, M. Brendel, C. Fallnich, "High power fundamental mode Nd:YAG laser with efficient birefringence compensation", Opt. Express, 2004(12), 3581-3588
    7. M. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, "Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers", Appl. Opt. 2002 (41), 7573-7582
    8. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, "208-W TEM_(00) operation of a diode-pumped Nd:YAG rod laser", Opt. Lett., 1999(24), 679-681
    9. A. Montmerle, Bonnefois, M. Gilbert, P.-Y. Thro, J.-M. Weulersse, "Thermal lensing and spherical aberration in high-power transversally pumped laser rods", Opt. Commun., 2006(259), 223-235
    10. E. Leibush, S. Jackel, S. Goldring, I. Moshe, Y. Tzuk, and A. Meir, "Elimination of spherical aberration in multi-kW, Nd: YAG, rod pump-chambers by pump-distribution control", Advanced Solid State Photonics 2005, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005).
    11. N. Hodgson, H. Weber, "Influence of Spherical Aberration of the Active Medium on the Performance of Nd: YAG Lasers", 1EEE J. Quantum Electron. 1993 (29), 2497-2507.
    12. J. Bourderionnet, A. Brignon, J. Huignard, R. Frey, "Influence of aberrations on fundamental mode of high power rod solid-state lasers", Opt. Commun. 2002 (204), 299-310
    13. A. Montmerle Bonnefois, M. Gilbe.rt, P.-Y. Thro, D. Farcage, and J.-M. Weulersse, "Novel method to improve the performance of Nd:YAG high-power, low divergence lasers using a passive compensation of the spherical aberration inside the resonator", Proc. SPIE, 2005(5707), 362-369
    14. I. Moshe, S. Jackel, and A. Meir, "Correction of spherical and azimuthal aberrations in radially polarized beams from strongly pumped laser rods", App. Opt., 2005(44), 7823-7827
    15. K. Fujimori, "High-harmonic generation using YAG laser and its applications", 12th National Conf Laser Soc Japan, 1992.37-40,
    16. M. Oka, LY Liu, W. Wiechmann, S. Kubota, "All solid-state continuous-wave frequency-quadrupled Nd:YAG laser", IEEE J Sel Top Quantum Electron, 1995(1), 859-866
    17. David C. Gerstenberger, Thomas M. Trautmann, and Mark S. Bowers, "Noncritically phase-matched second-harmonic generation in cesium lithium borate", Opt. Lett. 2003 (28), 1242-1244
    18. Y.K. Yap, M. Inagaki, S. Nakajima, Y. Mori, T Sasaki, "High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6Ol0", Opt Lett., 1996(21), 1348-1350.
    19. Y.K. Yap, K. Deki, Y. Kagebayashi, M. Horiguchi, Y. Mori, T. Sasaki, "A new technique to alleviate thermal dephasing of CsLiB6010 crystal for improving conversion efficiency of a high-power solid-state UV laser", OSA Trends in Optics and Photonics., 1998(19), 380-383
    20. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, Y. Mori, T. Sasaki, M. Tanaka, and Y. Okada, "20-W ultraviolet-beam generation by fourth-harmonic of all-solid-state laser", Opt. Lett., 2000(25), 58-60
    21. Y. K. Yap, Y. Mori, S. Haramura, A. Taguchi, T. Sasaki, K. Deki, Y. Ohsako, and M. Horigutchi, "High power all-solid-state ultraviolet laser by CLBO crystal," OSA Trends in Optics and Photonics, 1997(10), 10-13.
    22. R. Mead and C. E. Hamilton, "Solid-state lasers for 193 nm photolithography", Proc. 3rd lnt. Symp. 193 nm Lithography, 1997, 28-30.
    23. N. Umemura and K. Kato, "Ultraviolet generation tunable to 0.185 m in CsLiB_6O_(10)," Appl. Opt., 1997(36), 6794-6796
    24. M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, and S. Kubota, "I-W cw 255-nm radiation from an extemal resonant cavity using a novel voicecoil-motor actuator", Conf. Lasers and Electro-Optics, 1992, OSA Tech. Dig. Series, Washington, DC, 1994, paper CThM1.
    25. M. Oka, L. Y. Liu,W.Wiechmann, N. Eguchi, and S. Kubota, "All solid state continuous wave frequency-quadrupled Nd:YAG laser", IEEE J.Select. Topics Quantum Electron., 1995 (1), 859-866
    26. J. Sakuma, Y. Asakawa, M. Obara, "Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB_6O_(10) crystal", Opt. Lett., 2004(29), 92-94
    27. T. Fujii, H. Kumagai, K. Midorikawa, and M. Obara, "Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms", Opt. Lett., 2000(25), 1457-1459
    28. W. Koechner, Solid-State Laser Engineering, fifth ed., Springer, Berlin, 1999
    29. N. Hodgson, H. Weber, Laser Resonators and Beam Propagation, Fundamentals, Advanced Concepts and Applications, Second ed., Springer, NewYork, 2005
    30. S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, "Optimized resonators for high-average-power, high brightness Nd:YAG lasers with birefringence compensation", Proc. SPIE, 1998(3267), 214-225
    31. V. Magni, "Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability", Appl. Opt., 1986 (25), 107-117
    32. V. Magni, G. Valentini, S. de Silverstri, "Recent developments in laser resonator design", Opt. Quantum Electron., 1991 (23), 1105-1134
    33. N. Kugler, S. Dong, Q. Lti, H. Weber, "Investigation of the misalignment sensitivity of a birefringence-compensated two rod Nd:YAG laser", Appl. Opt., 1997(36), 9359-9366
    34. G. Cerullo, S. de Silvestri, V. Magni, O. Svelto, "Output power limitations in CW single transverse mode Nd:YAG lasers with a rod-of large cross-section", Opt. Quantum Electron., 1993(25), 489-500
    35. R. Hua, S. Wada, H. Tashiro, Versatile, compact, "TEM00-mode resonator for side-pumped single-rod solid-state lasers", Appl. Opt., 2001 (40), 2468-2474
    36. H. Kogelnik, "Imaging of optical modes--resonators with internal lens", Bell Syst. Tech. J, 1965(44), 455-494
    37. http://www.aor.com
    38. G. M. Loiacono et al., "Laser damage formation in KTiOPO and KTiOPO crystals: Grey tracks," J. Appl. Phys., 1991 (72), 2705-2712
    39. B. Boulanger et al., "Optical studies of laser-induced gray-tracking in KTP," IEEE J. Quantum Electon., 1999(35), 281-286
    40. M. N. Satiyanarayan et al., "Evidence for the presence of remnant strain in grey-tracked KTiOPO ," Appl. Phys. Lett., 1995(67), 2810-2812
    41. J. P. Fève et al., "Repetition rate dependence of gray-tracking in KTiOPO during second-harmonic generation at 532 nm," Appl. Phys. Lett., 1997(70), 277-279
    42. B. Boulanger et al., "Study of KTiOPO gray-tracking at 1064, 532 and 355 nm," Appl. Phys. Lett., 1994(65), 2401-2403
    43. J. C. Jacco, D. R. Rockafello, and E. A. Teppo, "Bulk-darkening threshold of flux-grown KTiOPO4," Opt. Lett., 199106), 1307-1309
    44. R. Blachman, E F. Bordui, and M. M. Fejer, "Laser-induced photochromic damage in potassium titanyl phosphate," Appl. Phys. Lett., 1994(64), 1318-1320
    45. J. K. Tyminski, "Photorefractive damage in KTP used as secondharmonic generator,"J. Appl. Phys., 1991(70), 5570-5576
    
    46. J. P. Feve, B. Boulanger, G. Marnier, and H. Albrecht, "Repetition rate dependence of gray-tracking in KTiOPO4 during second-harmonic generation at 532 nm,"Appl. Phys. Lett., 1997(70), 1-3
    
    47. W. R. Bosenberg and D. R. Guyer, "Single-frequency optical parametricoscillator,"Appl. Phys. Lett., 1992(61), 387-389
    
    48. B. V. Andreev, V. A. Maslov, V. A. Mikhailov, S. K. Pak, 0. P. Shaunin, and I. A.Sherbakov, "Experimental study of the laser-inducedabsorption effect and the nature of color centers in potassium titanyl phosphate crystals," SPIE Solid State Lasers and New Laser Materials, 1991(1839), 280-289
    
    49. V. N. Voitsekhovii, V. E. Yakobson, A. G. Kalintsev, and S. V. Kaminskii,"Kinetics of photoinduced absorption in potassium titanyl phosphate crystals," J.Opt. Technol., 1995(62), 777-779
    
    50. M. J. Martin, C. Zaldo, F. Diaz, R. Sole, D. Bravo, and F. J. Lopez, "Optical damage of W-doped KTiOPO4 non linear single crystals," Radiat. Eff. Defects Solids, 1995(136), 243-247
    
    51. G. I. D'yakonov, V. A. Maslov, V. A. Mikhailov, S. K. Pak, O. P. Shaunin, and I. A.Shcherbakov, "High-efficiency Cr:Nd:YSGG laser with frequency doubling in the KTP crystal," Proc. 5th Top. Meeting Advanced Solid-State Lasers, 1990,213-218
    
    52. N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, "Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals," Sov. J. Quantum Electron.,1991(21), 426-428
    
    53. B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, "Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm," Appl. Phys. Lett., 1994(65),2401-2403
    
    54. T. A. Driscoll, H. J. Hoffman, R. E. Stone, and P. E. Perkins, "Efficient second-harmonic generation in KTP crystals", J. Opt. Soc. Am. B, 1986(3), 683-886.
    55. W. R. Bosenberg and D. R. Guyer, "Single-frequency optical parametric oscillator", Appl. Phys. Lett., 1992(61), 387-389
    56. G. M. Loiacono D. N. Loiacono, T. McGee, and M. Babb, "Laser damage formation in KTiOPO and KTiOPO crystals: Grey tracks," J. Appl. Phys., 1991(72), 2705-2712
    57. R. Blachman, P. F. Bordui, and M. M. Fejer, "Laser-induced photochromic damage in potassium titanyl phosphate,",4ppl. Phys. Lett., 1994(64), 1318-1320
    58. J. K. Tyminski, "Photorefractive damage in KTP used as secondharmonic generator," J. Appl. Phys., 1991(70), 5570-5576
    59. P. F. Bordui, J. C. Jacco, G. M. Loiacono, R. A. Stolzenberger, and J. Zola, "Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system", J. Cryst. Growth, 1987(84), 403-408
    60. K. Kato, "Parametric Oscillation at 3.2μm in KTP Pumped at 1.064μm", IEEE J. Quantum Electron., 1991 (27), 1137-1140
    61. B. Boulanger, J. P. Feve, G. Mamier, B. Menaert, X. Cabirol, P. Villeval, and C. Bonnin, "Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements", J. Opt. Soc. Am. B, 1994(11), 750-757
    62. D. Eimerl, "High average power harmonic generation", IEEE J. Quantum Electron., 1987(23), 575-592
    63. Sébastian Favre, Thomas C. Sidler, and René-Paul Salathé, "High-Power Long-Pulse Second Harmonic Generation and Optical Damage With Free-Running Nd: YAG Laser", IEEE J. Quantum Electron., 2003(39), 733-740
    64. Chen Jun, Wu Xiaodong, Ge Jianhong et al., "Broad area laser diode with 0.02nm-band width and diffraction limited output due to double external cavity feedback", Appl. Phys. Lett., 2004(85), 525-527
    65. Ge Jianhong, Chen Jun, Hermerschmidt et al. "Achieving single-lobed far-field patterns of broad area laser diode with exiernal cavity feedback", Chinese Opt Lett., 2003(1), 334-336.
    66. RMR Pollai, EM Gammier, "Paraxial-misalignment insensitive external-cavity semiconductor-laser array emitting near-diffraction limited single-lobed beam", IEEE J Quantum Electronics 1996(32), 996-1008
    67. CJ Chang-Hasnain, J Berger, DR Scifres, W Streifer, JR Whinnery, A Dienes, "High power with high efficiency in a narrow single-lobed beam from a diode laser array in an external cavity", Appl Phys Lett., 1987(50), 1465-1467
    68. CJ Chang-Hasnain, A Dienes, JR Whinnery, W Streifer, DR Scifres, "Characteristics of the off-centered apertured mirror external cavity laser array", Appl Phys Lett., 1989(54), 484-486
    69. J. K. Butler, D. E. Ackley, and D. Botez, "Coupled-mode analysis of phase-locked injection lasers", IEEE J, Quantum Electron., 1984(44), 293-295
    70. E. Kapon, J. Katz, and A. Yariv, "Superrmode analysis of phase-locked arrays of semiconductor lasers". Opt. Lett.. 1984(10). 125-127
    71.葛剑虹,陈军,“单瓣近衍射极限输出的带外腔半导体激光器”,中国激光,2004(31),773~776
    72.刘崇,葛剑虹,陈军,“外腔反馈注入半导体激光器的损耗和阈值电流特性研究”中国激光,2004(31),1413~1416
    73. JM Verdiell, Frey R, "A broad-area mode-coupling model for mutiple-stripe semiconductor lasers", 1EEE J Quantum Electronics, 1990(26), 270-279
    74. R Diehl. High-Power Diode Lasers Fundaments, Technology, Applications Springer-Verlag, Berlin, 2000
    75. ISO11146: Test methods for laser beam parameters: beam width, divergence angle and beam propagation factor 1999.
    76. G. Acket, D. Lenstra, A. Den Boer, B. Verbeek, "The. Influence of Feedback Intensity on Longitudinal Mode Properties. and Optical Noise in Index-Guided Semiconductor Lasers", IEEE J. Quantum Electron., 1984(20), 1163-1169
    77.董瑞芳、张俊香、张天才、张靖、谢常德、彭堃墀,“通过λ/2波片外腔同位相弱反馈实现激光二极管激光的强度噪声压缩”,物理学报,2001(50),462-466
    78. J. Chen, X. Wu, J H Ge, A. Hermerschmidt, H. J. Eichler, "Broad-area laser diode with 0.02 nm bandwidth and diffraction limited output due to double external cavity feedback",Appl.ehys.Lett.,2004(85),525-527
    79.黄良玉、罗晓曙、方锦清、赵益波、唐国宁,“用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制”,物理学报,2005(54),543-549
    80.贾新鸿、吴正茂、林晓东、柏熙、夏光琼,“基于延时光电反馈控制两段式半导体激光器的双稳及自脉动特性”,物理学报,2005(54),3680-3687
    81.刘崇,葛剑虹,陈军,“外腔反馈注入半导体激光器的损耗和阈值电流特性研究”,中国激光,2004(31),1413~1416
    82. C.L Wang, J. Wu, J. T. Lin, "single mode rate equations for two sections self-pulsating DFB laser", Chin. Phys. 2003(12), 528-531
    83. J. H. Osmundsen, N. Gade, "Influence of optical feedback on laser frequency spectrum and threshold, conditions", IEEE ,I. Quantum Electron. 1983(19), 465-469
    84. H. Kakiuchida, J. Ohtsubo, "Characteristics of a semiconductor laser with external feedback", 1EEE J. Quantum Electron. 1994(30), 2087-2097
    85. J. Ohtsubo, Semiconductor Lasers Stability, Instability and Chaos, Berlin: Springer, 2005
    86. A. Yariv, Optical Electronics in Modern Communications, New York: Oxford University 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700