用户名: 密码: 验证码:
大鼠体外循环后肝细胞损害及生长激素上调STAT5信号通路的保护作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的体外循环(CPB)对机体是一种全身性的强刺激,能引起机体产生应激反应。应激引起的过度的炎症反应造成组织损害、多器官功能障碍综合征(MODS),是心脏外科患者术后死亡的主要原因之一。因此,CPB过程中器官保护一直是心血管外科临床与基础研究的重点。一直以来,人们对CPB所致的心、脑、肺、肾等器官的研究较多,也比较深入,而对肝脏功能的影响及其机制却缺乏深入系统研究。我们知道,肝脏是应激反应的中心器官和重要靶器官之一。临床研究表明,CPB术后不仅存在较高比例肝酶谱升高,而且存在着混合性的高胆红素血症(23.2-35.1%),肝功能障碍,甚至肝功能衰竭。恶性肝损害一旦发生,治疗棘手,往往导致MODS,预后差,病死率高。而慢性肝病或肝硬变患者CPB术后死亡率更高达25-31%,并发症发生率更高达58-66%。因此肝功能障碍是CPB术后的严重并发症。我国是个肝炎大国,很多心脏病病人本身就是肝炎或肝病患者,而心脏病本身也可以导致急性或慢性肝损害,此类患者心脏手术的时机选择以及适应症也是困绕心外科医生的问题,有的患者因此而丧失治疗的机会。因此研究CPB过程中肝细胞损伤的发生机制及探讨相应的保护措施,对增强手术耐受性,促进术后肝功能恢复具有重要意义。
     临床研究表明,CPB术后高胆红素血症或黄疸是由结合和非结合胆红素共同升高所致。这说明并非单纯由于溶血导致,同时也存在着肝细胞转运胆红素的功能障碍。而胆红素的转运则完全依赖于位于肝细胞膜面的肝胆膜转运蛋白(HMTs),也称胆红素转运子。HMTs基因表达异常有可能导致肝细胞胆汁淤积和肝细胞受损,而这类基因表达的信号调控机制尚未完全阐明。而CPB时存在胆红素代谢异常,其分子机制尚未明确,我们推测可能与HMTs基因表达的改变有关,此类研究尚未见文献报道。
     综合文献报道,在大多数HMTs启动子区域含有类干扰素活化序列,相应的转录因子与该序列结合后可启动HMTs的转录。信号转导转录活化因子5(STAT5)是胞浆信号蛋白,活化后可直接转移至胞核内,作为转录因子与靶基因启动子区域的类干扰素活化序列结合,引起靶基因的活化。因此我们推测STAT5途径可能是调控HMTs基因表达的途径之一。
     STAT5信号途径具有广泛的生物学效应,可促进合成代谢、刺激细胞再生、抗凋亡、调节急性期反应、稳定肠粘膜屏障等功能。已知生长激素(GH)—生长激素受体(GHR)轴是引起STAT5活化的最主要的路径。GHR主要位于肝细胞,当GH分泌不足和GHR表达下降时,STAT5的活性亦随之降低。因此给予外源性GH上调STAT5活性调控HMTs表达具有理论上的可行性。本研究可丰富对肝细胞胆盐转运信号调控的分子机制的认识。
     由于CPB是一个可以预期的应激反应,我们完全可以提前采取措施,在非应激条件下建立机体对围手术期损伤机制的耐受性,激发机体的自然防御机制减轻炎症反应和器官损伤,是很有前景的途径。但是通过GH预处理保护CPB后肝细胞功能的作用及机制研究未见报道。深入探讨这一途径的效果和可行性对于改善CPB后全身炎症反应,减少并发症具有重要临床意义。
     方法
     1.利用显微外科器械,采用微型化CPB环路设备,经右颈静脉腔房引流、左颈动脉灌注方法建立大鼠闭胸式CPB 2h模型,对CPB的大鼠进行分组,常规CPB组和GH干预CPB组(简称GH组,术前3天开始肌注GH 2.5mg/kg,1/日,预充液中加入2.5mg/kg),同时设立假手术组(SH组)和正常对照组(N组)。
     2.观察CPB后肝细胞损害与全身炎症反应的关系:检测指标包括一般肝功能检测;血清肝脏结构蛋白:前白蛋白(PA)、转铁蛋白(Tf);血清急性期反应蛋白:C反应蛋白(CRP)、血清淀粉样蛋白A(SAA);血清致炎因子:TNF-α、IL-1β、IL-6等的测定;血清GH、GH结合蛋白(GHBP)改变;肝脏改变的研究(肝细胞凋亡、再生情况及病理组织学改变等)。
     3.观察CPB后肝细胞胆盐转运功能的改变:利用免疫荧光组化、RT-PCR、Western blot等方法从细胞和分子水平测定肝细胞HMTs (NTCP,BSEP、FXR)的表达情况;
     4.观察CPB对肝细胞STAT5活性的影响及GH-GHR途径上调STAT5调控HMTs的机制:利用免疫荧光组化、原位杂交、RT-PCR、Western blot等方法从细胞和分子水平测定肝细胞GHR、STAT5的表达情况;观察STAT5活性改变对肝细胞HMTs的表达及功能的影响。
     5.统计学方法:所有数据采用均数±标准差表示。统计学处理采用SPSS11.0软件行t检验及ANOVA。
     结果
     1.通过微型化CPB环路设备,经右颈静脉腔房引流、左颈动脉灌注方法成功建立建立大鼠CPB模型,转流过程中血流动力学、血气分析等指标均在正常范围,术后可以长期生存。
     2. CPB后早期存在着明显的肝细胞损害,以CPB后3h最为明显;表现为肝功能受损,ALT、TB增高;血清肝脏结构蛋白浓度降低;血清急性期反应蛋白浓度增加,肝细胞凋亡增加,炎性细胞浸润。血清GHBP降低,血清致炎因子TNF-α、IL-1β、IL-6升高。直线回归分析表明肝损害与炎症反应及GHBP水平高度相关。
     3.大鼠CPB后存在肝细胞胆盐转运功能障碍,肝胆膜转运蛋白HMTs对CPB高度敏感,以CPB后3h最为明显;表现为CPB早期各种HMTs的mRNA及蛋白表达水平呈现不同程度的下降和不均一;核胆酸受体FXR mRNA及蛋白表达水平亦明显受抑。
     4. CPB术后早期存在着肝细胞GHR mRNA及蛋白表达水平不同程度的下降;STAT5 mRNA、蛋白表达水平及活性水平也下降;以CPB后3h最为明显;STAT5活性下降与GHR抵抗有关。而且,肝损害与STAT5活性下降及GHR抵抗均相关。
     5. STAT5上调途径对CPB后肝细胞的影响。GH预处理可上调STAT5表达活性,直接调控HMTs的表达,提高核胆酸受体FXR的活性,促进胆盐转运,降低高胆红素血症对肝细胞的损害;同时STAT5的上调可降低肝脏炎症反应,增加肝脏结构蛋白,降低肝脏急性期反应,抑制凋亡,促进再生,改善肝脏功能。
     结论
     1.我们成功建立了大鼠闭胸式CPB模型。利用显微外科器械,采用微型化CPB环路设备,经右颈静脉腔房引流、左颈动脉灌注方法建立大鼠闭胸式CPB模型比较符合生理,具有较好的稳定性和可靠性,是进行CPB术后肝脏病理生理改变研究的理想动物模型。
     2. CPB可导致明显的肝细胞损害。表现为(1)肝功能受损,ALT、TB增高;血清肝脏结构蛋白浓度降低;血清急性期反应蛋白浓度增加,肝细胞凋亡增加,炎性细胞浸润等。(2) CPB导致肝细胞胆盐转运存在障碍。表现为CPB早期各种HMTs的mRNA及蛋白表达水平呈现不同程度的下降和不均一;核胆酸受体FXR mRNA及蛋白表达水平明显受抑。肝细胞NTCP,BSEP等HMTs和核胆酸受体FXR的表达程度的下降和不均一是CPB术后肝细胞损害的重要原因之一。肝细胞内胆红素蓄积、过度炎性反应和急性期反应(APR)、FXR表达受抑和GH抵抗导致的STAT5活性下调共同介导了HMTs的表达的不均一;
     3. GH预处理有望成为预防和减轻CPB过程中肝细胞损害及SIRS的新策略。GH预处理上调STAT5途径对CPB后肝细胞具有明显的保护作用。其可能的机制为(1)直接调控HMTs的表达,促进胆盐转运,降低高胆红素血症对肝细胞的损害;(2)提高核胆酸受体FXR的活性,从而调控HMTs的表达;(3)降低肝脏炎症反应和APR,直接减轻对肝细胞的炎性损害,间接解除炎性反应对HMTs的抑制;(4)增加肝脏结构蛋白合成,抑制肝细胞凋亡,促进肝细胞再生。
Background and objective:
     Cardiopulmonary bypass is a severe stress which can provoke a systemic inflammatory response syndrome (SIRS). Contact of the blood components with artificial surface of the bypass circuit, ischemia-reperfusion injury, operative trauma are mainly possible causes of SIRS. The excess inflammatory reaction may contribute to the development of postoperative complications and result in multiple organ dysfunction syndromes (MODS), which is one of the leading causes of death in cardiac surgery. Therefore, protection of organs during CPB is all along the emphasis in cardiovascular surgery. Over the past years, studies were mainly focused on the important organs such as heart, lung, brain and kidney. However, we know little about the liver. As we all know, liver is a central and important target organ responsing to the surgical stress and it is also one of the vulnerable organs for the attack of proinflammatory cytokines. It has long been recognized that early jaundice and liver damage could appear followed CPB surgery. Furthermore, critical hepatic lesion is still troublesome in clinical treatments and often can lead to MODS or mortality. For patients with preoperative chronic liver disease (CLD) or liver cirrhosis, mortality of CPB surgery can achieve 25-31%. So hepatosis is serious complication after CPB surgery. It is well known that liver disease is still a major health problem in China. As techniques of open-heart surgery and postoperative patient care improve, the number of patients with preoperative comorbidities who undergo CPB surgery is increasing. However, clinical outcome after CPB surgery in patients with CLD are still unsatisfactory. Due to the systemic and hepatic effects of CPB, the risk of further hepatic damage during CPB to an already compromised liver must also be a particular concern. But the research of CPB on the hepatocellular damage is absent and its accurate mechanism is still unknown.
     Clinical investigations showed that hyperbilirubinemia or jaundice followed CPB came about from an increase in both conjugated and unconjugated bilirubin. It indicates that both the impaired liver function for bilirubin transport and the increasing production of bilirubin from haemolysis lead to them. As we all know, hepatobiliary membrane transporters (HMTs) in liver cell are in main charge of bilirubin transporting. The expression anormaly of HMTs genes could reuslt in hepatocellular cholestasis and damage. However, the mechanisms of signal regulation of these genes expression are still unclear. Since CPB can provoke anormaly of bilirubin metabolism, the molecular mechanism is still unknown. We presume that it is concerned with the changes of HMTs expression.
     Combination of literature reports, promoter regions of major HMTs genes contain interferoid (IFN)-activated sequence. The transcription of HMTs can be driven by corresponding transcription factors binding to the sequence. Signal transducer and activator of transcription (STAT)-5 is the signal protein in endochylema. STAT5 activation is attributable to an increase in nuclear translocation of phosphorylated liver STAT5, which binds to IFN-activated sequence located in the target gene promoter region and thereby stimulates gene transcription. So we make a hypothesis that STAT5 pathway can regulate the expression of HMTs genes.
     STAT5 signal pathway have extensive biological effects, such as promote anabolic metabolism, stimulate cell regeneration, resist apoptosis, regulate acute phase reaction, stabilize mucosal barrier function, and etc. The axis of growth hormone (GH) and growth hormone receptor (GHR) is one of the main pathways to evoke the activation of STAT5. GHR locates mainly in liver cell. The activity of STAT5 will be depressed when GH secretes insufficiently or the expression GHR decreases. Therefore, it is feasible theoreticallythat up-regulation STAT5 by exogenous GH can regulate the expression of HMTs. This study will strengthen the recognition of molecular mechanisms of signal regulation of the hepatocellular bilirubin transporting.
     CPB is an expectable stress response. So building tolerance to perioperative damage during the unstressed condition may result in a more advanced method to assuage CPB-induced liver damage, and exploiting a natural defense mechanism called stress response may be a potential approach to overcome this problem. But the effect and mechanism of preconditioning with GH on the protection of liver function after CPB are still unknown.
     Consequently, this study based on the experimental model of CPB in rats is aimed to investigate the mechanisms of hepatocellular damage induced by CPB and the protective effect and mechanism of GH at cellular and molecular level, and to build a new strategy and provide a new target for the protection of liver function during and after CPB.
     Methods:
     1) Non-transthoracic CPB-2h model in rats was established via left carotid artery and right jugular vein cannulation for arterial perfusion and venous return respectively by using microsurgical instruments and miniature circuit devices. Adult male Sprague-Dawley rats, weighing 480±20g, were housed in wire-bottomed cages in a temperature-controlled room with a 12-hour light/dark cycle. Rats were acclimatized to the environment for 7 days. All animals received humane care. Rats were randomly divided into two groups according to the administration of GH before the initiation of CPB. Group G intramuscularly received 2.5mg/kg body weight of recombinant human GH (rhGH, Serono inc., Switzerland) at 8 AM every 24h for three days and just before the initiation of CPB. Group C (n=15) served as control and only saline was added in the same way. Sham-operated and normal control groups were assigned at the same time.
     2) To observe relationship between hepatocellular damage and SIRS, we detect indexes inferior: liver function; serum constitutive hepatic proteins and acute-phase proteins (APPs); serum cytokines such as tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), IL-6, and IL-10 by using a rat-specific enzyme linked immunosorbent assay (ELISA); serum GH, GH binding protein (GHBP), insulin-like growth factor (IGF)-I, and IGF binding protein (GHBP)-3 (radioimmunoassay, RIA); and liver changes: liver protein concentration, liver cell proliferation (immunohistochemical staining for proliferative cell nuclear antigen (PCNA)), liver cell apoptosis (TUNEL immunohistochemical method), and pathological and morphological changes.
     3) To observe the changes of liver function for bilirubin transport induced by CPB, we determine the expression of hepatic HMTs (NTCP,BSEP, and FXR) at the level of cells and molecules (mRNA and protein) by using immunofluorescence, RT-PCR and Western blot analysis.
     4) To study the influence of CPB on hepatocyte STAT5 and the mechanisms of protective effects of up-regulation STAT5 activity (by GH-GHR axis pathway) regulating HMTs, We determine the expression of hepatic GHR and STAT5 at the level of cells and molecules (mRNA and protein) by using immunofluorescence, hybridization in-situ, RT-PCR and Western blot analysis; furthermore, We also observe the influence of the changes of liver STAT5 activity on hepatocyte function.
     5) Statistical analysis: Values of continuous variables were expressed as mean±standard deviation. Comparisons between groups were analyzed by 2-way repeated-measures analysis of variance (ANOVA) and the unpaired Student t test. Correlation between data was analyzed with linear regression. Statistical analysises was performed with computerized statistical packages (SPSS 11.0 software, SPSS, Chicago, IL, USA). Significance was accepted at p<0.05.
     Results:
     The main results in this study were as follows:
     1) Non-transthoracic CPB model in rats, via left carotid artery and right jugular vein cannulation for arterial perfusion and venous return respectively by using miniature circuit devices, was successfully established and was associated with good recovery. The results of hemodynamics and blood gas analysis were within normal range during bypass.
     2) There were significant liver injuries at CPB termination and markedly at 3h after CPB termination in both groups. Administration of rhGH markedly increased serum IGF-I and IGFBP-3 compared with group C. Group G showed significantly lower serum concentrations of alanine aminotransferase (ALT) and total bilirubin (TB) after CPB termination. Those receiving rhGH demonstrated a significant increase in serum prealbumin and transferrin and a marked decrease in serum amyloid A and C-reactive protein. rhGH significantly decreased serum tumor necrosis factor (TNF)-αand interleukin (IL)-1β, whereas no changes were found for serum IL-6 and IL-10. rhGH significantly increased total liver protein content, hepatocyte proliferation and decreased hepatocyte apoptosis verus group C. Liver injury was positive correlation with the proinflammatory cytokine levels and serum GHBP level.
     3) There was significant hepatocellular bilirubin tansport dysfuntion after CPB. Hepatic HMTs were very sensitive to CPB and markedly depressed at 3h after CPB termination. In earlier period of CPB termination, the expression of HMTs at the levels of mRNA and protein was low and nonuniform to some extent, the expression of farnesoid X receptor (FXR) was also depressed obviously at the levels of mRNA and protein.
     4) Hepatic STAT5 and GHR were lower at the levels of mRNA and protein at CPB termination and markedly depressed at 3h after CPB termination. Administration of rhGH markedly increased the activity of STAT5 detected by EMSA compared with group C. There was marked positive correlation between the expression of STAT5 and GHR, they were all correlated with hepatocyte dysfunction negatively, which indicated resistance of GHR might contribute to the inhibition of STAT5 after CPB and they both influence the hepatocyte function.
     5) The effect of up-regulation of STAT5 activity on hepatocyte functions after CPB. Pretreatment with GH can up-regulate the expression of STAT5, which can control the expression of hepatic HMTs and elevate the expression of FXR. These results contribute to hepatic transportation of bilirubin and relieve the hepatocelluar damage directly.
     Conclusions:
     1) The nontransthoracic CPB model in rats is established successfully. The nontransthoracic CPB model in rats is easy to establish and is associated with good recovery, which can in principle simulate the clinical setting of human CPB. This reproducible model is fit to study on the pathophysiological process of CPB in vivo.
     2) CPB results in obvious hepatocellular damage. Possible patterns of manifestations are shown inferior: (1) CPB induces acute liver injury in a rat model via increases in serum ALT,serum TB, serum acute phase proteins, proinflammatory cytokines TNF-α,IL-1β, and hepatocyte apoptosis, which is associated with decreases in serum concentrations of constitutive hepatic proteins; (2)There exists significant hepatocellular bilirubin tansport dysfuntion followed CPB. Depressive and nonuniform expression of HMTs and FXR is one of the key points for hepatocellular damage induced by CPB. Bilirubin accumulation in hepatocyte, excessive inflammatory respose and APR, and down-regulation of STAT5 induced by GH resistance contribute to the Depressive and nonuniform expression of HMTs.
     3) GH can prevent CPB-induced acute liver injury in a rat model. This strategy of pretreatment with GH might be a prospective management for preventing acute liver injury and lessening SIRS when CPB is performed. Up-regulation of STAT5 pathway has obviously protective effects on hepatocyte after CPB. Possible mechanisms are shown inferior: (1) directly control the expression of hepatic HMTs, which can promote hepatic transportation of bilirubin and relieve the hepatocelluar damage directly; (2) elevate the expression of FXR, which can regulate the expression of HMTs; (3) relieve APR and proinflammatory cytokines TNF-αand IL-1β, which can lessen the inflammatory hepatocellular injury directly and remove the inflammatory inhibition of HMTs expression indirectly; (4) increase the synthesis of hepatic constitutive hepatic proteins decrease, decrease hepatocyte apoptosis, and stimulate hepatocyte proliferation.
引文
1. Rasmussen BS, Sollid J, Knudsen L, et al. The release of systemic inflammatory mediators is independent of cardiopulmonary bypass temperature. J Cardiothorac Vasc Anesth. 2007; 21(2):191-196.
    2. Goudeau JJ, Clermont G, Guillery O, et al. In high-risk patients, combination of antiinflammatory procedures during cardiopulmonary bypass can reduce incidences of inflammation and oxidative stress. J Cardiovasc Pharmacol. 2007; 49(1):39-45.
    3. Ascione R, Talpahewa S, Rajakaruna C, et al. Splanchnic organ injury during coronary surgery with or without cardiopulmonary bypass: a randomized, controlled trial. Ann Thorac Surg. 2006; 81(1):97-103.
    4. Liakopoulos OJ, Dorge H, Schmitto JD, et al. Effects of preoperative statin therapy on cytokines after cardiac surgery. Thorac Cardiovasc Surg. 2006; 54(4):250-254.
    5. de Mendonca-Filho HT, Pereira KC, Fontes M, et al. Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: a prospective observational study. Crit Care. 2006; 10(2):46-52.
    6. Bical OM, Fromes Y, Gaillard D, et al. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery. Eur J Cardiothorac Surg. 2006; 29(5):699-702.
    7. Franke A, Lante W, Fackeldey V, et al. Pro-inflammatory cytokines after different kinds of cardio-thoracic surgical procedures: is what we see what we know? Eur J Cardiothorac Surg. 2005; 28(2):569-575.
    8. Collins JD, Ferner R, Murray A, et al. Incidence and prognostic importance of jaundice after cardiopulmonary bypass surgery. Lancet 1983;1(14):1119-1125
    9. Chu CM, Chang CH, Liaw YF, et al. Jaundice after open heart surgery: a prospective study. Thorax. 1984; 39(1):52-56.
    10. Michalopoulos A, Alivizatos P, Geroulanos S. Hepatic dysfunction following cardiac surgery: determinants and consequences. Hepatogastroenterology. 1997; 5(3):779-783.
    11. Hirata N, Sawa Y, Matsuda H. Predictive value of preoperative serum cholinesterase concentration in patients with liver dysfunction undergoing cardiac surgery. J Card Surg 1999;14(1):172-177
    12. Ohri SK, Velissaris T. Gastrointestinal dysfunction following cardiac surgery. Perfusion. 2006; 21(4):215-223.
    13. Suman A, Barnes DS, Zein NN, et al. Predicting outcome after cardiac surgery in patients with cirrhosis: a comparison of Child-Pugh and MELD scores. Clin Gastroenterol Hepatol. 2004; 2(8):719-723.
    14. Kaplan M, Cimen S, Kut MS, et al. Cardiac operations for patients with chronic liver disease. Heart Surg Forum. 2002; 5(1):60-65.
    15. An Y, Xiao YB, Zhong QJ. Open-Heart Surgery in Patients with Liver Cirrhosis: Indications, Risk Factors, and Clinical Outcomes. Eur Surg Res, 2007, 39(1): 67-74
    16. Raman JS, Kochi K, Morimatsu H, et al. Severe ischemic early liver injury after cardiac surgery. Ann Thorac Surg. 2002; 74(5):1601-1606.
    17. Morariu AM, Loef BG, Aarts LP, et al. Dexamethasone: benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting: a study on myocardial, pulmonary, renal, intestinal, and hepatic injury. Chest. 2005; 128(4):2677-2687.
    18. An Y, Xiao YB, Zhong QJ. Hyperbilirubinemia after extracorporeal circulation surgery: A recent and prospective study. World J Gastroenterol. 2006; 129(43): 6722-6726.
    19. Geier A, Wagner M, Dietrich CG, et al. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 2007; 1773(3):283-308.
    20. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006; 44(4):778-787.
    21. Tsuda-Tsukimoto M, Maeda T, Iwanaga T, et al. Characterization of hepatobiliary transport systems of a novel alpha4beta1/alpha4beta7 dual antagonist, TR-14035. Pharm Res. 2006; 23(11):2646-56.
    22. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos. 2006; 34(9):1658-1665.
    23. Yamashiro W, Maeda K, Hirouchi M, et al. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos. 2006; 34(7):1247-1254.
    24. Wagner M, Trauner M. Transcriptional regulation of hepatobiliary transport systems in health and disease: implications for a rationale approach to the treatment of intrahepaticcholestasis.Ann Hepatol. 2005; 4(2):77-99.
    25. Keitel V, Burdelski M, Warskulat U, et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology. 2005; 41(5):1160-1172.
    26. Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol. 2006; 6(8):602-612.
    27. Klampfer L. Signal transducers and activators of transcription (STATs): Novel targets of chemopreventive and chemotherapeutic drugs. Curr Cancer Drug Targets. 2006; 6(2):107-121.
    28. Brierley MM, Fish EN. Stats: multifaceted regulators of transcription. J Interferon Cytokine Res. 2005; 25(12):733-744.
    29. Gao B. Cytokines, STATs and liver disease.Cell Mol Immunol. 2005; 2(2):92-100.
    30. Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect. 2005; 18(4):243-9.
    31. Litterst CM, Kliem S, Lodrini M, et al. Coactivators in gene regulation by STAT5. Vitam Horm. 2005; 70:359-386.
    32. Rabkin R, Sun DF, Chen Y, et al. Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol. 2005; 20(3):313-318.
    33. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 2004; 15(6):435-455.
    34. Vinkemeier U. Getting the message across, STAT! Design principles of a molecular signaling circuit. J Cell Biol. 2004; 167(2):197-201.
    35. Buitenhuis M, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5 (STAT5). Int J Biochem Cell Biol. 2004; 36(11):2120-2124.
    36. Chilton BS, Hewetson A. Prolactin and growth hormone signaling. Curr Top Dev Biol. 2005; 68(1):1-23.
    37. Waters MJ, Hoang HN, Fairlie DP, et al. New insights into growth hormone action. J Mol Endocrinol. 2006; 36(1):1-7.
    38. Lang CH, Hong-Brown L, Frost RA. Cytokine inhibition of JAK-STAT signaling: a new mechanism of growth hormone resistance. Pediatr Nephrol. 2005; 20(3):306-312.
    39. Stamler A, Wang HL, Weintraub RM, et al. Low-dose dopexamine's effect on lung and gut function after cpb in a sheep model. J Surg Res. 1998, 74(2): 165-172.
    40. Akif ündar, Takafumi Masai, Yang SQ, et al. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac Surg. 1999, 68(4): 1336-1342.
    41. Wittnich C, Belanger MP, Wallen WJ, et al. A long-term stable normothermic cardiopulmonary bypass model in neonatal swine. J Surg Res, 2001, 101(2): 176-182.
    42. Palanzo DA. Perfusion safety: past, present, and future. J Cardiothorac Vasc Anesth, 1997, 11(2): 383–90.
    43. An Y, Xiao YB, Zhong QJ. Good Recovery after nontransthoracic cardiopulmonary bypass in rats. Heart Surgery Forum. 2007,10(2):73-77
    44. Philippe KB, Gourlay T, Ratnatunga CP, et al. A literature review of cardiopulmonary bypass models for rats. Perfusion. 1999, 14(3): 411–417.
    45. Popovic P, Horecky J, Popovic VP. Hypothermic cardiopulmonary bypass in white rats. Ann Surg. 1968, 16(2): 298–301.
    46. Proctor E. An oxygenator for cardiopulmonary bypass in the rat. J Surg Res, 1977, 22: 124–127.
    47. Alexander B, Al Ani H. Prolonged partial cardiopulmonary bypass in rats. J Surg Res, 1983, 35(1): 28–34.
    48. Sasaki S, Takigami K, Shiiya N, et al. Partial cardiopulmonary bypass in rats for evaluating ischemia-reperfusion injury. ASAIO J.1996; 42(16): 168–74.
    49. Grocott HP, Mackensen GB, Newman MF, et al. Neurological injury during cardiopulmonary bypass in the rat. Perfusion, 2001, 16(1):75-81.
    50. Senra DF, Katz M, Passerotti GH, et al. A rat model of acute lung injury induced by cardiopulmonary bypass. Shock. 2001; 16(1): 223-226
    51. Gourlay T, Ballaux PK, Edward RCD, et al. Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat. Perfusion, 2002, 17(1): 191-198.
    52. Moehrlen U, Stammberger U, Moehrlen C, et al. Patial cardiopulmonary bypass model in rats using a hollow fibre oxgenator. Interactive Cardiovasc Thorac Surg. 2003, 2(4):603-606.
    53. Mazer CD, Briet F, Blight KR, et al. Increased cerebral and renal endothelial nitricoxide synthase gene expression after cardiopulmonary bypass in the rat. J Thorac Cardiovasc Surg. 2007; 133(1):13-20.
    54. Wright G. Effects of vasoactive drugs upon haemodynamic power and input impedance in normal rats. Cardiovasc Res. 1991, 25(5): 923–29.
    55. Momma K, Ito T, Ando M. In situ morphology of the ductus venosus and related vessels in the fetal and neonatal rat. Pediatr Res. 1992, 32(2): 386–89.
    56. Cocchetto DM, Bjornsson TD. Methods for vascular access and collection of body fluids from the laboratory rat. J Pharm Sci. 1983, 72(3): 465–92.
    57. Gasz B, Lenard L, Racz B, et al. Effect of cardiopulmonary bypass on cytokine network and myocardial cytokine production. Clin Cardiol. 2006; 29(7):311-315
    58. Hamamoto M, Suga M, Nakatani T, et al. Phosphodiesterase type 4 inhibitor prevents acute lung injury induced by cardiopulmonary bypass in a rat model. Eur J Cardiothorac Surg. 2004; 25(5):833-838
    59. Mazer CD, Briet F, Blight KR, et al. Increased cerebral and renal endothelial nitric oxide synthase gene expression after cardiopulmonary bypass in the rat. J Thorac Cardiovasc Surg. 2007; 133(1):13-20.
    60. Zhang TJ, Hang J, Wen DX, et al. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate hypothermic cardiopulmonary bypass in rats. Anesth Analg. 2006; 102(4):1018-1025.
    61. Abu-Omar Y, Ratnatunga C. Cardiopulmonary bypass and renal injury. Perfusion. 2006; 21(4):209-213.
    62. Ferre N, Claria J. New insights into the regulation of liver inflammation and oxidative stress. Mini Rev Med Chem. 2006; 6(12):1321-1330.
    63. Geier A, Fickert P, Trauner M.Mechanisms of disease: mechanisms and clinical implications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol. 2006; 3(10):574-585.
    64. Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int. 2006; 26(8):912-919.
    65. Hoesel LM, Gao H, Ward PA.New insights into cellular mechanisms during sepsis. Immunol Res. 2006; 34(2):133-141.
    66. Jaeschke H.Mechanisms of Liver Injury. II. Mechanisms of neutrophil-induced livercell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006; 290(6):G1083-G1088.
    67. van den Goor J, Nieuwland R, van den Brink A, van Oeveren W, Rutten P, Tijssen J, et al. Reduced complement activation during cardiopulmonary bypass does not affect the postoperative acute phase response. Eur J Cardiothorac Surg. 2004; 26(5):926-31.
    68. Varan B, Tokel K, Mercan S, et al. Systemic inflammatory response related to cardiopulmonary bypass and its modification by methyl prednisolone: high dose versus low dose. Pediatr Cardiol. 2002; 23(3):437-41.
    69. Brix-Christensen V, Tonnesen E, Sorensen IJ, et al. Effects of anaesthesia based on high versus low doses of opioids on the cytokine and acute-phase protein responses in patients undergoing cardiac surgery. Acta Anaesthesiol Scand. 1998; 42(1):63-70.
    70. Wu X, Herndon DN, Wolf SE. Growth hormone down-regulation of Interleukin-1beta and Interleukin-6 induced acute phase protein gene expression is associated with increased gene expression of suppressor of cytokine signal-3. Shock. 2003; 19:314-20.
    71. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 2002; 21(2):232-244.
    72. Sablotzki A, Borgermann J, Baulig W, et al. Lipopolysaccharide-binding protein (LBP) and markers of acute-phase response in patients with multiple organ dysfunction syndrome (MODS) following open heart surgery. Thorac Cardiovasc Surg. 2001; 49(5):273-278.
    73. Wood M, Ananthanarayanan M, Jones B, et al. Hormonal regulation of hepatic organic anion transporting polypeptides. Mol Pharmacol. 2005; 68(1):218-25
    74. Choi HK, Waxman DJ. Pulsatility of growth hormone (GH) signalling in liver cells: role of the JAK-STAT5b pathway in GH action. Growth Horm IGF Res. 2000; 10(Suppl B):S1-S8.
    75. Cooney RN, Shumate M. The inhibitory effects of interleukin-1 on growth hormone action during catabolic illness. Vitam Horm. 2006; 74(2):317-340.
    76. Thomas S, Wolf SE, Chinkes DL, et al. Recovery from the hepatic acute phase response in the severely burned and the effects of long-term growth hormone treatment. Burns. 2004; 30(7):675-679.
    77. Jarrar D, Wolf SE, Jeschke MG, et al. Growth hormone attenuates the acute-phase response to thermal injury. Arch Surg. 1997; 132(11):1171-1175; discussion 1175-1176.
    78. Massa GN, Mulumba J, Ketelslegers M, et al. Initial characterization and sexul dimorphism of serum growth hormone-binding protein in adult rat. Endocrinology. 1990; 126:1976-1980
    79. Pierpaolo G, Sabino S, Emma B, et al. Myocardial and lung injury after cardiopulmonary bypass: role of interleukin (IL)-10. Ann Thorac Surg, 2003, 76(1): 117-123.
    80. Horton SB, Butt WW, Richard JM, et al. IL-6 and IL-8 levels after cardiopulmonary bypass are not affected by surface coating. Ann Thorac Surg, 1999, 68(5): 1751-1755
    81. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006; 26(10):1175-1186.
    82. Tanaka Y, Chen C, Maher JM, Klaassen CD. Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation. 2006; 82(2):258-266.
    83. Okano N, Miyoshi S, Owada R, et al. Impairment of hepatosplanchnic oxygenation and increase of serum hyaluronate during normothermic and mild hypothermic cardiopulmonary bypass. Anesth Analg. 2002; 95(2):278-286.
    84. Gardeback M, Settergren G, Brodin LA, et al. Splanchnic blood flow and oxygen uptake during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2002; 16(3):308-315.
    85. Yumet G, Shumate ML, Bryant DP, Lang CH, Cooney RN. Hepatic growth hormone resistance during sepsis is associated with increased suppressors of cytokine signaling expression and impaired growth hormone signaling. Crit Care Med. 2006; 34(5):1420-1427.
    86. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997; 181(2):257-266.
    87. Livingston DH, Mosenthal AC, Deitch EA. Sepsis and multiple organ dysfunction syndromes: a clinical-mechnistic overview. New Horizons. 1995; 3(2):257-266.
    88. De Maio A, de Mooney ML, Matesic LE, Paidas CN, Reeves RH. Genetic component in the inflammatory response induced by bacterial lipopolysaccharide. Shock. 1998;10(2):319-323.
    89. Wu X, Herndon DN, Wolf SE. Growth hormone down-regulation of Interleukin-1beta and Interleukin-6 induced acute phase protein gene expression is associated with increased gene expression of suppressor of cytokine signal-3. Shock. 2003; 19(2):314-320.
    90. Johnson TS, O'Leary M, Justice SK, Maamra M, Zarkesh-Esfahani SH, Furlanetto R, et al. Differential expression of suppressors of cytokine signalling genes in response to nutrition and growth hormone in the septic rat. J Endocrinol. 2001; 169(3):409-415.
    91. Chrysopoulo MT, Jeschke MG, Ramirez RJ, Barrow RE, Herndon DN. Growth hormone attenuates tumor necrosis factor alpha in burned children. Arch Surg. 1999; 134(2):283-286.
    92. Jeschke MG, Barrow RE, Herndon DN. Recombinant human growth hormone treatment in pediatric burn patients and its role during the hepatic acute phase response. Crit Care Med. 2000; 28(10):1578-1584.
    93. Jeschke MG, Herndon DN, Wolf SE, DebRoy MA, Rai J, Lichtenbelt BJ, et al. Recombinant human growth hormone alters acute phase reactant proteins, cytokine expression, and liver morphology in burned rats. J Surg Res. 1999 15(83):122-129.
    94. Zung A, Phillip M, Chalew SA. Testosterone effect on growth and growth mediators of the GH-IGF-I axis in the liver and epiphyseal growth plate of juvenile rats. J Mol Endocrinol,1999,23(2): 209-222
    95. Liu JL, Leroith D. Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology. 1999, 140(11): 5178-5184
    96. Ominique D, Nathalle B, Jeanmarie K, et al. GH insensitivity induced by endotoxin injection is associated with decreased liver GH receptors. Am J Physiol.1999; 276(39):E565-E572
    97. Xu BC, Wang X, Darus C J, Kopchick JJ. Growth hormone Promotes the association of transcription factor STAT5 with the growth hormone receptor. J Biol Chem. 1996; 271:19768-19673.
    98. Robinson KA, Willi SM, Bingel S, et al. Decreased hexosamine biosynthesis in GH-deficient dwarf rat muscle, reversal with GH, but not IGF-I,therapy. Am J Physiol. 1999; 276(39):E435-E442.
    99. Welbourn N, Melrose DG, Moss DW. Changes in serum enzyme levels accompanying cardiac surgery with extrocorporeal circulation. J Clin Pathol. 1966; 19(2):220-227.
    100. Christine B, Sabine A. Effect of TUDCA on bile acid induced apoptosis and cytolysis in rat hepatocytes. J Hepatology. 1998; 28(1):99-106
    101. Hoffman AF. Bile acids: the good, the bad, and the ugly. News Physiol Sci. 1999; 14(1):24-29
    102. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology.1991; 14(4):551-566
    103. Gerd A, Ulrich B, Gustav P. Hepatobiliary transport. J Hepatology. 2000; 32(suppl No.1):3-18.
    104. Meier PJ. Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am J Physiol. 1995; 269(6):G801-G812
    105. Dranoff JA, Mcclure M, Burgstahler AD, et al. Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology. 1999; 30(1):223-229.
    106. Gao B, St Pierre MV., Stieger B, et al Differential expression of bile salt and organic anion transporters in developing rat liver. Journal of Hepatology, 2004 (41): 201–208
    107. Huang WD, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science. 2006; 312(5771): 233-236
    108. Trauner M, Arrese M, Lee H, et al. Enditoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. J Clin Invest.1998; 101(10):2092-2100.
    109. Moseley RH, Wang W, Takeda H, et al. Effect of endotoxin on bile acid transport in rat liver: a potential model for sepsis-associated cholestasis. Am J Physiol. 1996; 271(1): G137-G146
    110. Green RM, Beier D, Gollan JL, et al. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology.1996; 111(2):193-198
    111. Kim MS, Shigenaga J, Moser A, et al. Repression of farnesoid X receptor during the acute phase response. J Biol Chem. 2003; 278(12):8988-8995
    112. Yaacov B. The liver: a large endocrine gland. J Hepatol. 2000; 32(3):505-508
    113. Larizza D,Locatelli M,Vitali L,et al. Serum liver enzymes in Turner syndrome. Eur J Pediatr. 2000; 159(3): 143-148
    114. Schindler C, Brutsaert S. Interferons as a paradigm for cytokine signal transduction. Cell Mol Life Sci. 1999; 55(11):1509-1522
    115. Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappaB. Ann Rev Cell Biol. 1994; 10(2):405-455.
    116. Balteskard L, Unneberg K, Mjaaland M, Jenssen T.G., Revhaug A. Growth hormone and insulin-like growth factor 1 promote intestinal uptake and hepatic release of glutamine in sepsis. Ann Surg. 1998; 228(2): 131-138.
    117. Gilpin DA, Hsieh CC, Kuninger DT, Herndon DN, Papaconstantinou J. Effect of the thermal injury on the expression of transcription factors that regulate acute phase response genes: The response of C/EBP-α, C/EBP-β, and C/EBP-δ to thermal injury. Surgery. 1996; 119(4):674-682.
    118. Jarrar D, Herndon DN, Wolf SE, Papaconstantinou J. Growth hormone treatment after burn affects expression of C/EBPs, regulators of the acute phase response [abstract]. J Burn Care Rehab. 1998; 19:S163.
    119. Steller H. Mechanisms and genes of cellular suicide. Science. 1995; 267:1445-49.
    120. Lightfoot E Jr, Horton JW, Maass DL, White DJ, McFarland RD, Lipsky PE. Major burn trauma in rats promotes cardiac and gastrointestinal apoptosis. Shock. 1999; 11(1):29-34.
    121. Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol. 1998; 275:G387-G392.
    1. Rasmussen BS, Sollid J, Knudsen L, et al. The release of systemic inflammatory mediators is independent of cardiopulmonary bypass temperature. J Cardiothorac Vasc Anesth 2007; 21:191-196.
    2. Stiller B, Sonntag J, Dahnert I, et al. Capillary leak syndrome in children who undergo cardiopulmonary bypass: clinical outcome in comparison with complement activation and C1 inhibitor. Intensive Care Med 2001; 27: 193-200.
    3. Hazama S, Eishi K, Yamachika S, et al. Inflammatory response after coronary revascularization: off-pump versus on-pump (heparin-coated circuits and polymethoxyethylacrylate- coated circuits). Ann Thorac Cardiovasc Surg 2004; 10: 90-96.
    4. Gllinov AM, Redmond JM, Winkelstein JA, et al. Complement and neutrophil activation during cardiopulmonary bypass: a study in the complement-deficient dog. Ann Thorac Surg 1994; 57:345-352.
    5. Dagan O, Prince T, Ben Abraham R, et al. Plasma soluble L-selectin following cardiopulmonary bypass (CPB) in children: is it a marker of the postoperative course? Med Sci Monit 2002; 8:CR467-472.
    6. Kim WG, Lee BH, Seo JW, et al. Light and electron microscopic analyses for ischaemia-reperfusion lung injury in an ovine cardiopulmonary bypass model. Perfusion 2001; 16: 207-214.
    7. Gorlach G, Sroka J, Heidt M, et al. Intracellular adhension molecule-1 in patients developing pulmonary insufficiency after cardiopulmonary bypass. Thorac Cardiovasc Surg 2003; 51:138-141.
    8. Rothenburger M, Tjan TD, Schneider M, et al. The impact of the pro- and anti- inflammatory immune response on ventilation time after cardiac surgery. Cytometry 2003; 53:70-74.
    9. Giomarelli P, Scolletta S, Borrelli E, et al. Myocardial and lung injury after cardiopulmonary bypass: role of interleukin (IL)-10. Ann Thorac Surg 2003; 76: 117-123.
    10. Moller CH, Steinbruchel DA. Platelet function after coronary artery bypass grafting: is there a procoagulant activity after off-pump compared with on-pump surgery? Scand Cardiovasc J 2003; 37: 149-153.
    11. McMullan DM, Bekker JM, Parry AJ, et al. Alteration in endogenous nitric oxide production after cardiopulmonary bypass in lambs with normal and increased pulmonary blood flow. Circulation 2000; 102(19 Supple 3): Ⅲ172-178.
    12. Hiramatsu T, Imai Y, Takanashi Y, et al. Time course of endothelin-1 and nitrate anion levels after cardiopulmonary bypass in congenital heart defects. Ann Thorac Surg 1997; 63:648-652.
    13. Pearl JM, Nelson DP, Wagner CJ, et al. Endothelin receptor blockade reduces ventricular dysfunction and injury after reoxygenation. Ann Thorac Surg 2001; 72: 565-570.
    14. Erez E, Erman A, Snir E, et al. Thormboxane production in human lung during cardiopulmonary bypass: beneficial effect of aspirin? Ann Thorac Surg 1998; 65: 101-106.
    15. Gadaleta D, Fahey AL, Verma M, et al. Neutrophil leukotriene generation increases after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1994; 108: 642-647.
    16. Mollhoff T, Loick HM, Van Haken H, et al. Milrinone modulates endotoxemia, systemic inflammation, and subsequent acute phase response after cardiopulmonary bypass (CPB). Anesthesiology 1999; 90:72-80.
    17. Brown WJ, Chambers K, Doody A, et al. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 2003; 4: 214-221.
    18. Giroir BP. Mediators of septic shock: new approaches for interrupting the endogenous inflammatory cascade. Crit Care Med 1993; 21:780-789.
    19. Lequier LL, Nikaidoh H, Leonard SR, et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 2000; 117:1706-1712.
    20. Li C, Browder W, Kao RL, et al. Early activation of transcription factor NF-κB during ischemia in perfused heart rat. Am J Physiol 1999; 274:31868-31874.
    21. Ootzinger W, Hofer-Warbinek R, Schmid JA, et al. Adenovirus-mediated expression of a mutant IκB kinase inhibits the response of endothelial cells to inflammatory stimuli. Blood 2001; 97:1611-1617.
    22. Michalopoulos A, Alivizatos P, Geroulanos S. Hepatic dysfunction following cardiac surgery: determinants and consequences. Hepatogastroenterology. 1997; 5:779-783.
    23. Lindpaintner K, Ganten D. The cardiac renin-angiotensin system on app raisal of present experimental and clinical evidence. Circ Res 1991; 68:905-912
    24. Mochizuki T, Eberli FR, Apstein CS, et al. Exacerbation of ischemic dysfunction by angiotensin II in red cell prefused rabbit heart. Circulation 1990; 82(supp l):111-116
    25. Wilson SK. Role of oxyen-derived free radicals in acute angiotensin II induced hypertensive vascular disease in the rat. Circ Res 1990; 66:727-732
    26. Mayumi H, Toshima Y, Tokunaga K, et al. Pretreatment with H2 blocker tamotidine to amdiorate protamine induced hypotension in open-heart surgery. J Cardiovasc Surg 1992; 33:738-742
    27. Pearson PJ, Evora PRB, Ayrancioglu K, et al. Protamine releases endothelium-derived relaxing factor from systemic arteries. A possible mechanism of hypotension during heparin neutralization. Circulation 1992;86:289-185
    28. Friedman M, Johnson RG,Wang SY, et al. Pulmonarymicro-vascular responses to protamine and histmine. J Thorac Cardiovasc Surg 1994;108:1092-1098
    29. Nicole HC, Nicole R, Olivier P, et al. Induction of interleukin-1 production in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989;98:1100-1106
    30. Kalfin RE, Engelman RM, Rousou JA, et al. Induction of interleukin-8 expression during cardiopulmonary bypass. Circulation 1993; 88(5 pt 2): II401-406
    31. JessD, Schwartz M, Peter S, et al. Cardiopulmonary bypass primes polymorphonuclear leukocytes. J Surg Res. 1998;75(2):177-183
    32. Isigkeit AR, Schwarzenberger J ,Borstel TV , et al. Perioperative cytokine release during coronary artery bypass grafting in patients of different ages. Clin Exp Immunol 1998; 114:26-34
    33. Elliott BG. Systemic inflammation. In: Joel AK, David LR, Steven NK, eds. Cardiac anesthesia. 4th ed.Philadelph ia:W.B. Saunders Company, 1999:297-318
    34. Bical OM, Fromes Y, Gaillard D, et al. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery.Eur J Cardiothorac Surg. 2006; 29:699-702.
    35. Blanth CI, Arnold JV, Edmund SW, et al. Cerebralmicroembolism during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1988;95:668-673
    36. Naschitz JE, Slobodin G, Lewis RJ, Zuckerman E, Yeshurun D. Heart diseases affecting the liver and liver diseases affecting the heart. Am Heart J 2000; 140: 111-120
    37. An Y, Xiao YB, Zhong QJ. Hyperbilirubinemia after extracorporeal circulation surgery: A recent and prospective study. World J Gastroenterol. 2006; 129: 6722-6726.
    38. Hirata N, Sawa Y, Matsuda H. Predictive value of preoperative serum cholinesteraseconcentration in patients with liver dysfunction undergoing cardiac surgery. J Card Surg 1999;14:172-177
    39. Liu G, Wang MQ, Kagawa T, et al. Effects of extracorporeal circulation on blood ketone body ratio reflecting hepatic energy metabolism during cardiac operation. Surg Gynecol Obstet 1993; 177:507-510
    40. Furunaga A, T suboi H, Okada H, et al. Significance of AKBR as an indicator of liver injury after cardiopulmonary bypass. Kyobu Geka 1994; 47:1055-1056
    41. 周晖, 马文君, 余薇,等.体外循环心脏手术后血清 ALB, PA 和 TF 含量的观察. 广东医学 2001; 22:902-904
    42. Watarida S, Mori A, Onoe M, et al. A clinical study on the effects pulsatile cardiopulmonary bypass on the blood endotoxin levels. J Thorac Cardiovasc Surg 1994; 108:620-626
    43. Edmunds LHJ. Blood - surface interactions during cardiopulmonary bypass. J Card Surg 1993; 8: 404-410.
    44. Grossi EA, Kallenbach K, Chau S, et al. Impact of heparin bonding on pediatric cardiopulmonary bypass: a prospective randomized study. Ann Thorac Surg 2000; 70:191-196.
    45. Gasz B, Lenard L, Racz B, et al. Effect of cardiopulmonary bypass on cytokine network and myocardial cytokine production. Clin Cardiol. 2006; 29:311-315.
    46. Journois D, Israel-Biet D, Pounard P, et al. High-volume, zero-balanced hemofiltration to reduced delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 1996; 85: 965-976.
    47. Thomas MH, Heinz ML, Hugo VA, et al. Milrinone modulates endotoxemia, systemin inflammation,and subsequent acute phase response after cardiopulmonary bypass. Anesthesiology 1999; 90:72-79.
    48. Wakefield CH, Carey PD, Foulds S, et al. Polymorphonuclear leukocyte activation: An early marker of the postsurgical sepsis response. Arch Surg 1993; 128:390-395.
    49. 肖颖彬 陈林, 王学锋,等. 浅低温体外循环心脏跳动中心内直视手术 1032 例临床分析. 第三军医大学学报 2001; 23:502-504.
    50. Chermoff AE, Granowitz EV, Shapiro L, et al. The inflammatory response and extracorporeal circulation. J Cardiothorac Vasc Anethesia 1997; 11:575-579.
    51. Hiyama A, Takeda J , Kotate Y, et al . A human urinary protease inhibitor (ulinastatin) inhibits neutrophil extracellular release of elastase during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997; 11:580-584.
    52. Nilsson G, Costa JJ, Metcalf DD. Mast cells and basophils. In Gallin JI, Snyderman R eds. Inflammation. Basic principles and clinical correlates. Lippincott Williams &Wilkins 1999; 102-104.
    53. Tayama E, Hayashida N, Fukunaga S, et al. High-dose cimetidine reduces proinflammatory reaction after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg 2001; 72: 1945 - 1949.
    54. Brull DJ, Sanders J, Rumley A, et al. Impact of angiotensin converting enzyme inhibition on post-coronary artery bypass interleukin 6 release. Heart 2002; 87:252 - 255.
    55. Akera T, Brody TM. Drugs to treat heart failure: cardiac glycosides. In Brody TM, Larner J, Minneman KP eds. Human pharmacology. St Louis, MO: Mosby 1998; 218 - 219.
    56. Bach F, Grundmann U, Bauer M, et al. Modulation of the inflammatory response to cardiopulmonary bypass by dopexamine and epidural anesthesia. Acta anaesthesiol Scand 2002; 46:1227-1235.
    57. Choi HK, Waxman DJ. Pulsatility of growth hormone (GH) signalling in liver cells: role of the JAK-STAT5b pathway in GH action. Growth Horm IGF Res. 2000; 10(Suppl B):S1-S8.
    58. Cooney RN, Shumate M. The inhibitory effects of interleukin-1 on growth hormone action during catabolic illness. Vitam Horm. 2006; 74:317-340.
    59. Thomas S, Wolf SE, Chinkes DL, et al. Recovery from the hepatic acute phase response in the severely burned and the effects of long-term growth hormone treatment. Burns. 2004; 30(7):675-679.
    60. 彭碧波, 朱金如, 李善功,等.合并乙肝病毒感染的心脏病人体外循环手术适应症探讨.中华胸心血管外科杂志 2001;17:222-224
    1. Yaacov B. The liver: a large endocrine gland. J Hepatol, 2000; 32(3):505-508
    2. Larizza D, Locatelli M, Vitali L, et al. Serum liver enzymes in Turner syndrome. Eur J Pediatr. 2000; 159(3): 143-148
    3. Takahashi H, Nagamine T, Yamada S. Abnormal GH secretion in liver cirrhosis: evaluation of using GRF test and TRH test. Gastroenterol Jpn. 1992; 27(3): 364-368
    4. Sassolas G. Potential therapeutic applications of growth hormone in adults. Horm Res. 1994; 42(1): 72-78
    5. Rabkin R, Sun DF, Chen Y, et al. Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol. 2005; 20(3):313-318.
    6. Paukku K, Silvennoinen O. STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev. 2004; 15(6):435-455.
    7. Vinkemeier U. Getting the message across, STAT! Design principles of a molecular signaling circuit. J Cell Biol. 2004; 167(2):197-201.
    8. Buitenhuis M, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5 (STAT5). Int J Biochem Cell Biol. 2004; 36(11):2120-2124.
    9. Sassse J, Hemmann U, Schwartz C, et al. Mutational analysis of acute-phase response factor/STAT3 activation and dimerization. Mol Cell Biol. 1997; 17(7):4677-4686
    10. Chilton BS, Hewetson A. Prolactin and growth hormone signaling. Curr Top Dev Biol. 2005; 68(1):1-23.
    11. Waters MJ, Hoang HN, Fairlie DP, et al. New insights into growth hormone action. J Mol Endocrinol. 2006; 36(1):1-7.
    12. Lang CH, Hong-Brown L, Frost RA. Cytokine inhibition of JAK-STAT signaling: a new mechanism of growth hormone resistance. Pediatr Nephrol. 2005; 20(3):306-312.
    13. Schubring C, Siebler T, Kratzsch J, et al. Leptin serum concentrations in healthy neonates within the first week of life: relation to insulin and growth hormone levels, skinfold thickness, body mass index and weight. Clin Endocrinol Oxf. 1999; 51(2): 199-204
    14. Sato K, Iwasaki Y, Kobayashi G, et al. Pulmonary hypertrophic osteoarthropathyassociated with primary lung cancer. Nihon Kokyuki Gakkai Zasshi. 2000; 38(1): 73-77
    15. Turyn D, Da-Silva RS, Marques M. Pharmacokinetics of radioiodinated growth hormones in the turtle Chrysemys dorbigni. Arch Physiol Biochem. 1999; 107(2): 129-135
    16. Aimaretti G, Colao A, Corneli G, et al.The study of spontaneous GH secretion after 36-h fasting distinguishes between GH-deficient and normal adults. Clin Endocrinol Oxf. 1999; 51(6): 771-777
    17. Clavano-Harding AB, Ambler GR, Cowell CT, et al. Initial characterization of the GH-IGF axis and nutritional status of the Ati Negritos of the Philippines.Clin Endocrinol Oxf. 1999; 51(6): 741-747
    18. Juul A, Fisker S, Scheike T, et al. Serum levels of growth hormone binding protein in children with normal and precocious puberty: relation to age, gender, body composition and gonadal steroids. Clin Endocrinol Oxf. 2000; 52(2): 165-172
    19. Vedder H, Schreiber W, Yassouridis A, et al. Dose-dependence of bacterial lipopolysaccharide (LPS) effects on peak response and time course of the immune-endocrine host response in humans. Inflamm Res. 1999; 48(2): 67-74
    20. Balteskard L, Unneberg K, Mjaaland M, et al. Growth hormone and insulinlike growth factor 1 promote intestinal uptake and hepatic release of glutamine in sepsis. Ann Surg. 1998; 228(1):131-138
    21. 顾军, 黎介寿, 李维勤, 等. 重组生长激素对严重感染后蛋白质代谢影响的实验研究. 中华外科杂志. 1997; 35(2):104-107
    22. Voerman HJ, Strack RJM, Groeneveld ABJ, et al. Effects of recombinant human growth hormone in patients with severe sepsis. Ann Surg. 1992; 216(6):648-651
    23. Gottardis M, Benzer A, Koller W, et al. Improvement of septic syndrome after administration of recombinant human growth hormone. J Trauma. 1991;31(1):81-88
    24. Defalque D, Brandt, N, Ketelslegers JM, et al. GH insensitivity induced by endotoxin injection is associated with decree ased liver GH receptors. Am J Physiol. 1999; 276(3 Pt 1): E565-E572
    25. Dahn MS, Lange MP. Ssytemic and splanchnic metabolic response to exogenous human growth hormone. Surgery. 1998; 123(5):528-536
    26. Wu H, Devi R, Malarkey Wb. Localization of growth hormone messenger ribonucleic acid in the human immune system-a Clinical Research center study. J Clin Endocrinol Metab. 1996; 81(7):1278-1282
    27. Derfalvi B, Igaz P, Fulop KA. Interleukin-6-induced production of type II acute phase proteins and expression of junB gene are downregulated by human recombinant growth hormone in vitro. Cell Biol Int. 2000; 24(2): 109-114
    28. Matarese G. Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw. 2000; 11(1): 7-14
    29. Vines CR, Weigent DA. Identification of SP3 as a negative regulatory transcription factor in the monocyte expression of growth hormone. Endocrinology. 2000, 141(3): 938-946
    30. Arco I, Munoz R, Rodriguez DFF, et al. Maternal exposure to the synthetic cannabinoid HU-210: effects on the endocrine and immune systems of the adult male offspring. Neuroimmunomodulation. 2000; 7(1): 16-26
    31. Nieman DC. Nutrition, exercise, and immune system function. Clin Sports Med. 1999; 18(3): 537-548
    32. Yang Y, Guo L, Ma L, et al. Expression of growth hormone and insulin-like growth factor in the immune system of children. Horm Metab Res. 1999; 31(6): 380-384
    33. Pankov YA. Growth hormone and a partial mediator of its biological action, insulin-like growth factor I. Biochemistry Mosc. 1999; 64(1): 1-7
    34. Heemskerk VH, Daemen MA, Buurman WA, et al. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation. Cytokine Growth Factor Rev. 1999; 10(1): 5-14
    35. Yada T, Nagae M, Moriyama S, et al. Effects of prolactin and growth hormone on plasma immunoglobulin M levels of hypophysectomized rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol. 1999; 115(1): 46-52
    36. Thorbeck RV, Guerrero JA, Ruiz R, et al. Can the use of growth hormone reduced the postoperative fatigue syndrome? World J Surg, 1996; 20(1):81-89.
    37. Petersen SR, Jeevanandam M, Shahbazian LM, et al. Reprioritization of liver protein synthesis resulting from recombinant human growth hormone supplementation in parenterally fed trauma patients: the effect of growth hormone on the acute-phaseresponse. J Trauma. 1997; 42(6): 987-995; discussion 995-996
    38. Mealy K, Barry M, O'Mahony L, et al. Effects of human recombinant growth hormone (rhGH) on inflammatory responses in patients undergoing abdominal aortic aneurysm repair. Intensive Care Med. 1998; 24(2): 128-131
    39. Houdijk AP, Nijveldt RJ, van Leeuwen PA. Glutamine-enriched enteral feeding in trauma patients: reduced infectious morbidity is not related to changes in endocrine and metabolic responses. JPEN. 1999; 23(5 Suppl): S52-S58
    40. Vedder H, Schreiber W, Yassouridis A, et al. Dose-dependence of bacterial lipopolysaccharide (LPS) effects on peak response and time course of the immune-endocrine host response in humans. Inflamm Res. 1999; 48(2): 67-74
    41. Jeevanandam M, Begay CK, Shahbazian LM, et al. Altered plasma cytokines and total glutathione levels in parenterally fed critically ill trauma patients with adjuvant recombinant human growth hormone (rhGH) therapy. Crit Care Med. 2000; 28(2): 324-329
    42. 李维勤, 黎介寿, 顾军, 等. 腹腔感染后低白蛋白血症的分子机理和防治实验研究. 中华外科杂志. 1997; 35(2):100-104
    43. Cipollaro de LEG, Marcatili A, Folgore A, et al. TNF-alpha expression and herpes simplex infection in human monocytes treated with growth hormone, prolactin and insulin. New Microbiol. 1998; 21(3):213-220
    44. 蒋朱明, 何桂珍. 手术后患者应用生长激素及肠外营养的代谢效应. 中华外科杂志. 1995; 33(11):704-706
    45. Thorbeck RV,Guerrero JA. Effects of Human Growth hormone.Hom Res.1996; 45(1):55-60
    46. Binder G, Benz MR, Elmlinger M, et al. Reduced human growth hormone (hGH) bioactivity without a defect of the GH-1 gene in three patients with rhGH responsive growth failure. Clin Endocrinol Oxf. 1999; 51(1): 89-95
    47. 黎介寿. 255 例肠外瘘的治疗经验. 中华医学杂志. 1987; 64(6):686-690
    48. 任建安, 姜军, 王新波, 等. 肠外瘘的新疗法—组合应用营养支持、生长抑素与生长激素. 中华外科杂志. 2001; 39(4):303-305
    49. Scolapio JS, Camilleri M, Fleming CR, et al. Effect of growth hormone on adaptation on short-bowel, a randomized, controlled study. Gastroenterology.1997; 113(8):1074-1079
    50. Herndon DN, Barrow RE, Kunkel KR, et al. Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg; 1990; 212(3):424-428
    51. Fukushima R, Saito H, Inoue T, et al. Prophylactic treatment with growth hormone and insulin-like growth factor I improve systemic bacterial clearance and survival in a murine model of burn-induced gut-derived sepsis. Burns.1999; 25(5): 425-430
    52. Ross RJ.The GH receptor and GH insensitivity. Growth Horm IGF Res.1999; 9(Suppl B): 42-45; discussion 45-46
    53. Amit T, Youdim MB, Hochberg Z. Clinical review 112: Does serum growth hormone (GH) binding protein reflect human GH receptor function? J Clin Endocrinol Metab. 2000; 85(3): 927-932
    54. Hathout EH,Baylink DJ,Mohan S. Normal growth despite GH, IGF-I and IGF-II deficiency. Growth Horm IGF Res.1999; 9(4): 272-277
    55. Fisker S, Jorgensen JO, Vahl N, et al. Impact of gender and androgen status on IGF-I levels in normal and GH-deficient adults. Eur J Endocrinol. 1999; 141(6): 601-608
    56. Rudman D, Feller AG, Nagraj HS, et al. Effects of human growth hormone in men over 60 years old. N Engl J Med. 1990; 323(1):1-5
    57. Johnston LB, Savage MO. Partial growth hormone insensitivity. J Pediatr Endocrinol Metab. 1999; 12( Suppl 1): 251-257
    58. Jeevanandam M, Ramias L, Shamos RF, et al. Decreased growth hormone levels in the catabolic phase of severe injury. Surgery.1992; 111(5): 495-498
    59. Carli F, Webster JD, Halliday D. Growth hormone modulates amino acid oxidation in the surgical patients: leucine kinetics during the fasted and fed state using moderate nitrogenous and caloric diet and recombinant human growth hormone. Metabolism, 1997; 46(7):796-802
    60. Wallace JD, Cuneo RC, Baxter R, et al. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. Clin Endocrinol Metab. 1999; 84(10): 3591-3601
    61. Kissmeyer-Nielsen P, Jensen MB, Laurberg S, et al. periooperative growth hormone treatment and functional outcome after major abdminal surgery. Ann Surg, 1999;229(2):298-302
    62. Giustina A, Volterrani M, Manelli F, et al. Endocrine predictors of acute hemodynamic effects of growth hormone in congestive heart failure. Am Heart J. 1999; 137(6): 1035-1043
    63. James BK, Wilmore W. Growth hormone therapy postoperative respiratory failure. Am J Surg. 1996; 171(6):576-580
    64. Ebdrup L, Fisker S, Sorensen HH, et al. Variety in growth hormone determinations due to use of different immunoassays and to the interference of growth hormone-binding protein. Horm Res. 1999; 51(Suppl 1): 20-26
    65. Abbaticola MM. A team approach to the treatment of AIDS wasting. J Assoc Nurses AIDS Care. 2000; 11(1): 45-56
    66. Husson D, Abbal M, Tafani M, et al. Neuroendocrine system and immune responses after confinement. Adv Space Biol Med. 1996; 5(1): 93-113
    67. Greer RM,Quirk P, Cleghorn GJ, et al.Growth hormone resistance and somatomedins in children with end-stage liver disease awaiting transplantation. J Pediatr Gastroenterol Nutr. 1998; 27(2):148-154
    68. Mullis PE, Eble A, Marti U, et al. Regulation of human growth hormone receptor gene transcription by triiodothyronine (T3). Mol Cell Endocrinol. 1999; 25; 147(1-2): 17-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700