用户名: 密码: 验证码:
胜坨油田河流相储层建筑结构分析与剩余油分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,胜坨油田已经进入特高含水期,存在着综合含水率高、采出程度高、采油速度高、储采比低、采收率低等问题。储层平面上大面积水淹,剩余油分布异常复杂,分析难度大,其开发对象已由早期的油层组到中期的小层乃至如今的单层、单砂体,开采的主要矛盾已由层间矛盾转为如今层内矛盾乃至砂体内部建筑结构之间的矛盾。原有的简单的划分亚相带以及河道与非河道沉积的地质模型已难于适应开发的需要,迫切需要建立更为精确的地质模型。
     以胜坨油田二区沙二段34层为例,确定构型要素的识别与划分标准,建立河流相储层构型要素空间分布随机模型,探索构型要素对剩余油空间分布的影响和形式,将对河流相储层剩余油挖潜、提高采收率具有重要的理论意义和现实意义。
     本文应用多学科理论和方法,以河流沉积学理论和现代沉积研究为基础,以计算机技术、测井解释技术、储层随机建模技术、油藏数值模拟技术、油藏工程综合分析技术、岩心分析试验等技术为手段,综合利用油藏地质、钻井、测井、试油、试采及生产动态等多种信息资料,建立精细的储层构型要素空间分布模型及剩余油分布模型,寻找河流相储层构型要素控制油藏属性空间分布的规律,进而明确河流相储层构型要素控制剩余油分布的机理。
     通过对15口取心井的观察,研究储层岩矿特征、成岩作用和微观孔隙结构,并且建立了不同开发时期的多种油藏属性参数的测井解释模型,共处理了400多口井的测井资料。对工区进行了建筑结构分析研究,确定了构型要素的识别与划分标准,划分了9种岩相类型、7级沉积界面和7种构型要素(河道充填沉积、心滩、天然堤、决口扇、洪泛平原细粒、河道滞留沉积、落淤层)。在此基础上,使用随机建模手段,建立了工区构型要素空间分布模型,并提出了以构型要素空间分布为约束条件,建立油藏属性(孔隙度、渗透率、含油饱和度等)的空间分布随机模型的新思路。抽稀检验结果表明,建立的模型较为准确。在此基础上,提出了多种构型要素空间组合模型,并对各模型的组合特征及其对剩余油分布的控制作用进行了论述。依据构型要素空间分布形态,调整各项动态参数,使用ECLIPSE软件进行油藏数值模拟和历史拟合运算,得到了构型要素控制下的剩余油分布模型,并给出了剩余油富集的有利开发区域。为河流相储层剩余油研究提供了新思路和新方法。
Nowadays, Shengtuo oilfield has already been in high water-cut stage. During the period of production , many problems such as high composite water cut, high degree of reserve recovery, too fast production rate, low reserve and production ratio and low recovery ratio has happened. It is very difficult to find the distribution of remainder oil. The development object has already been changed from oil layer groups to single layer. The main contradiction between formation and formation has already been changed to the contradiction among architectural-elements. The geological models which were established by simple ways has already not fitted the require of production. It is cry for finding more accurate geological models to guide the production.
     Take 34 layer in Es2 of No.2 area in Shengtuo oilfield for example, we establish fluvial facies reservoir architectural-elements 3D distribution model, confirm the identify standard of architectural-elements, find the way which architectural-elements affect the distribution of remaining oil. All of these works can provide theory support for improving recovery ratio.
     On the basis of fluvial sedimentology and modern sediment facies study, applying computer technology, log interpretation, stochastic simulation, numerical reservoir simulation and core analysis technology we can establish fine architectural-elements 3D distribution model and remaining oil distribution model. By the way of analyzing architectural-elements 3D distribution model, we can find the remaining oil distribution rule.
     On the basis of 15 coring holes’analysis and assay and taking many factors such as lithology, sediment feature, electrical feature into account, 9 lithofacies types, 7 rank interfaces and 7 architectural-elements are established. 7 architectural-elements are consist of channel charge, channel bar, natural levee, crevasse splay, channel lag deposit, floodplain fine grain and interlayer. The architectural-element 3-D spatial distribution model was founded by the way of stochastic simulation. The new method that establish reservoir property models(which include porosity permeability oil saturation) was controlled by architectural-element 3-D spatial distribution model. Another model that only less a few wells was established to test the accuracy of architectural-element model. The result of the test reveales that the architectural-element 3-D spatial distribution model is more accuracy and more reliable. How architectural-elements assemble, what characters they have and in which way the architectural-elements combination control the distribution of remaining oil are also interpreted in this paper. According to the distribution of architectural-elements, we adjust reservoir dynamic parameters. This paper used Eclipse software for reservoir numerical simulation and history match, then the remaining oil distribution model was established and the areas which remaining oil gathered were pointed out. This paper took a new way for fluvial facies reservoir remaining oil researching.
引文
[1] 徐安娜, 穆龙新, 裘亦楠. 我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]. 石油勘探与开发, 1998, 25(5): 41-49.
    [2] 刘宝珺, 谢俊, 张金亮. 我国剩余油技术研究现状与进展[J]. 西北地质. 2004, 37(4): 1-7.
    [3] Allen J R L. Study in fluviatile sedimentation: six cyclothems from the lower Old Red Sandstone, Anglowelsh basin[J]. Sedimentology. 1964; (3): 163-198.
    [4] Allen J R L. Study in fluviatile sedimentation: bars, bar complexe sandstone sheets(low-sinuosity braided streams)in the Brownstones(Lower Devonian), WelshBorders[J]. Sedimentary Geology, 1983, (33):237-293.
    [5] Miall A D. Architectural-elements analysis: a new method of facies analysis applied to fluvial deposits[J]. Earth Science Reviews. 1985; 22: 261-308.
    [6] Miall A D. Architectural-elements and bounding surfacees in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic), southwest Colorado[J]. Sedimentary Geology. 1988; 55: 233-262.
    [7] Miall A D. The Geology of Fluvial Deposits. Berlin: Springer Verlag. 1996; 75-178.
    [8] Miall A D, Turner-Peterson C E. Variations in fluvial style in the Westwater Canyon Member, Morrison Formation(Jurassic), San Juan Basin, Colorado Plateau[J]. Sedimentary Geology, 1989, 63: 21-60
    [9] Miall A D. Alluvial deposits. In: Walker R G, Jams N P,eds. Facies Models, Response Sea Level Change. Geological Association of Canada, 1992.119-142
    [10]De Cells P G, Gray M B, Ridgway K D, Cole R B, Pivnik D A, Pequera N and Srivastava P. Controls on synorogenic alluvial-fan architecture-Gypsy sandstone of northern Okalahoma[J]. AAPG Bulletin. 1991; 79: 70-96.
    [11]Miall A D. The architecture of fluvial-Delatic sequences in the Upper Mesaverde Group(Upper Creaceous),Book Cliffs. In: Best J L, Bristow C S. eds.Braided rivers[J]. Geological Society of London Special Publication 75,1993. 305-332.
    [12]Miall A D.Reconstructing fluvial macroform architecture from two-dimensional outcrops: example from the Castlegate sandstone, Book Cliffa,Utah,Journal ofSedimentary Research,1994,B64:146-158
    [13]Simon C. Lang Evolution of Devonian alluvial systems in an oblique-slip mobile zone—an example from the Broken river province, northeastern Australia[J]. Sedimentary Geology, 1993, 85:501-535.
    [14]De Cells P G, Gray M B, Ridgway K D, Cole R B, Pivnik D A, Pequera N and Srivastava P. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate(Paleocene), Wyoming and Montana[J]. Sedimentology, 1991, 38: 567-590.
    [15]Smith S A. The sedimentology and accretionary style of an ancient gravel-bed stream: the Budleigh Salterton Pebble beds(lower Triassic), southwest England[J]. Sedimentary Geology. 1990, 67: 199-219.
    [16]Soegaard S A. Arthitectural elements of fan-delta complex in Pennsylvanian Sandia Formation, Taos trough, Northern New Mexico. In: Miall A D,Tyler N. eds. The Three-dimensional Facies Arthitecture of Terrigenous Clastic Sediments, and Its Implications for Hydrocarbon Discovery and Recovery.Soc. Econ. Paleontol.Mineral. Conc. Sedimentol. Paleonto. 13,1991. 217-223.
    [17]Gary J. Brierley. Bar sedimentology of the Squamish river, British Columbia: definition and application of morphostratigraphic units[J]. Sedimentary Petrology. 1991; 61: 211-225
    [18]Gary J. Brierley. Floodplain sedimentology of the Squamish river, British Columbia: relevance of element analysis[J]. Sedimentology. 1991; 38: 735-750.
    [19]Gary J. Brierley and Hickin E J.channel planform as a non-controllin factor in fluvial sedimentology: the case of the Squamish river floodplain, British Columbia[J]. Sedimentary Geology. 1991; 75: 67-83.
    [20]Miall A D. Architectural elements and bounding surfaces in channlized clastic deposits:notes on comparisons between fluvial and turbidite systems.in: Taira A, Masuda F, eds. Sedimentary Facies in the Active plate Margin. Tokyo, Terra Scientific Publishing Company, 1989. 3-15.
    [21]Pickering K T, Clark J D, Ricci Lucchi F, Smith R D, Hiscott R N, Kenyon N H. Architectural element analysis of turbidite systems, and selected topical problems for sandprone deep-water systems. In: Pickering K T,Hiscott R N, Kenyon N H, Ricci Lucchi F, Smith R D, eds. Atlas of Deep WaterEnvironments: Architectural style in Turbisite Systems,London, Chapman and Hall, 1995.1-10.
    [22]Clark J D and Pickering K T. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration[J]. AAPG Bulletin. 1996; 80: 194-221.
    [23]Doyle J D, Sweet M L. Three-dimensional distribution of lithofacies, bounding surfaces,porosity, and permeability in a fluvial sandstone—Gypsy sandstone of northern Okalahoma[J]. AAPG Bulletin, 1985,79:70-96.
    [24]Jordan D W, Pryor W A. Hierarchical levels of heterogeneity in a Mississippi river meander belt and applications to reservoir systems[J]. AAPG Bulletin, 1992,76:1601-1624.
    [25]张昌民, 林克湘, 徐龙等.储层砂体建筑结构分析[J]. 江汉石油学院学报. 1994;16(2): 1-7.
    [26]张昌民, 徐龙, 林克湘等.青海油砂山油田第 68 层分流河道砂体解剖学[J]. 沉积学报. 1996;14(4): 70-76.
    [27]于兴河, 王德发. 陆相断陷盆地三角洲相构形要素及其储层地质模型[J]. 地质论评. 1997, 43(3): 225-231.
    [28]于兴河, 王德发, 郑浚茂等. 辫状河三角洲砂体特征及砂体展布模型[J]. 石油学报. 1994, 15(1): 26-37.
    [29]于兴河, 王德发, 孙志华. 湖泊辫状河三角洲岩相、层序特征及储层地质模型[J]. 沉积学报. 1995, 13(1): 48-58.
    [30]邵树勋, 燕永峰. 民和盆地窑街地区晚侏罗世古河流环境定量研究[J]. 矿物学报. 2000, 20(2): 102-107.
    [31]张运东, 李祯, 温显端. 曲流河道砂体内部构成及储集层非均质性的露头研究-以鄂尔多斯盆地东北部延安组露头砂体为例[J]. 新疆石油地质. 1997, 18(3): 234-238.
    [32]兰朝利, 李继亮, 陈海泓. 冲积沉积结构单元分析法综述[J]. 地质论评. 1999, 45(6): 603-612.
    [33]兰朝利, 吴峻, 张为民等. 冲积沉积构型单元分析法-原理及其适用性[J]. 地质科技情报. 2001, 20(2): 37-40.
    [34]伍涛, 王建国, 王德发. 辫状河砂体储层沉积学研究-以张家口地区露头砂体为例[J]. 沉积学报. 1998, 16(1): 27-33.
    [35]王俊玲, 任纪舜. 嫩江现代河流沉积体岩相及内部构形要素分析[J]. 地质科学. 2001, 36(4): 385-394.
    [36]王振奇, 何贞铭, 张昌民等. 三角洲前缘露头储层层次分析[J]. 江汉石油学院学报. 2004, 26(3): 32-35.
    [37]尹太举, 张昌民, 樊中海等.地下储层建筑结构预测模型的建立[J]. 西安石油学院学报. 2002;17(3): 7-14.
    [38]李庆明, 陈程, 刘丽娜等. 双河油田扇三角洲前缘储层建筑结构分析[J]. 河南石油. 1999; (3): 14-19.
    [39]李庆明, 鲁国甫, 陈程等.储层建筑结构要素的综合识别[J]. 河南石油. 1998; (3): 13-17.
    [40]尹太举, 张昌民, 陈程等.建立储层流动单元模型的新方法[J].石油与天然气地质. 1999;20(2): 170-175.
    [41]尹太举, 张昌民, 樊中海等. 双河油田井下地质知识库的建立[J]. 石油勘探与开发. 1997;24(6): 95-98.
    [42]张昌民, 尹太举, 张尚锋等. 泥质隔层的层次分析—以双河油田为例[J]. 石油学报. 200 4, 25(3): 48-52.
    [43]尹太举, 张昌民, 汤军等.马厂油田储层层次结构分析[J]. 江汉石油学院学报. 2001;23(4): 19-21.
    [44]许春娥, 赵云明, 陈辉等.储层建筑结构精细描述在马厂油田堵水中的应用[J]. 内蒙古石油化工. 2000;26: 154-156.
    [45]孙玉生, 司尚举, 刘华等.马厂油田砂三下2储层建筑结构特征研究[J]. 断块油气田. 1998;6(2): 39-41.
    [46]刘华, 陈辉, 麦勇萍等.马厂油田砂三下 2 储层建筑结构特征研究及实践[J]. 国外油田工程. 2004;20(6): 41-43.
    [47]李阳, 李双应, 岳书仓等.胜利油田孤岛油区馆陶组上段沉积结构单元. 地质科学. 2002;37(2): 219-230.
    [48]李双应, 李忠, 王忠诚等. 胜利油区孤岛油田馆上段沉积模式研究[J]. 沉积学报. 2001;19(3): 386-393.
    [49]陈清华, 曾明, 章凤奇等.河流相储层单一河道的识别及其对油田开发的意义[J]. 油气地质与采收率. 2004;11(3): 13-15.
    [50]刘建民. 沉积结构单元在油藏研究中的应用. 北京: 石油工业出版社, 2003.
    [51]李椿, 于生云, 黄伏生等.河流相储层建筑结构的解剖与应用[J]. 大庆石油学院学报. 2004;28(2): 92-94.
    [52]刘冬之, 乔彦君, 马刚等.划分砂体内部建筑结构的建模方法[J]. 大庆石油地质与开发. 2003;22(1): 1-3.
    [53]赵翰卿.储层非均质体系, 砂体内部建筑结构和流动单元研究思路探讨[J]. 大庆石油地质与开发. 2002;21(6): 16-18.
    [54]赵翰卿, 付志国, 吕晓光.储层层次分析和模式预测描述法[J]. 大庆石油地质与开发. 2004, 23(5): 74-77.
    [55]赵翰卿. 储层非均质体系砂体内部建筑结构和流动单元研究思路[J]. 大庆石油地质与开发. 2002, 21(6): 16-18.
    [56]赵翰卿. 对储层流动单元研究的建议[J]. 大庆石油地质与开发. 2001, 20(3): 8-10.
    [57]赵翰卿, 付志国, 吕晓光等. 大型河流-三角洲沉积储层精细描述方法[J]. 石油学报. 2000, 21(4): 109-113.
    [58]何文祥, 吴胜和, 唐义疆等.地下点坝砂体内部构型分析-以孤岛油田为例[J]. 矿物岩石. 2005;25(2): 81-86.
    [59]何文祥, 吴胜和, 唐义疆等.河口坝砂体构型精细解剖[J]. 石油勘探与开发. 2005;32(5): 42-47.
    [60]廖光明.范庄油田阜宁组沉积体系及砂体建筑结构分析[J]. 西南石油学院学报. 2006;28(2): 4-7.
    [61]Jef K. Caers, S. Srinivasan, Andre G. Journel Geostatistical Quantification of Geological Information for a Fluvial-type North Sea Reservoir[J]. SPE 56655, 1999.
    [62]YuLong Xie, A. Stan Cullick, and Clayton V. Deutsch. Surface-Geometry and Trend Modeling for Integration of Stratigraphic Data in Reservoir Models[J]. SPE68817, 2001.
    [63]L.Y. Hu, M. Le Ravalec, G. Blanc, F. Roggero, B. Noetinger. Reducing Uncertainties in Production Forecasts by Constraining Geological Modeling to Dynamic Data[J]. SPE 56703, 1999.
    [64]Khalaf AL-Enezi, James C Hsie. Modeling and Scale up Of A Heterogeneous Reservoir; Wara Sand, Greater Burgan Field[J]. SPE 53206, 1999.
    [65]A.Pelgrain de Lestang,L.Cosentino and J.Cabrera. Geologically oriented geostatistics: an integrated tool for reservoir studies[J]. SPE74371, 2002.
    [66]Karim Aissaoui, and Djebbar Tiab. Contribution of Horizontal-Well Log and Pressure Data in Stochastic Modeling[J]. SPE 70012, 2001.
    [67]Sophie VISEUR. Stochastic Boolean Simulation of Fluvial Deposits : A New Approach Combining Accuracy with Efficiency[J]. SPE 56688, 1999.
    [68]E. Gringarten, and C. V. Deutsch Methodology for Variogram Interpretation and Modeling for Improved Reservoir Characterization[J]. SPE 56654, 1999.
    [69]Gerard J. Massonnat. Breaking of a Paradigm: Geology Can Provide 3D Complex Probability Fields for Stochastic Facies Modelling[J]. SPE 56652, 1999.
    [70]Dongseong Lee, and Joe M. Kang. Stochastic Modeling for the Heterogeneous Anisotropic Reservoir System by Using Geostatistics[J]. SPE 54310,1999.
    [71]R.J. Brenneman, and N.W.D. Miller, and R.P. Teakle, and D. Seeburger, and D.J. van Nispen,., and C.J. Harrison. Boolean Modelling of the Fluvial Mungaroo Formation, Gorgon Field, Northwest Shelf, Australia[J]. SPE 50084, 1998.
    [72]J.C. Herweijer, M. Barley, S. Chugh, S. Alexander, , and M. Smith, and F. Kuppe. Using a 3D Stochastic GeoModel to Determine Optimal Infill Potential of a Mature Gas Field: A Case History[J]. SPE 62901, 2000.
    [73]F.M. Petit, B. Caline, H.N. Greder, F.M. Pellerln and P.M. Calatayud. Multi-Step Geostatistical Modelling of A Complex Reservoir Based on Quantified Sedimentary Models and Characterization of Core Petrophysical Groups[J]. SPE 30618, 1995.
    [74]P.R.Ballin, R.T.Faria, M.R.Becker. Integrated Stochastic Modeling in Reservoir Evaluation for Project Evaluation and Risk Assessment[J]. SPE39000, 1997.
    [75]S.J.Rogers, H.C.Chen, D.C. Kopaska-Merkel, and J. H.Fang Oredicting permeability from porosity using artificiall neural networks[J]. AAPG Bulletin. 1995, 79(12): 1786-1797.
    [76]M.A.Salhi, M.Van Rijen, L.Wei, H.Dijk and H.Lee. Structured UncertaintyAssessment for Fahud Field through the Application of Experimental Design and Response Surface Methods[J]. SPE93529, 2005.
    [77]A. K. Jain, A. D. Mathur and H. R. Taneja. Stochastic Reservoir Modeling of Sand GS - 8: Gandhar Field, Western India[J]. SPE 54271, 1999.
    [78]M.A.AI-Khalifa, Saudi Aramco. Advances in Generating and Ranking Integrated Geological Models for Fluvial Reservoir[J]. SPE86999, 2004.
    [79]Helge H.Haldorsen, and Elvlnd Damsleth. Stochastic modeling[J]. JPT, 1990, (4): 404-412.
    [80]H. H. Haldorsen and E.Damsleth. Challenges in reservoir characterization[J]. The AAPG Bulletin. 1993, 77(4): 541-551.
    [81]Elvind Damsleth, Charlotte B. Tjφlsen and Helge H.Haldorsen. A two-stage Stochastic model applied to a North sea reservoir[J]. JPT, 1992, (4): 402-408.
    [82]Don S.Wocott and Anll K. Chopra. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries[J]. SPE Formation Evaluation. 1993, (3): 26-32.
    [83]K.C. Freulon and I.D. Dunderdale. Integrating field measurements with conceptuall models to produce a detailed 3D geological model[J]. SPE 28877, 1994.
    [84]C.W.Grant, D.J.Goggin, and P.M.Harris. Outcrop analog for cyclic-shelf reservoirs, San Andres formation of Permian basin: stratigraphic framework, permeability distribution, Geostatistics, and fluid-flow modeling[J]. AAPG Bulletin, 1994, 78(1): 23-54.
    [85]L. Holden, R. Hauge, and Φ.Skare. Modeling of fluvial reservoir with object models[J]. Mathematical Geology, 1998, 30(5): 474-495.
    [86]J.K. Caers, Srinivasan, and A.G. Journel. Geostatistical Quantification of Geological Information for a Fluvial-Type North Sea Reservoir[J]. SPE66310, 2000.
    [87]Dominique Berta, H.H.Hardy, and R.A.Beier. Fractal distributions of reservoir properties and their use in reservoir simulation[J]. SPE28734, 1994.
    [88]C.V. Deutsch, and L. Wang. Hierarchical Object-Based Geostatistical Modeling of Fluvial Reservoirs[J]. SPE36514, 1996.
    [89]Maghsood Abbaszadeh, Naoki Koide, and Yoya Murahashi. Integrated Characterization and FlowModeling of a Heterogeneous CarbonateReservoir in Daleel Field, Oman[J]. SPE62514, 2000.
    [90]J.C.Currie, Consultant and S.C.Balke. Simulation Model Development for Bayu-Undan Field[J]. SPE63222, 2000.
    [91]Mickaele Le Ravalec-Dupin, Frederic Roggero and Roland Froidevaux. Conditioning Truncated Gaussian Realizations to Static and Dynamic Data[J]. SPE 84944, 2003.
    [92]P.Thomas, M.Le Ravale-Dupin and Roggero. History matching reservoir models simulated from the pluri-gaussian method[J]. SPE 94168, 2005.
    [93]NingLiu and Dean S.Oliver. Automatic History Matching of Geologic Facies[J]. SPE 84594, 2003.
    [94]R.Hauge, A.R.Syversveen and A.C.MacDonald. Modeling Facies Bodies and Petrophysical Trends in Turbidite Reservoirs[J]. SPE 84053, 2003.
    [95]Shaikh Abdul Azim, Hussain AI-Ajmi, Craig Rice, Deryck Bond, Shehab Abdullah, Bruce Laughlin. Reservoir Description and Static Model build in Heterogeneous Mauddud Carbonates: Raudhatain Field, North Kuwait[J]. SPE 81524, 2003.
    [96]James W. Jennings, F.Jerry, Lucia, Stephen C. Ruppel, John A. and Katherine G.Jackson. 3D modeling of stratigraphically controlled petrophysical variability in the South Wasson Clear Fork reservoir[J]. SPE 77592, 2002.
    [97]L.Wang, S. Tyson, X.Song, H.Cao, P.M.Wong. Reservoir modeling with neural networks and geostatistics: a case study from the lower tertiary of the Shengli Oilfield , East China[J]. SPE77958, 2002.
    [98]R. Pathak, D.O. Ogbe, and J. L. Jensen. Application of Geostatistical and Fluid Flow Simulations to Evaluate Options for Well Placement[J]. SPE 62554, 2000.
    [99]Brigitte Doligez, and Liang Chen, Quantification of Uncertainties on Volumes in Place Using Geostatistical Approaches[J]. SPE 64767, 2000.
    [100] E. Muruaga, Tecpetrol S.A., E. Antunez, C. Nogaret, S. Stancel, Integrated Reservoir Study in El Tordillo Field[J]. SPE 69688, 2001.
    [101] L. E. Shmaryan and C. V. Deutsch. Object-Based Modeling of Fluvial /Deepwater Reservoirs with Fast Data Conditioning: Methodology and Case Studies[J]. SPE 56821, 1999.
    [102] Douglas L. Jordan,and David J. Goggin. An Application of Categorical indicator Geostatistics for facies modeling in sand-rich Turbidite Systems[J]. SPE 30603, 1995.
    [103] A.Pelgrain de Lestang and L.Cosentino, D.Lopez and J.E.Gonzalez. A Large Scale Geostatistical Study: the Bachaquero 2 Field[J]. SPE 56657, 1999.
    [104] A. Carnes, J. Yarus, , P. Cordova, M. Delgado and L.D. Green. The Barua Field, Venezuela: Comparison of the Results and Process of Deterministic versus Stochastic Reservoir Characterization[J]. SPE 56656, 1999.
    [105] 刘振风, 郝天珧,杨长春. 沉积模型与储层随机建模[J]. 地球物理学进展. 2003, 18(3): 519-523.
    [106] 段新明, 肖红平,李阳等. 随机建模在油气储量计算中的应用[J]. 油气地质与采收率. 2003, 10(6): 6-10.
    [107] 张春雷, 段林娣,熊琦华. 河道储集层建模的改进和扩展[J]. 新疆石油地质. 2004, 25(5): 538-541.
    [108] 廖新维, 李少华,朱义清. 地质条件约束下的储集层随机建模[J]. 石油勘探与开发. 2004, 31 增刊: 92-95.
    [109] 张明禄, 王家华,卢涛. 应用储层随机建模方法计算概率储量[J]. 石油学报. 2005, 26(1): 65-70.
    [110] Lu Xiaoguang, Sui Jun, and Zhao Hanqing. Stochastic Modeling Technique for Heterogeneous Multi-layer Sandstone Reservoir[J]. SPE 64764, 2000.
    [111] 吕晓光, 张永庆, 陈兵等. 深度开发油田确定性与随机建模结合的相控建模[J]. 石油学报. 2004, 25(5): 60-65.
    [112] 吕晓光, 潘懋, 王家华等. 指示主成分模拟建立分流河道砂体相模型及意义[J]. 石油学报. 2003, 24(1): 53-58.
    [113] 吕晓光, 王德发, 姜洪福. 储层地质模型及随机建模技术[J]. 大庆石油地质与开发. 2000, 19(1): 10-16.
    [114] Jia Ailin, Mu Longxin, Xiao Jingxiu, Wang Zhengbiao. The Technology and Methodology of Reservoir Geological Modeling in the Evaluation Phase of Oilfield Development[J]. SPE50879, 1998.
    [115] 裘怿楠, 贾爱林. 储层地质模型 10 年[J]. 石油学报. 2000, 21(4): 101-106.
    [116] Jiahua Wang, and Tuanfeng Zhang. Three-Stage Stochastic Modelling Method To Characterize Facies Resewoir With Fluvial[J]. SPE 29965, 1995.
    [117] 张团峰, 王家华. 利用随机模拟提高油藏数值模拟的效果[J]. 沉积学报. 2003, 21(2): 266-268.
    [118] 李少华, 张昌民, 林克湘等. 储层建模中几种原型模型的建立[J]. 沉积与特提斯地质. 2004, 24(3): 102-108.
    [119] 李少华, 张昌民, 尹艳树. 河流相储层随机建模的几种方法[J]. 西安石油学院学报. 2003, 18(5): 10-18.
    [120] 李少华, 张昌民, 张尚锋等. 沉积微相控制下的储层物性参数建模[J]. 江汉石油学院学报. 2003, 25(1): 24-28.
    [121] 李少华, 张昌民, 彭裕林等. 坪北油田储层随机建模及结果检验[J]. 沉积与特提斯地质. 2003, 23(4): 91-96.
    [122] 李少华, 张昌民, 彭裕林等. 储层不确定性评价[J]. 西安石油大学学报. 2004, 19(5): 16-22.
    [123] 徐守余. 超抽油水平井区三维地质随机建模研究[J]. 石油大学学报. 2000, 24(1): 57-62.
    [124] 孙国, 张兴平, 徐守余. 随机建模技术在孤岛油田西区精细油藏描述中的应用[J]. 石油勘探与开发. 2000, 27(6): 68-72.
    [125] 孙国. 利用人工神经网络系统建立储层四维地质模型[J]. 油气地质与采收率. 2004, 11(3): 4-8.
    [126] 吴胜和, 张一伟, 李恕军等. 提高储层随机建模精度的地质约束原则[J]. 石油大学学报. 2001, 25(1): 55-60.
    [127] 吴胜和, 金振奎,黄沧钿等. 储层建模[M]. 北京: 石油工业出版社, 1999.
    [128] 张建林, 吴胜和, 武军昌等. 应用随机模拟方法预测岩性圈闭[J]. 石油勘探与开发. 2003, 30(3): 114-117.
    [129] 吴胜和, 武军昌, 储勇等. 陡坡扇储集层三维沉积相建模研究[J]. 石油勘探与开发. 2003, 30(3): 111-114.
    [130] 吴胜和, 武军昌, 李恕军等. 安塞油田坪桥水平井区沉积微相三维建模研究[J]. 沉积学报. 2003, 21(2): 266-268.
    [131] 彭仕宓, 尹志军, 李海燕. 建立储层四维地质模型的新尝试-以冀东高尚堡沙三段储层模型的建立为例[J]. 地质论评. 2004, 50(6): 662-668.
    [132] 林承焰,侯加根,侯连华等. 油气储层三维定量地质建模方法和配套技术[J]. 石油大学学报. 1996, 20(4): 20-26.
    [133] 侯加根. 河流和三角洲储层随机建模[M]. 山东: 石油大学出版社, 1999.
    [134] 胡向阳, 熊琦华,吴胜和. 储层方法研究进展[J]. 石油大学学报. 2001, 25(1): 107-114.
    [135] 胡向阳, 熊琦华,王志章等. 彩南油田西山窑组储集层三维建模[J]. 新疆石油地质. 2001, 22(5): 431-435.
    [136] 胡向阳, 熊琦华,吴胜和等. 标点过程随机模拟方法在沉积微相研究中的应用[J]. 石油大学学报. 2002, 26(2): 19-25.
    [137] Keith B. Sullivan and Earle F. McBride. Diagensis of sandstones at shale contacts and diagenetic heterogeneity, frio formation, texas[J]. The AAPG bulletin, 1991 , 75(1):121-138.
    [138] Safer B. Coskun. Norman C. Wardlaw. Image analysis for estimating ultimoate oil recovery efficiency by waterflooding for two sandstone reservoirs[J]. Journal of Petroleum Science & Engineering. 1996 15: 237-250.
    [139] M.J.Blunt, D.H.Fenwick, and Dengen Zhou. What determines residual oil saturation in three-phase flow[J]? SPE/DOE 27816, 1994 .
    [140] 巢华庆, 黄福堂, 聂锐利等. 保压岩心油气水饱和度分析及脱气校正方法[J]. 石油勘探与开发. 1995, 22(6): 73-79.
    [141] 杨克兵, 张善成, 黄文革. 密闭取心井岩石饱和度测量数据校正方法[J]. 测井方法. 1998, 22(2): 71-74.
    [142] 肖立志, 金振武, 高守双等. 岩心的核磁共振成像及其应用[J]. 江汉石油学院学报. 1994, 16(1): 29-38.
    [143] 钟蕴紫, 孙耀庭, 张俊杰等. 低孔隙度低渗透率岩心水驱油岩电实验研究[J]. 测井技术. 2005, 29(5): 449-454.
    [144] 王朴, 蔡进功, 谢忠怀等. 用含油薄片研究剩余油微观分布特征[J]. 油气地质与采收率. 2002, 9(1): 60-63.
    [145] 吴世旗, 余钦范, 郑希科等. 过套管地层电阻率测井在砂岩油田应用的试验研究[J]. 测井技术. 2004, 28(1): 58-63.
    [146] 刘胜建. 过套管电阻率测井在垦东六断块油藏动态监测中的应用[J]. 测井技术. 2003, 27(2): 162-168.
    [147] 韩清忠, 雍世和. 用常规电阻率测井资料确定水淹层的剩余油饱和度[J]. 测井技术. 1996, 20(5): 351-356.
    [148] 彭琥. 20 世纪 90 年代核测井进展[J]. 测井技术. 2001, 25(1): 5-11.
    [149] 邵维志, 丁娱娇. MRIL-P 型核磁共振测井技术及应用[J]. 测井技术. 2002, 26(3): 205-212.
    [150] 邵维志, 梁巧峰, 丁娱娇等.核磁共振测井评价水淹层方法的研究及应用[J]. 测井技术. 2004, 28(1): 34-41.
    [151] 史秋贤, 冯斌, 王朝安等.核磁共振测井在桩 1 区块底水稠油油藏开发中的应用[J]. 测井技术. 2003, 27 增刊: 23-24.
    [152] 祝勇, 贾孟强. 应用核磁共振测井资料评价疑难储集层[J]. 测井技术. 2005, 29(4): 353-357.
    [153] 李洪奇, 刘洪, 李幼铭. 井间电磁场伪地震波场成像方法[J]. 测井技术. 1999, 23(2): 120-122.
    [154] 曾文冲, 陈序三, 赵文杰. 井间电磁成像测井的应用研究与现场试验[J]. 测井技术. 2000, 24(5): 355-367.
    [155] 高卫国, 谢然红. 冀东油田介电测井实验研究[J]. 测井技术. 2000, 24(2): 83-87.
    [156] 孙玉红, 王建功, 高淑梅等.介电测井在二连地区的应用[J]. 测井技术. 2006, 30(2): 158-162.
    [157] 宫振远, 欧阳华. 高矿化度地层脉冲中子测井的应用效果[J]. 测井技术. 1999, 23(6): 446-449.
    [158] 李宝同. 脉冲中子俘获测井求取饱和度精度研究[J]. 测井技术. 1982, 22增刊: 14-19.
    [159] 宋长伟, 李刚, 郭志强. 用硼中子寿命测井确定低渗透砂岩储层剩余油饱和度[J]. 测井技术. 1999, 23(3): 176-179.
    [160] 崔杰, 赵小青, 付晨东. 碳氧比能谱测井在南六区西块的应用[J]. 测井技术. 2004, 28(5): 430-434.
    [161] 樊玉秀, 沃晓全, 王秀丽等. 碳氧比能谱测井在萨尔图油田的应用[J]. 测井技术. 2006, 30(4): 361-366.
    [162] 王佳平, 万里春, 赵雪梅. 用碳氧比能谱测井和多井解释技术确定剩余油饱和度分布[J]. 测井技术, 2001, 25(6): 456-458.
    [163] 云美厚, 刘国良. 重力测井技术应用于油藏注水动态监测的可行性研究[J]. 石油地球物理勘探, 1997, 32(3): 450-456.
    [164] 云美厚, 蔺景龙, 于舒杰. 重力测井用于注 CO2油藏监测的理论分析[J].测井技术,1998,22(4):241-244
    [165] 张峰, 孙建孟, 孙燕. 脉冲中子伽马能谱测井中探测器响应的数值模拟研究[J]. 测井技术. 2005, 29(4): 316-322.
    [166] 卢云之, 李兴辉, 李林祥. 孤东油田七区中馆 4~6 储层非均质性及剩余油分布规律[J]. 江汉石油学院学报. 2001, 23(4): 22-27.
    [167] 刘一江, 曾大乾, 李占良等. 濮城油田东区沙二下储层沉积微相及剩余油分布特点[J]. 江汉石油学院学报. 2000, 22(4): 48-54.
    [168] 李广超, 刘大猛, 车遥. 双河油田扇三角洲前缘沉积微相特征及剩余油分布[J]. 石油天然气学报. 2006, 28(1): 7-11.
    [169] 李存贵, 薛国刚, 张辉. 文南油田文 33 断块沉积微相特征与水淹规律[J]. 石油勘探与开发. 2003, 30(1): 99-102.
    [170] 窦之林. 孤东油田馆陶组河流相储集层流动单元模型与剩余油分布规律研究[J]. 石油勘探与开发. 2000, 27(6): 50-55.
    [171] 陈烨菲, 彭仕宓, 宋桂茹. 流动单元的井间预测及剩余油分布规律研究[J]. 石油学报. 2003, 24(3): 74-78.
    [172] 张继春, 彭仕宓, 穆立华等. 流动单元四维动态演化仿真模型研究[J]. 石油学报. 2005, 26(2): 69-74.
    [173] 郭康良. 流动单元研究在渤南油田开发中的应用[J]. 石油天然气学报. 2006, 28(2): 45-49.
    [174] 张兆林. 油田开发晚期流动单元划分方法研究-以真武油田真 11 块为例[J]. 江汉石油学院学报. 2004, 26(2): 136-139.
    [175] 王世艳, 邓玉珍, 张海娜. 陆相储集层微型构造研究[J]. 石油勘探与开发. 2000, 27(6): 79-83.
    [176] 邢德敬, 夏保华. 濮城油田东西区沙二下顶面微构造特征与剩余油分布[J]. 江汉石油学院学报. 2002, 24(4): 36-41.
    [177] 王庆, 贾东, 马品刚等. 微幅度构造识别方法及利用浮力开发油田[J]. 石油勘探与开发. 2003, 30(1): 65-68.
    [178] 何琰, 余红, 吴念胜. 微构造对剩余油分布的影响[J]. 西南石油学院学报. 2000, 22(1): 24-29.
    [179] W.J.E.van de Graaff, M.R.Bentley, and T.F.M. Kortekaas. Quantification of Macro-to Megascale reservoir heterogeneity: A Practical approach based on computer maping techniques[J]. SPE25001, 1992.
    [180] N.R.Watts, M.P.Coppold, and J.L.Douglas. Application of reservoir geology to enchanced oil recovery from upper Devonian Nisku Reefs,Alberta[J]. Canada. AAPG Bulletin. 1994,78(1): 78-101.
    [181] S.H.Begg, Alexandra Kay, and E.R.Gustason. Characterization of a Complex Fluvial-Deltaic reservoir for simulation[J]. SPE28398, 1994.
    [182] Claudia Rossini, Fausto Brega and Giuseppe Spotti. An application of combined geostatistical and dynamical simulations for developing a reservoir management strategy: a case history[J]. SPE 26625, 1993.
    [183] S.Campobasso, A.Gavana and L. Villani. Multidisciplinary workflow for oil fields reservoir studies-case history: Meleiha field in western desert, Egypt[J]. SPE 94066, 2005.
    [184] S. V. C. Dronamraju, J. Finol and A. A. Zakaria. Constraining Geological Heterogeneity in Complex Reservoirs:Implications for Stochastic Modeling and Reservoir Management[J]. SPE93853, 2005.
    [185] J.Finol A.Dronamraju, A.A.Zakaria and A.M.Koraini. Combining Geostatistics with Dynamic Modeling to Improve Reservoir Management Strategies: A Case Study from the Balingian Province[J]. SPE93851, 2005.
    [186] M.J. King, Mark Mansfield. Flow Simulation of Geologic Models[J]. SPE 57469, 1999.
    [187] C. D. Jenkins, P.L.Richmond, and D.S.Wolcott. Reservoir Description and Numerical Simulation of Neocomian Gas-Condensate and Oil Reservoirs, Western Siberian Basin, Russia[J]. SPE90595, 2004.
    [188] Lin Y.Hu. History Matching of Object-Based Stochastic Reservoir Models[J]. SPE 81503, 2003.
    [189] Richard Smith, Wade Bard, Jairo Corredor, Joost Herweijer and Simon McGuire. Geostatistical modeling and simulation of a compartmentalized Deltaic sequence, Ceuta Tomoporo field, lake Maracaibo, Venezuela[J]. SPE 69572, 2001.
    [190] 俞启泰. 注水油藏大尺度未波及剩余油的三大富集区[J]. 石油学报. 2000, 21(2): 45-51.
    [191] 俞启泰. 关于剩余油研究的探讨 [J]. 石油勘探与开发. 1997, 24(2): 46-50.
    [192] 俞启泰, 陈素珍. 纹层级非均质储层水淹规律数值模拟研究[J]. 石油学报, 1998, 19(1) : 53- 59.
    [193] 穆龙新. 油藏描述的阶段性及特点[J]. 石油学报, 2000, 21(5) : 103- 110.
    [194] 童宪章. 油井产状和油藏动态分析[M]. 北京: 石油工业出版社, 1981.
    [195] Islam M. R, Faroug Ali S.M. Improving waterflood in oil reservoirs with bottom water[J]. SPE16727, 1987.
    [196] 喻高明, 凌建军, 蒋明煊等. 砂岩底水油藏开采机理及开发策略[J]. 石油学报, 1997, 18(2): 61-65.
    [197] 曹建文, 潘峰, 姚继锋等. 并行油藏模拟软件的实现及在国产高性能计算机上的应用[J].计算机研究与发展. 2002, 39(8): 973-981.
    [198] 宋考平, 王立军, 何鲜等. 单层剩余油分布及动态指标预测动态劈分法[J].石油学报. 2000, 21(6): 122-128.
    [199] 朱九成, 郎兆新, 张丽华. 多尺度油藏数值模拟的渗滤方法[J].石油学报. 1998, 19(2): 49-56.
    [200] 赵国忠, 李保树. 三维三相油藏模拟新解法[J].石油学报. 1995, 16(4): 68-75.
    [201] 熊良金, 张继成, 宋考平. 数值模拟端点拟合技术[J].大庆石油学院学报. 2003, 27(3): 32-35.
    [202] 熊琦华, 王志章, 纪发华. 现代油藏描述技术及其应用[J].石油学报. 1994, 15 增刊: 1-10.
    [203] 靳彦欣, 林承焰, 贺晓燕等. 油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报. 2004, 28(3): 22-27.
    [204] 何鲁平, 陈素珍, 俞启泰. 注水正韵律油层水平井开采剩余油数值模拟研究-以五点注水井网为例[J]. 石油勘探与开发. 1996, 23(1): 47-52.
    [205] 韩军, 侯君, 薛宗浩等. 葡萄花油田高含水期开发技术政策界限研究[J]. 西安石油大学学报. 2004, 19(1): 44-50.
    [206] 吴家文, 王家春, 刘剑等. 基于剩余油分布的分层注水方案优选[J]. 大庆石油学院学报. 2006, 30(4): 12-17.
    [207] 贺风云, 徐显军, 金春梅等. 朝 45 区块剩余油分布及挖潜效果预测[J]. 大庆石油学院学报. 2004, 28(4): 30-34.
    [208] 殷代印, 蒲辉, 吴应湘. 低渗透裂缝油藏渗吸法采油数值模拟理论研究[J]. 水动力学研究与进展. 2004, 19(4): 440-446.
    [209] 孙喜新. 埕北 11 油藏精细动态描述研究[J]. 石油勘探与开发. 2003, 30(5): 62-65.
    [210] 宋洪才, 康少东, 褚英鑫等. 胜利油田桩 52 块油藏优化调整措施的效果预测[J]. 大庆石油学院学报. 1999, 23(2): 17-21.
    [211] 姜汉桥, 谷建伟, 陈月明等. 剩余油分布规律的精细数值模拟[J]. 石油大学学报. 1999, 23(5): 31-35.
    [212] 王新芳, 刘德华,刘三威等. 文东油田文 13 北块油藏数值模拟研究[J]. 江汉石油学院学报. 2001, 23(2): 18-22.
    [213] 刘国旗, 高淑娟, 赵爱武等.濮城 Es2 下油藏剩余油描述及挖潜研究[J]. 江汉石油学院学报. 2001, 23 增刊: 81-83.
    [214] 喻高明,凌建军, 胡望水等. 胡 3 块严重非均质极复杂断块油藏数值模拟研究[J]. 江汉石油学院学报. 2004, 26(3): 111-114.
    [215] 黄鹂, 喻高明, 凌建军等. 胡 12 块严重非均质极复杂断块油藏数值模拟研究[J]. 江汉石油学院学报. 2002, 24(4): 55-58.
    [216] 赵军玲, 陈松潜, 翟中军等. 卫城油田卫 22 块剩余油挖潜技术研究[J]. 石油天然气学报. 2005, 27(5): 776-779.
    [217] 熊良金, 马春生, 樊继宗等. 文留油田西部沙三上 5-8深层低渗油藏精细描述与挖潜技术研究[J]. 江汉石油学院学报. 2003, 25(3): 80-83.
    [218] 刘秋杰. 文南油田文95断块区剩余油分布研究[J]. 石油勘探与开发. 2002,29(2): 100-103.
    [219] 马远乐, 刘悦强, 吕屏. 稠油热采模拟的并行计算软件[J].清华大学学报. 2002, 42(12): 1612-1615.
    [220] 白宝君, 唐孝芬, 李宇乡. 区块整体调剖优化设计技术研究[J]. 石油勘探与开发. 2000, 27(3): 60-66.
    [221] 马远乐, 赵刚, 董玉杰. 油藏地质模型数据体粗化技术[J].清华大学学报. 2000, 40(12): 37-39.
    [222] 石占中, 张一伟, 熊琦华等. 大港油田东开发区剩余油形成与分布的主控因素[J].石油学报. 2005, 26(1): 79-84.
    [223] 王毅忠, 袁士义, 宋新民等. 大港油田枣 35 块火成岩裂缝性稠油油藏采油机理数值模拟研究[J].石油勘探与开发. 2004, 31(4): 105-108.
    [224] 窦松江, 周假玺. 复杂断块油藏剩余油分布及配套挖潜对策[J].石油勘探与开发. 2003, 30(5): 90-94.
    [225] 荣娜, 崔小雷, 于会利等. 精细油藏描述技术在胜坨油田开发中的应用[J]. 新疆地质. 2005, 23(2): 187-190.
    [226] 杨少春, 陆诗阔. 胜坨油田二区三角洲砂岩油藏井间储层参数预测[J]. 地质与勘探. 2000, 36(4): 60-64.
    [227] 高博禹, 彭士宓, 黄述旺. 胜坨油田二区沙二段 3 砂层组分阶段油藏数值模拟[J]. 石油勘探与开发. 2004, 31(6): 82-85.
    [228] 柯光明, 郑荣才, 高红灿. 胜坨油田一区沙河街组二段 1~3 砂组高分辨率层序地层学[J]. 成都理工大学学报. 2004, 31(2): 139-148.
    [229] 邓玉珍, 徐守余. 三角洲储层渗流参数动态模型研究-以胜坨油田二区下第三系沙二段 83小层为例[J]. 石油学报. 2003, 24(2): 61-65.
    [230] 孙梦茹, 刘文业. 河流三角洲储层油藏动态模型和剩余油分布[M]. 北京:石油工业出版社, 2004.
    [231] 孙孟茹, 高树新. 胜坨油田二区沉积微相特征与剩余油分布[J]. 石油大学学报. 2003, 27(3): 26-32.
    [232] 冯建伟, 杨少春. 胜坨油田二区东三段沉积微相研究. 西安石油大学学报[J]. 2005, 20(2): 11-19.
    [233] 宋万超, 孙焕泉, 孙国等. 油藏开发动力地质作用-以胜坨油田二区为例[J]. 石油学报. 2002, 23(3): 52-58.
    [234] 王居峰. 济阳坳陷东营凹陷古近系沙河街组沉积相[J]. 古地理学报. 2005, 7(1): 45-59.
    [235] 段昌旭, 冯永泉等. 胜坨沙二段多层断块砂岩油藏[M]. 北京:石油工业出版社, 1997.
    [236] 葛云龙, 逯径铁, 廖保方等. 辫状河相储集层地质模型-“泛连通体”[J]. 石油勘探与开发. 1998, 25(5): 77-79.
    [237] 郭齐军, 焦守铨. 高尚堡油田馆陶组辫状河沉积模式[J]. 地球科学. 1997, 22(5): 77-79.
    [238] 李振泉, 郑荣才. 胜坨油田胜一区沙二段上部高分辨率层序结构分析和叠加样式研究[J]. 石油勘探与开发. 2003, 30(4): 47-51.
    [239] 张琴, 朱筱敏, 钟大康等. 山东东营凹陷古近系碎屑岩储层特征及控制因素[J]. 古地理学报. 2004, 6(4): 493-503.
    [240] 姜在兴. 沉积学[M]. 东营: 石油大学(华东)出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700