用户名: 密码: 验证码:
飞机结构的腐蚀损伤及其对寿命的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀损伤严重地影响着飞机结构的安全性。本论文对飞机铝合金结构的腐蚀损伤及腐蚀对结构寿命的影响从试验和理论角度进行了深入的研究。以实验为基础,对腐蚀损伤形貌进行归类,提出腐蚀损伤的评价指标,系统研究了飞机铝合金结构中广泛存在的坑蚀、剥蚀及腐蚀疲劳损伤,并建立了相关的数学评价模型。给出了一整套的飞机结构腐蚀损伤分析方法及寿命评估技术,力图为腐蚀环境下服役的老龄飞机结构定寿、延寿工作提供尽可能多的技术支持。
     从实验角度上来说,首先对LY12CZ铝合金在实验室环境下进行了预腐蚀—疲劳加载试验。在进行预腐蚀试验时,分别设置了三组不同的腐蚀时间和腐蚀温度。对试验件的腐蚀损伤形貌及疲劳断口利用光学显微镜和扫描电镜进行了观测及拍照。试验结果表明:随着腐蚀温度的升高及腐蚀时间的延长,腐蚀坑深度和腐蚀坑表面积都逐渐加大,相邻腐蚀坑相互交错形成更大更深的腐蚀坑,而且伴随着试件表面剥蚀损伤的产生。经过预腐蚀后的铝合金试件在进行疲劳加载时,裂纹均起始于腐蚀坑,大多数试件的断裂由一条主裂纹扩展而导致的,只有部分试件观测到多条裂纹的扩展。在试验件的中央横截面部位,应力集中程度是最严重的,但是在中央部位断裂的试验件并不是很多,而在靠近腐蚀区域和未腐蚀区域交界的地方发生断裂的试验件较多。腐蚀缩短了裂纹的起始阶段,使试验件疲劳寿命降低1.25到2.38个因子。
     其次,对LY12CZ含紧固孔结构件腐蚀疲劳裂纹扩展规律进行了试验研究。将含中心通孔的板状试验件在环境条件分别为空气和3.5%NaCl腐蚀溶液中进行疲劳加载。试验表明:腐蚀液中的疲劳裂纹扩展速率大于空气中的扩展速率。频率对腐蚀疲劳裂纹扩展速率有一定的影响,低的加载频率导致较高的裂纹扩展速率。3.5%NaCl腐蚀溶液中的疲劳裂纹扩展速率大于空气中,但是相差较小,这可能是由于腐蚀疲劳过程进行时间太短,从而造成在试验过程中,腐蚀作用对疲劳过程的贡献不大。
     从理论角度上来说
     (1)提出遭受腐蚀损伤铝合金结构的疲劳性能评价指标是:腐蚀损伤平均深度和表面腐蚀损伤度。讨论了腐蚀损伤形态对疲劳寿命的影响,从腐蚀损伤平均深度和腐蚀损伤度两个方面可以来确定受腐蚀损伤飞机构件的危险部位。
     (2)提出利用AB参数可以方便地对蚀坑形貌进行归类。通过对腐蚀损伤形貌的试验观测,引入AB参数来描述腐蚀损伤形貌的演化。随着腐蚀作用时间(温度)的增长,AB值逐渐变大并趋向于0.7854(蚀坑呈圆形或椭圆形),不规则的蚀坑逐渐形成发展成面积,深度更大的圆形(椭圆)蚀坑。
     (3)建立了腐蚀损伤演化的数学模型。对表面腐蚀损伤度数据进行了统计分析处理,指出不同腐蚀温度和不同腐蚀时间下试验件损伤度的概率分布均符合Logistic分布。利用此概率模型可以方便地预测不同服役环境下腐蚀损伤。综合利用电化学、概率统计以及随机过程方法建立了铝合金结构腐蚀损伤演化的数学模型并利用试验数据进行验证。
     (4)提出遭受坑蚀及剥蚀损伤结构件的寿命及剩余强度预测方法。以试验测量数据及腐蚀损伤形貌为基础,应用ANSYS分析软件,采用单元生死方法,建立遭受腐蚀损伤试验件的三维有限元模型,分析蚀坑的局部应力情况,考察蚀坑对试验件应力集中的影响程度。并将腐蚀坑简化为半椭圆形三维表面裂纹形式,采用AFGROW软件进行寿命估算及剩余强度研究,并利用试验数据进行了验证,预测精度良好。
     (5)提出铝合金结构件腐蚀疲劳裂纹虚拟扩展技术。首次对紧固孔结构件腐蚀疲劳裂纹的虚拟扩展技术进行了研究,提供了随机过程方法和AFGROW模拟两种模拟技术。给定循环数下的裂纹长度值符合对数正态分布,这一结论无论在腐蚀或者非腐蚀环境下,取正态随机过程或者对数正态随机过程时均是成立的。
     (6)提出沿海使用飞机结构腐蚀一寿命管理方法。利用我国在役飞机机体腐蚀损伤调研所获取的实际信息,计算了实际使用中腐蚀损伤可允许程度的限定,对坑蚀和剥蚀两种腐蚀形式进行了详细的讨论分析,获得了易于工程应用的简洁的图表。最后提出了腐蚀环境下服役的飞机铝合金结构全寿命预测的模型框架。
Corrosion, in its various forms, was a serious issue to be considered in its effects on aircraft structural safety. The following dissertation described the experimental and theoretical study on the corrosion damage and fatigue life of aluminum alloy structure. Based on the experiments, morphological classification on corrosion damage of aluminum alloy was studied. The metric for evaluating the corrosion damage grade was proposed. The pitting corrosion, exfoliation corrosion and corrosion fatigue which were the most usually occurred on aircraft structures were studied systemically. The primary mathematical relationship of the three kinds of damages and the degradation of fatigue life were built. The methods of analyzing the corrosion damage of aircraft structure and the technique of evaluating the life were developed. The dissertation will provide some technical support to life assessment and life extension of aging aircraft structures.
     Two experiments were conducted in this dissertation. Firstly, LY12CZ aluminum alloy specimens were pre-corroded under the conditions of three different test temperatures and exposure durations. After corrosion exposure, fatigue tests were performed. Scanning electron microscopy and optical microscope analyses on corrosion damage were carried out. Experimental results showed that, with the lengthening in corrosion exposure duration and the corrosion temperature going up, the dimension of corrosion pits became larger and little corrosion pits were congregated together, and the corrosion damage expanded along the specimen surface and cross section directions. The near corrosion pits congregated together and the exfoliation corrosion were observed. It can be found that all of the cracks nucleated from corrosion pits. In general, there were multiple fatigue cracks for almost every specimen, but most fatigue failures were governed by a dominant pit. In the middle of the specimens, the stress concentration was the most serious, but the fatigue crack initiating seldom occurred at this place and fracture usually occurred at the borderline of corrosion and non-corrosion. The artificially produced corrosion damage considerably reduced the fatigue life of laboratory specimens because of shortening the crack nucleation stage and the corrosion damage decreased the fatigue lives by a factor of about 1.25 to 2.38.
     Secondly, The fatigue crack propagation behavior of LY12CZ aluminum alloy specimen with central hole of fastener has been investigated in air and 3.5%NaCl solution. Experimental results showed that, the corrosion fatigue crack growth rate decreased with the increasing of the loading frequencies, and in corrosive environment, the crack growth rate was slightly, larger than in air. In 3.5 %NaCl, the crack growth rate was slightly larger than in air and the reason maybe rest on the duration of corrosion fatigue test was too short, and this led to the role of corrosion process was not significant.
     Based on the experiments, some mathematical models were proposed as follows,
     (1) The image analyses indicated that the two key parameters (the depth of corrosion pit and the surface corrosion damage ratio) were the metrics for evaluating the corrosion damage grade. The effect of corrosion damage on fatigue lives was discussed. Using the metrics can fix on the critical place of the aircraft structure subjected to corrosion damage.
     (2) The AB (Area-Box) parameter was proposed to conveniently classify the configuration of corrosion pits. Based on the experimental observation of corrosion pits configuration, the proposed AB parameter can describe the evolution rhythm of corrosion pit. With the lengthening in corrosion exposure duration and rise of corrosion temperature, AB value tend to 0.7854 (the corrosion pit presented rotundity or ellipse) and the irregular corrosion pits gradually developed to lager circular or elliptical corrosion pits.
     (3) The mathematical model of corrosion damage evolution was proposed. Statistical analysis had been performed to draw the conclusion that the Logistic distribution was acceptable for the data sets of the corrosion damage ratio. Using the probability model of corrosion damage evolution, we can forecast corrosion damage in varied service environments. Combing the electrochemistry, probabilistic analysis and stochastic processes method, the mathematic model of corrosion damage evolution was built and the predicted results were in good agreement with experimental results.
     (4) The prediction method of residual strength and lives of corroded structure was presented. Based on the experimental observation, using the element life-death technique in ANSYS software, the 3D finite element model of corroded structure was built and the stress distribution was analyzed. A simple crack growth calculation method using AFGROW software successfully predicted the fatigue lives of the artificially corroded specimens using the depth and width of the corrosion pits as the initial crack size. The simulation results using AFGROW were in good agreement with the experimental data.
     (5) The virtual corrosion fatigue crack propagation tests on aluminum structure were developed. The virtual corrosion fatigue crack propagation of fastening hole structure were investigated. The stochastic processes method and AFGROW simulation method were presented. The probabilistic model of crack length for a given number of cycles was well approximated by a lognormal distribution. This was true for either normal or lognormal stochastic processes and in corrosive or non-corrosive environment.
     (6) The corrosion-life management method of aircraft structure served in inshore circumstance was proposed. Based on the practical corrosion damage information derived from the investigation on the served aircraft structures, the corrosion damage tolerance of aircraft structure was investigated. The pitting corrosion and exfoliation corrosion were studied particularly and the terse engineering schematics were provided. At last, the holistic life model of aging aircraft made of aluminum alloys served in corrosive environment was proposed schematically.
引文
[1] 孙跃,胡津,金属腐蚀与控制,哈尔滨:哈尔滨工业大学出版社,2003,1-2
    [2] 陈群志,腐蚀环境下飞机结构日历寿命技术体系研究,博士学位论文,北京航空航天大学,1999
    [3] 廖灵洪,老龄飞机腐蚀预防和控制,全面腐蚀控制,2005,19(1):20-23
    [4] 鲁自界,LYl2CZ和7075-T6铝合金在氯化钠溶液中的腐蚀疲劳裂纹扩展研究,博士学位论文,中国科学院金属研究所,2001
    [5] 孙祚东,军用飞机典型铝合金结构腐蚀损伤规律及加速腐蚀试验方法研究,硕士学位论文,哈尔滨工程大学,2005
    [6] 穆志韬,海军飞机结构腐蚀损伤规律及使用寿命研究,博士学位论文,北京航空航天大学,2001
    [7] 杨晓华,腐蚀累积损伤理论研究与飞机结构日历寿命分析,博士学位论文,南京航空航天大学,2002
    [8] 刘祖铭,飞机结构腐蚀实例分析,北京:航空工业出版社,2001
    [9] 李玉海,腐蚀条件下飞机结构寿命体系评定技术研究,博士学位论文,北京航空航天大学,2001
    [10] Kermanidis A1.Th, Petroyiannis P.V, Pantelakis Sp.G, Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy, Theoretical and Applied Fracture Mechanics, 2005, 43 (2): 121-132
    [11] Harlow D.G, Wei R. P, A Probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles, Engineering Fracture Mechanics, 1998, 59(3):305~325
    [12] Chen, G. S., Liao, Pitting corrosion and fatigue crack nucleation, effects of the environment on the initiation of crack growth, ASTM STP 1298, USA: American Society for Testing and Materials, 1997
    [13] DuQuesnay D.L., Underhill RR., H.J. Britt, Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, International Journal of Fatigue, 2003, 25 (3) 371-377
    [14] 李鸿鹏,李锋,马康民等,LYl2CZ铝合金腐蚀疲劳研究进展,腐蚀科学与防护技术,2005,17(3):175-177
    [15] 韩恩厚,腐蚀疲劳裂纹扩展规律与机理,博士学位论文,东北工学院 1990
    [16] 蒋祖国,飞机结构腐蚀疲劳,北京:航空工业出版社,1993
    [17] 王荣,金属材料的腐蚀疲劳,西安:西北工业大学出版社,2001
    [18] Du M. L, Chiang F. P, Kagwade S. V, Damage oral 2024 alloy due to sequential exposure to fatigue, corrosion and fatigue, International Journal of Fatigue, 1998, 20(10) :743-748
    [19] Kim Y. H, Development of fatigue and crack propagation design and analysis methodology in a corrosive environment for typical mechanically-fastened joints, Volume Ⅱ-Phase Ⅱ documentation, Report No.NADC-83126-60 Vol. Ⅱ, USA, 1983
    [20] 航空航天部〈AFFD〉系统办公室,美国空军耐久性设计手册背景材料,北京:航空航天部〈AFFD〉系统办公室,1989
    [21] 张有宏,吕国志,李仲等,铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究,航空学报,2007年第2期。
    [22] Stoltz R.E, Mechanisms of corrosion fatigue crack propagation in AL-Zn-Mg alloys, Metall. Tran, 1972, 13(6): 2431-2441
    [23] 徐惠芳,LC铝合金腐蚀疲劳剂应力腐蚀开裂特性时效制度影响的研究,硕士学位论文,西北工业大学,1984
    [24] 陈跃良,腐蚀对现役飞机结构剩余强度的影响,博士学位论文,西北工业大学,2004
    [25] 殷建新,宋智桃,飞机结构腐蚀与使用寿命研究,海军航空工程学院学报,2005,20(6):623—626
    [26] 刘祖铭,曹定国,我军飞机的腐蚀现状及对策,飞机腐蚀专题讨论会文集,北京:中国航空学会航空维修工程专业分会,1994
    [27] 郑修麟,王荣,腐蚀疲劳研究现状,飞机腐蚀专题讨论会文集,北京:中国航空学会航空维修工程专业分会,1994
    [28] 钟栋梁,张楠,我军飞机实施腐蚀控制的途径与方法探讨,飞机腐蚀专题讨论会文集,北京:中国航空学会航空维修工程专业分会,1994
    [29] 化工部化工机械研究院主编,腐蚀与防护手册—腐蚀理论试验及监测,北京:化学工业出版社,1989
    [30] 化工部化工机械研究院主编,腐蚀与防护手册—耐蚀金属材料及防护技术,北京:化学工业出版社,1990
    [31] 张栋,飞机结构的腐蚀和腐蚀控制,北京:国防工业出版社,1993
    [32] 金石,飞机结构腐蚀疲劳,北京:航空工业出版社,1992
    [33] Liao M, Renaud G, Bellinger N. C, Effects of exfoliation corrosion on static and fatigue behavior of aircraft materials and structures - testing and modeling studies, Proceedings (CD-ROM) of the 8th joint NASA/FAA/DoD conference on aging aircraft, USA (CA): Palm Springs, 2005
    [34] Liao M, Bellinger N.C, Komorowski J.P, Modeling the effects of prior exfoliation corrosion on fatigue life of aircraft wing skins, International Journal of Fatigue, 2003, 25(9): 1059-67
    [35]Liao M, Renaud G, Backman-D, Modeling of prior exfoliation corrosion in aircraft wing skins, In: Proceeding of the 2nd international conference on environment induced cracking of metals, Banff, Alta., Canada, 2004
    
    [36]Liao M, Renaud G, Bellinger N.C, Fatigue modeling for aircraft structures containing natural exfoliation corrosion, International Journal of Fatigue, 2007. 29 (4):677-686
    
    [37]Worsfold M, The effect of corrosion on the structural integrity of commercial aircraft structure, In: The NATO applied vehicle technology panel organized a workshop with the title "Fatigue in the Presence of Corrosion" held 7-8 of October in Corfu, Greece; 1999
    
    [38]Chubb J.P, Morad T.A, Hockenhull B.S, The effect of exfoliation corrosion on the fatigue behavior of structural aluminum alloys, In: Atluri SN, Sampath SG, Tong P, editors, Structural integrity of aging airplanes, Springer-Verlag, 1991, 87-97
    
    [39]Greer J, Brown M, Fawaz S, Fatigue and residual strength effects of exfoliation corrosion damage, In: Proceedings (CD-ROM) of the 8th joint NASA/FAA/DoD conference on aging aircraft, USA (CA):Palm Springs, 2005
    
    [40] Chubb J.P, Morad T.A, B.S. Hockenhull, The effect of exfoliation corrosion on the fatigue behavior of structural aluminum alloys, Structural Integrity of Ageing Airplanes, Berlin: Springer-Verlag, 1991, p.87
    
    [41] Joachim Wloka, Theo Hack, Sannakaisa Virtanen, Influence of temper and surface condition on the exfoliation behaviour of high strengthAl-Zn-Mg-Cu alloys, Corrosion Science, 2007, 49 (3): 1437-1449
    
    [42] Sharp P. K, Mills T, Russo S, Effects of exfoliation corrosion on the fatigue life of two high-strength aluminum alloys, In: Proceedings (CD-ROM) of the 4th joint DoD/FAA/NASA conference on Aging Aircraft, St. Louis, MO, USA, 2000
    
    [43] Mills T, Honeycutt K, Brooks C. L, Demonstration of an holistic structural integrity process using corrosion/fatigue interactions from laboratory experiments and filed experience, In: Proceedings of the 6th international aircraft corrosion workshop, Solomons, MD, USA, 2004
    
    [44]DuQuesnay D.L, Underhill P.R, Britt HJ, Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading, International Journal of Fatigue, 2003, 25(5):371-7
    
    [45]Kumar B, Widener C, Jahn A, Review of the Applicability of FSW Processing to Aircraft Applications AIAA Paper 2005-2000; 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, TX, USA, 2005, pp. 1-18
    
    [46]Kermanidis Al.Th, Stamatelos D.G, Labeas G.N, Tensile behavior of corroded and hydrogen embrittled 2024 T351 aluminum alloy specimen, Theoretical and Applied Fracture Mechanics, 2006, 45(2): 148-158
    [47] Katsube N, Yu L, Koch G. H, Paul C. A, Development of a mathematical model to predict cracking in corroded aircraft structures, AFRL-VA-W-PTR-2004-3109, 1998
    [48] 柴志刚,陈荣,张栋,1420合金预腐蚀疲劳性能研究,装备环境工程,2005,2(2):1-5
    [49] 陈跃良,于继真,某型飞机结构腐蚀失效分析,飞机设计,2002,第3期:12—16
    [50] 王斌团,结构疲劳日历寿命及其概率研究,博士学位论文,西北工业大学,2000
    [51] Malki B, Baroux B, Computer simulation of the corrosion pit growth, Corrosion Science, 2005, 47(1):171-182
    [52] Hong H.P, Application of the stochastic process to pitting corrosion, Corrosion, 1999,55(l): 10~16
    [53] Hoeppner D.W, Corrosion fatigue considerations in materials selections and engineering design, in Corrosion Fatigue: Chemistry, Mechanics, and Microstructure, Devereux O, McEvily. A.J, Staehle R.W, Eds., NACE-2, USA: National Association of Corrosion Engineers, 1972:3~11
    [54] Evan J, Dolley J, Chemically short-crack behavior of the 7075-T6 aluminum alloy, Ph D Thesis, Lehigh University, May 1999
    [55] Sankaran K. K, Perez R. and K.V. Jata, Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies, Materials Science and Engineering A, 2001, 297 (1): 223-229
    [56] D.L. DuQuesnay, RR. Underhill, H.J. Britt, Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, International Journal of Fatigue, 2003, 25(5):371-377
    [57] Groner D.J, Nieser D.E, U.S. Air force aging aircraft corrosion. Can Aeronaut Space J, 1996, 42(2):63-7
    [58] Wei R.P, Harlow D.G, Corrosion and corrosion fatigue of aluminum alloys—an aging aircraft issue, In: Wu XR, Wang ZG, editors, Proceedings of the Seventh International Fatigue Congress, vol.3, 1999, p. 2197-204
    [59] Pao P.S, Gill P.S, Feng C.R, On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy, Scripta Materialia, 2000, 43(5):391-6
    [60] Bray G.H, Bucci R.J, Colvin E.L, Effect of prior corrosion on the S/N fatigue performance of aluminum sheet alloys 2024-T3 and 2524-T3, In: Van Der Sluys WA, Piascik RS, Zawieruca R, editors. Effects of environment on the initiation of crack growth, ASTM STP 1298, West Conshohocken, PA, USA: American Society for Testing and Materials; 1997, p. 89-101
    [61] Pao P. S, Gill S. J, Sankaran K. K, Corrosion-fatigue crack growth in friction stir welded A1 7050, Scripta Materialia, 2002,45(5):605-612
    [62] Kimberli J, David W. H, Prior corrosion and fatigue of 2024-T3 aluminum alloy Corrosion Science, 2006, 48(10):3109-3122
    [63] Rokhlin S.I, Kim J.Y, Nagy H, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Engineering Fracture Mechanics, 1999, 62(4-5):425-44
    [64] Medved J.J, Breton M, Irving P.E, Corrosion pit size distributions and fatigue lives—a study of the EIFS technique for fatigue design in the presence of corrosion, International Journal of Fatigue, 2004, 26(1):71-80
    [65] Chen GS, Lia0 C.M, Wan K.C, Pitting corrosion and fatigue crack nucleation, In: Van Der Sluys WA, Piascik RS, Zawieruca R, editors, Effects of environment on the initiation of crack growth, ASTM STP 1298. West Conshohocken, PA, USA: American Society for Testing and Materials, 1997. p. 18-33
    [66] Du M.L, Chiang F.P, Kagwade S.V, Influence of corrosion on the fatigue properties of A1 7075-T6, Journal of Testing and Evaluation, 1998; 26(3):260-8
    [67] Dolley E.J, Lee B, Wei R.R The effect of pitting corrosion on fatigue life, Fatigue Fracture Engineering Material Structures, 2000, 23(7):555-60
    [68] Du M.L, Chiang F.P, Kagwade S.V, Damage of A1 2024 alloy due to sequential exposure to fatigue, corrosion and fatigue, International Journal of Fatigue, 1998, 20(10):743-8
    [69] Pao P.S, Feng C.R, Gill S.J, Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050, Corrosion, 2000, 56(10): 1022-31
    [70] 肖珩,李久青,镁铝合金点蚀试验数据的统计分析,北京科技大学学报,1994,第16卷 增刊
    [71] 胡艳玲,李荻,郭宝兰,LYl2CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨,航空学报,2000,第21卷 增刊
    [72] 郁大照,陈跃良,段成美,基于神经网络的飞机结构腐蚀损伤统计研究 中国腐蚀与防护学报,2006,26(1):19—21
    [73] 王萍,马群,N80钢点蚀实验数据的统计分析,腐蚀科学与防护技术,2006,18(3):233—234
    [74] 贺崇武,蔡新锁,李素强,飞机典型连接件腐蚀及腐蚀疲劳试验研究,腐蚀与防护,2006,27(3):118—121
    [75] 杨晓华,姚卫星,陈跃良,日历腐蚀环境下LYl2CZ铝合金力学性能研究,机械强度,2003,25(2):227~228
    [76] 陈跃良,谭晓明,段成美,孔蚀对飞机结构静强度影响规律研究,机械强度,2004,26(S):070~073
    [77] 陈跃良,段成美,金平,飞机结构局部腐蚀容限研究,强度与环境,2000,第2期:60—63
    [78] 贺小帆,刘文埏,王忠波等,疲劳寿命预腐蚀影响系数曲线通用性研究,机械强度,2004,26(1):101—104
    [79] 王忠波,刘文珽,蒋冬滨等,腐蚀条件下疲劳寿命评定的名义应力法,北京航空航天大学学报,2003,29(2):161-164
    [80] 贺小帆,刘文珽,王忠波等,疲劳寿命预腐蚀影响系数通用性研究,机械强度,2004,26(1):101-104
    [81] 贺小帆,刘文埏,向锦武,C-T曲线通用性分析和试验研究,航空学报,2005,26(2):184-189
    [82] 赵海军,金平,柳文林等,预腐蚀疲劳寿命影响系数模型研究,腐绌科学与防护技术,2006,18(4):265—267
    [83] 帅健,腐蚀管线的剩余寿命预测,石油大学学报(自然科学版),2003,27(4):91—93
    [84] 蒋晓东,黄雪坤,王志文等,概率统计在压力管道腐蚀剩余寿命评估中的应用,石油化工设备,1996,25(3):20-24
    [85] 赵新伟,罗金恒,路民旭,含腐蚀缺陷管道剩余强度的有限元法分析,油气储运,2001,20(3):18-21
    [86] 张斌,郭万林,在役管线腐蚀损伤检测与预测预防,腐蚀科学与防护技术,2005,17(3):187—189
    [87] Simpson D.L, Brooks C.L, Tailoring the structural integrity process to meet the challenges of aging aircraft, International Journal of Fatigue, 1999(21):S1~S14
    [88] 贾斯克C.E等著, 吴荫顺等译,海洋工程中的腐蚀疲劳,北京:冶金工业出版社,1989
    [89] Sergei A. S, Location of the fracture process zone for hydrogen-induced corrosion fatigue crack propagation, Scripta Materialia, 2002, 47(5):301-305
    [90] Shipilov S.A, Mechanisms for corrosion fatigue crack propagation, Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(3):243-259
    [91] Shipilov, S.A, Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions, Corrosion, 1998, 54(1):29-39
    [92] Sivaprasada S, Tarafdera S, Ranganathb V.R, Corrosion fatigue crack growth behaviour of naval steels, Corrosion Science, 2006, 48(8): 1996-2013
    [93] Ruschau J.J, Complete fatigue crack growth rate curves for aluminum alloy 2124-T851 including typical crack growth models, Report No. AD-Ao81653, AFML-TR-78-155, 1978, p. 36
    [94] Petroyiannis RV, Kermanidis A1.Th, Akid R, Analysis of the effects of exfoliation corrosion on the fatigue behavior of the 2024-T351 aluminium alloy using the fatigue damage map, International Journal of Fatigue, 2005, 27(7):817-827
    [95] Kujawski D, A new (△K+Kmax)0.5 driving force parameter for crack growth in aluminum alloys, International Journal of Fatigue, 2001, 23 (8):733-740
    [96] Sadananda K.K, Vasudevan A. K, Crack tip driving forces and crack growth representation under fatigue, International Journal of Fatigue, 2004, 26(1): 39-47
    [97] Liaw P.K, Logsdon W.A, Fatigue crack growth behavior in Inconel 706 at 297 K and 4.2 K, Acta Metallurgica, 1988, 36(7):1731-1744
    [98] King J.E, Surface damage and near-threshold fatigue crack growth in a Ni-base superalloy in vacuum, Fatigue of Engineering Materials and Structures, 1982, 5(2):177-188
    [99] Atkinson J.D, Yu J, Modeling of corrosion fatigue crack growth plateaux for RPV steels in high temperature water, Nuclear engineering and design, 1998, 184(1): 13-25
    [100] Congleton J, Charles E.A, Review on effect of cyclic loading on environmental assisted cracking of alloy 600 in typical nuclear coolant waters, Corrosion science, 2001, 43(12):2265-2279
    [101] 张波,张正贵,韩恩厚等,LYl2CZ铝合金铆接连接件在3.5%NaCl溶液中的腐蚀疲劳失效行为研究,金属学报,2000,38(8):842—846
    [102] 何建平,陈素晶,袁庆铭等,NaCl电解液薄层下LC4CS铝合金腐蚀疲劳性能, 南京航空航天大学学报,2004,36(4):412—416
    [103] 常红,韩恩厚,王俭秋等,阴极极化对LYl2CZ铝合金腐蚀疲劳寿命的影响,金属学报,2005,41(5):556—560
    [104] 常红,韩恩厚,王俭秋,柯伟,飞机蒙皮涂层对LYl2CZ铝合金腐蚀疲劳寿命的影响,中国腐蚀与防护学报,2006,26(1):34—36
    [105] 沈海军,郭万林,吕国志,飞机谱载下铝合金锪窝孔结构腐蚀疲劳研究,力学学报,2003,35(1):21-25
    [106] 沈海军,高强度铝合金腐蚀疲劳机理与腐蚀疲劳全寿命工程模型,西北工业大学博士论文,2002
    [107] Miedlar P. C, Berens A. P and Gunderson A. USAF damage tolerant design handbook: guidelines for the analysis and design of damage tolerant aircraft structures, AFRL-VA-WP-TR-2003-3002, 2002
    [108] Standard test method for exfoliation corrosion susceptibility in 2××× and 7××× series aluminum alloys (EXCO test), ASTM G34—1 , USA : American Society for Testing and Materials, 2002
    [109] 张有宏,吕国志,陈跃良,LYl2-CZ铝合金预腐蚀及疲劳损伤研究,航空学报,2005,26(6):779—782
    [110] Gruenberg K.M, Craig B.A, Predicting fatigue life of pre-corroded 2024-T3 aluminum, International Journal of Fatigue, 2004, 26(6):629-640
    [111] Jones K, Effect of microstructure on pit-to-crack transition of 7075-T6 aluminum alloy, Ph.D. Thesis, University of Utah, 2004
    [112] Osama M Alyousif, Corrosion and corrosion fatigue of aluminum alloys, Ph.D. Thesis, Lehigh University, 2002
    [113] 张福泽,腐蚀温度对飞机疲劳寿命的影响,航空学报,2004,25(5):473—475
    [114] Melchers R. E, Examples of mathematical modeling of long term general corrosion of structural steels in sea water, Corrosion Engineering, Science and Technology, 2006, 41(1)
    [115] Paik J. K, Lee J. M, Ko M. J, Ultimate shear strength of plate elements with pit corrosion wastage, Thin-Walled Structures, 2004, 42 (8): 1161-1176
    [116] 唐启义,冯明光,实用统计分折及其DPS数据处理系统,北京:科学出版社,2002
    [117] Silva J.W.J, Bustamante A.G, Codaro E.N, Morphological analysis of pits formed on A1 2024-T3 in chloride aqueous solution, Applied Surface Science, 2004, 236(4): 356-365
    [118] Bellinger N.C, Komorowski J.P, Benak T.J, Residual life predictions of corroded fuselage lap joints, International Journal of Fatigue, 2001, 23(1): S349-S356
    [119] Codaro E.N, Nakazato R.Z, Horovistiz A.L, An image processing method for morphology characterization and pitting corrosion evaluation, Materials Science and Engineering A, 2002, 334 (2): 298-306
    [120] Merati A, A study of nucleation of fatigue and fatigue behavior of a aerospace aluminum alloy 2024-T3, International journal of fatigue, 2005, 27(1):33-44
    [121] 陈跃良,吕国志,段成美,服役条件下飞机结构腐蚀损伤概率模型研究,航空学报,2002,23(3):249-251
    [122] Sankaran K.K, Weaver G.E, Corrosion pit to crack transition, AFRL-VA-WP-TR-2003-3010, 2002
    [123] Wei R.P, Harlow D.J, Corrosion enhanced fatigue and MSD, AIAA-2002-1398, 2002
    [124] 张有宏,腐蚀环境下飞机结构的广义全寿命分析模型,硕士学位论文,西北工业大学,2005
    [125] Engelhardt G, Strehblow H.H, The Determination of the shape of developing corrosion pits, Corrosion Science, 1994, 36(10): 1711~1725
    [126] Rajasankar J, Nagesh R.I, A probability-based model for growth of corrosion pits in aluminium alloys, Engineering Fracture Mechanics, 2006, 73 (5):553-570
    [127] Harter J.A, AFGROW users guide and technical manual, AFRL-VA-WP-TR-2002-, September 2002
    [128] Hoeppner D.W, Fatigue Mechanisms, ASTM Special Technical Publication, No.675, 1979, pp.841-852
    [129] Pan Shi, Corrosion fatigue reliability of aging structures, Ph.D. Thesis, Vanderbilt University, 2001
    [130] Paul Nolan Clark, The transition of corrosion pitting to surface fatigue cracks in 2024-T3 aluminum alloy, Ph.D. Thesis, The University of Utah, 2001
    [131] Wei R. P, A model for particle-induced pit growth in aluminum alloys, Scripta Materialia, 2001, 44(11):2647-2652
    [132] ASTM, Corrosion fatigue crack nucleation in Alclad 2024-T3 commercial aircraft skin, effects of the environment on the initiation of crack growth, USA:ASTM STP 1298, 1998
    [133] Wei R.P, Corrosion and corrosion fatigue of airframe materials, DOT/FAA/AR-00/22, 2000.9
    [134] Jones K, Hoeppner D. W, Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading, Corrosion Science, 2005, 47(11):2185-2198
    [135] Lukas P, Kunz L, Small cracks-nucleation, growth and implication to fatigue life, International journal of fatigue, 2003, 25 (5):855~862
    [136] Caton M.J, Predicting fatigue properties of cast aluminum by characterizing small-crack propagation behavior, Ph.D. Thesis, University of Michigan, 2001
    [137] Dolley E.J, Wei R.P, Importance of chemically short-crack-growth on fatigue life, 2nd Joint NASA/FAA/DOD conference on aging aircraft, Williamsburg, VA, 1998, pp.679-687
    [138] Kaynak C, Ankara A, Baker T.J, Effects of short cracks on fatigue life calculations, International journal of fatigue, 1996, 18(1):25-31
    [139] 李仲,陈莉,聂学洲等,腐蚀环境下疲劳裂纹扩展试验,结构强度研究,2005年第1期33-38
    [140] Khatak H.S, in: A.S. Khanna, M.K. Totlani, S.K. Singh (Eds.), Corrosion and its control (CORCON_97), Proceedings, December 3-6, vol. 1, Elsevier, 1997, p. 249.
    [141] Tseng C.M, Liou H.Y, Tsai W.T, The influence of nitrogen content on corrosion fatigue crack growth behavior of duplex stainless steel, Materials Science and Engineering A, 2003, 344 (2): 190
    [142] Tsai W.T, Chou C.H, Corrosion fatigue crack growth behavior of nickel base alloys in sodium thiosulfate solution, Materials Science and Engineering A, 2000, 288(1):5
    [143] Bellinger N. C, Komorowski J. P, Gould R. W, Corrosion pillowing in aircraft fuselage lap joints, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, Austin, Texas, 2005
    [144] Shi P, Mahadevan S, Aircraft structure reliability under corrosion fatigue, 42th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer, Seattle, WA, 2001
    [145] Bogdanoff J.L, Kozin F, A new cumulative damage model, Part 4, ASME J Appl Mech, 1980, 47(1):40-44
    [146] Lin Y.K, Yang J.N, A stochastic theory of fatigue crack propagation, AIAA J 1985, 23(1):117-124
    
    [147]Rocha M.M, Schueller G.I, A probabilistic criterion for evaluating the goodness of fatigue crack growth models, Engineering Fracture Mechanics, 1996, 53 (5):701-731
    
    [148]Koutsourelakis K, Kuntiyawichai K, Schueller G.I, Effect of uncertainties in fatigue life predictions including the crack initiation phase: a cohesive element model, Fortschritt-Berichte VDI Reihe 18(297), VDI Verlag, Dussseldorf, 2005
    
    [149] Wu W. F, Ni C. C, A study of stochastic fatigue crack growth modeling through experimental data, Probabilistic Engineering Mechanics, 2003,18 (1):107
    
    [150]Wu W.F, Ni C.C, Statistical aspects of some fatigue crack growth data, Probabilistic Engineering Mechanics, In Press, Corrected Proof, 2006
    
    [151]Bergner F, Zouhar G, A new approach to the correlation between the coefficient and the exponent in the power law equation of fatigue crack growth, International journal of fatigue, 2000, 22(2):229-239
    
    [152]Wu W.F, Ni C.C, Liou H.Y, Random outcome and stochastic analysis of some fatigue crack growth data, Chin J Mech, 2001,17(2):61-8
    
    [153]Bogdanoff J.L, Kozin F, Probabilistic models of cumulative damage, New York: Wiley, 1985
    
    [154] Yang J.N, Manning SD, Stochastic crack growth analysis methodologies for metallic structures, Engineering Fracture Mechanics, 1990, 37(6): 1105-24
    
    [155]Zhu W.Q, Lin YK, Lei Y, On fatigue crack growth under random loading, Engineering Fracture Mechanics, 1992, 43(1)1-12
    
    [156]Maymon G, Virtual Crack Propagation Tests with application to probability of failure estimation, AIAA 2003-1992, 44th AIAA/ASME/ASCE/AHS structures, structural dynamics, and materials confere 7-10 April 2003, Norfolk, Virginia
    
    [157]Richard C, Andrew M, Erian A, Probabilistic crack growth analysis, 9th Joint NASA/FAA/DoD Conference on Aging Aircraft, Atlanta, GA, March 2006
    
    [158]Ray A, Tangirala S, Phola S, Stochastic modeling of fatigue crack propagation, Applied Mathematical Modeling, 1998, 22(2): 197-204
    
    [159]Wu Y, Burnside O, Efficient, probabilistic structural analysis using and advanced mean value method, In Probabilistic Methods in Civil Engineering, Proceedings of 5th ASCE Specialty Conference, pp. 492-495,1988
    
    [160] Yang J. N, Manning S. D, A simple second order approximation for stochastic crack growth analysis, Engineering Fracture Mechanics, 1996, 53(3):678
    
    [161]Maymon G, Probabilistic crack growth behavior of aluminum 2024-T351 alloy using the 'unified' approach, International journal of fatigue, 2005, 27 (6):828
    [162] Tsutsumi Y, Nishikata A, Tsuru T, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions, Corrosion Science, 2007, 49(3):1394-1407
    [163] Turnbull A, McCartney L.N, Zhou S, Modeling of the evolution of stress corrosion cracks from corrosion pits, Scripta Materialia, 2006, 54(4):575-578
    [164] 飞机设计手册第九分册:载荷、强度和刚度,北京:航空工业出版社,2001
    [165] 林再兴,沿海飞机铝合金结构腐蚀与防护,装备环境工程,2005,12(1)
    [166] 李鹏,飞机铝合金结构件的腐蚀机理与控制,全面腐蚀控制,2006,20(2):36-38
    [167] Brooks C.L, Honeycutt K, Prost-Domasky S, Case studies for corrosion/fatigue life assessments. Fourth Joint NASA/FAA/DoD Conference on Aging Aircraft, St. Louis, Missouri, May 2000
    [168] Brooks C.L, Prost-Domasky S, Honeycutt K, Corrosion is a structural and economic problem, Proceedings, NATO RTO's Workshop Two on Fatigue in the Presence of Corrosion, Oct 1998 (Corfu, Greece), North Atlantic Treaty Organization Research and Technology Organization
    [169] Sharp P.K, Mills T, Clark G, Aircraft Structural Integrity: The Impact of Corrosion, Proceedings, Tenth International Congress of Fracture (ICF 10), 3-7 Dec 2001 (Honolulu, HI), Elsevier Science
    [170] Sharp P.K, Cole G; Clark G, The influence of corrosion on aircraft structural integrity, Proceedings, 21st Congress of the International Council Aeronautical Sciences, Melbourne, Australia, Sept 1998
    [171] Mills T.B, Honeycutt K, Managing damage in the wing: modeling the interaction of exfoliation with static and fatigue loads, Third Joint NASA/FAA/DoD Conference on Aging Aircraft, Albuquerque, New Mexico, 1999
    [172] Wanhill R.J, De H, Luccia J.J, An AGARD-Corrosion Fatigue Cooperative Testing Programme, AGARD—R—695, 1982
    [173] 蒋祖国,腐蚀环境中工程结构的疲劳,飞行试验,1989年第3期
    [174] Cole I.S, Paterson D.A, Ganther W.D, Holistic model for atmospheric corrosion part 1-theoretical framework for production, transportation and deposition of marine salts, Corrosion Engineering, Science and Technology, 2003, 38 (2): 129-134
    [175] Cole I.S, Paterson D.A, Ganther W.D, Holistic model for atmospheric corrosion Part 3—Effect of natural and man made landforms on deposition of marine salts in Australia and south-east Asia, Corrosion Engineering, Science and Technology, 2003, 38 (4):267-274
    [176] Cole I. S, Ganther W. D, Paterson D. A, Holistic model for atmospheric corrosion Part 2 - Experimental measurement of deposition of marine salts in a number of long range studies, Corrosion Engineering, Science and Technology, 2003, 38 (4):259-266
    
    [177] Cole I. S, Chan W. Y, Trinidad G. S, Holistic model for atmospheric corrosion Part 4-Geographic information system for predicting airborne salinity, Corrosion Engineering, Science and Technology, 2004, 39 (1):89-96
    
    [178] Cole I. S, Paterson D. A, Holistic model for atmospheric corrosion Part 5 - Factors controlling deposition of salt aerosol on candles, plates and buildings, Corrosion Engineering, Science and Technology, 2004, 39 (2):125-130
    
    [179]Brooks C.L, Simpson D, Integrating Real Time Age Degradation into the Structural Integrity Process, Proceedings, NATO RTO's Workshop Two on Fatigue in the Presence of Corrosion. Oct 1998 (Corfu, Greece), North Atlantic Treaty Organization Research and Technology Organization, Available http://www.sti.nasa.gov/Pubs/start/star.html
    
    [180] Brooks C.L, Honeycutt K, Prost-Domasky S, Correlation of Life Prediction Methods with Corrosion-Related Tests, Proceedings, U.S. Air Force Aircraft Structural Integrity Program Conference, (San Antonio, TX), Universal Technology Corporation, Dec 1999
    
    [181]Merati A, Tsang J, Khomusi S, "Preliminary Report-Final Test Results for the Determination of Fatigue-Related Features of the Initial Discontinuity State (IDS) of 2024-T3 Aluminum Alloy," Report LTRSMPL-2002-0110, National Research Council of Canada, 2002
    
    [182]Brooks C.L, Prost-Domasky S. Honeycutt K, Determining the Initial Quality State of Materials, Proceedings, U.S. Air Force Aircraft Structural Integrity Program Conference, Dec 1998 (San Antonio, TX), Universal Technology Corporation, 1999
    
    [183] Brooks C.L, Peeler C.D, Honeycutt K, "Predictive Modeling for Corrosion Management: Modeling Fundamentals," Analytical Processes/Engineered Solutions, Inc. 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700