用户名: 密码: 验证码:
大采深条件下徐、奥灰突水机理及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在华北型煤田,随着煤矿开采水平的延伸和开采范围的扩大,太原组下部煤层开采受到底板承压水的威胁越来越严重。如何将这些煤矿从承压水上解放出来,实现煤矿安全、高产、高效,一直是中国煤炭行业的主要攻关课题之一。
     本文以莱芜矿区潘西煤矿为例,对深矿井煤层底板徐、奥灰突水机理进行了研究,并进行了煤层底板突水预测预报,并提出了综合防治水技术途径。首先,在分析潘西煤矿地质、水文地质及以往突水资料的基础上,概括出了影响煤层底板突水的六个因素;其次,对采场煤层底板应力状态及顶、底岩层运动规律做了分析;对大采深条件下的矿井底板破坏深度进行了理论分析、数值模拟及现场实测综合研究,结合大采深矿井实际突水资料,统计归纳出了底板破坏深度经验公式;分析了原始导高带及采动导高带的原因和影响因素及其确定方法;分析了煤层底板的综合阻水性能,并评价了潘西煤矿底板岩层的阻水性能;对采场底板突水动态机理进行了研究,并分析了断裂构造突水机制,包括断层的原始导水性及采动活化突水,从力学角度分析了断层的增展机制,同时指出了煤层底板突水的发生过程与岩石中裂纹的扩展直至破裂的过程有密切关系,指出导水裂隙带以下,某一深度以上存在一个裂纹亚临界扩展区,长期荷载作用导致裂隙的流变扩展、连通,引发滞后突水。第三,利用多源信息复合法建立矿井底板突水预测模型,对整个矿区进行了突水危险性分区,实现了矿井底板突水的预测预报;编制了矿井底板突水预测预报应用软件。最后,在详细分析煤层底板突水机理及矿井水文地质条件的基础上,提出了综合防治水技术途径。该成果对于潘西煤矿安全开采深部煤层起到了指导性作用,并取得了较好的应用效果。
With the extend of mining in depth and scope, the coal bed of lower Taiyuan Formation is more and more threatened by confined water of floor. It is one of mainly tasks that mine in safely, highly yield and efficiency that threaten by confined water in China.
     This paper studied the mechanism of water-inrush and water-inrush prediction on Panxi coalmine. Firstly, based on the analysis of geology and hydrology and water-inrush from coal bed floor date of Panxi coalmine, generalized the "six factor theory" which affect water-inrush from coal bed floor. Secondly, analyzed stress state of the coal bed floor and movement feature of coal bed top layer and floor, comprehensively studied the depth of destroyed floor in deeper level mine with theoretical analysis, numerical simulation and actual measurement in situ. Based on the date of water-inrush of mined in deep level, summarized the empircal formula of the depth of destroyed floor. Analyzed the reason and influential factor and ascertainment method on the depth of original damage zone and mined damage zone. Studied on obstruction performance of coal bed floor and applied it to Panxi coalmine. Studied on dynamic mechanism of water-inrush from coal bed floor and analyzed the mechanism of water-inrush faulted floor, include the water-inrush of original fault and activated fault by mined, another studied the development mechanism of fault with mechanics. At last, used more factors compositing theory, brings forward the model of water-inrush to forecast water-disaster problem in coal mine and applicable software to predicate water-inrush from mining floor is made.
引文
1.白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J],煤炭学报,1997(02):26-27
    2.白峰青,卢兰萍,周保东.带压开采底板突水机制的探讨[J],煤矿安全,1999(05):12-13
    3.毕贤顺.矿井底板突水的数值模拟[J],淮南工业学院学报(自然科学版),1997(01):25-26
    4.卜昌森.矿压作用下地质构造对底板突水的影响[J],山东煤炭科技,1996(01):8-9
    5.曹玉清.采掘工作面底板突水和防治原则的基本理论研究[J],华北地质矿产杂志,1997(03):19-20
    6.长孙学亭.韩城矿区煤层底板奥灰突水浅析[J],陕西煤炭,1988(03):11-13
    7.陈朝阳,李德安,姜峰等.焦作矿区底板突水预报模型[J],煤田地质与勘探,1996(05):20-21
    8.陈刚,王琼,杜福荣.煤层开采对底板突水的影响[J],煤矿安全,2005(04):5-7
    9.陈钢,肖鹏举.城郊矿煤层底板原生裂隙突水注浆封堵方案探讨[J],采矿技术,2003(03):9—11
    10.陈钢.底板突水预测计算公式的推证[J],河北煤炭,1986(04):7-8
    11.陈凯,储丽纹.12#煤层底板岩体地质模型及其对突水的影响[J],水力采煤与管道运输2001(03):13-15
    12.陈佩佩,管恩太,邱显水.我国华北煤矿底板突水危险性评价[J],煤矿开采,2004(02):6-7
    13.陈学星,刘伟韬,张文泉.预测底板突水的专家系统研究[J],煤矿自动化,2001(01):14—16
    14.陈奏生.先前和模式识别方法预测煤矿突水[J],煤炭学报,1992(4):7-9
    15.程明.带压开采工作面底板突水分析与防治[J],河北煤炭,1995(03):4-6
    16.代长青,何廷峻.承压水体上采煤底板断层突水规律的研究[J],安徽理工大学学报(自然科学版),2003(04):29-30
    17.丁严明.朱庄煤矿6煤底板突水原因分析及综合防治[J],煤炭技术,2004(10):19-21
    18.董书宁,王经明,高智联等.煤层底板突水监测系统的开发及应用[J],矿业安全与环保,19980(06):10—11
    19.杜吉树.浅谈矿井瓦斯与底板突水的关系[J],河北煤炭,1987(04):9-10
    20.段水云.煤层底板突水系数计算公式的探讨[J],水文地质工程地质,2003(01):20-21
    21.段同丰.采煤工作面底板突水原因及防治[J],煤炭技术,2005(10):5-6
    22.冯雅男,张纪勇,王文林.采煤工作面预测的专家系统[J],测绘通报,1996(1):35-39
    23.甘圣丰.煤层底板突水后安全回采技术[J],淮南职业技术学院学报,2004(01):35-37
    24.高航,沈光寒,李白英.矿压及水压对煤层底板突水的影响[J],煤田地质与勘探,1987(03):8—10
    25.高航,孙振鹏.煤层底板采动影响的研究[J],山东矿业学院学报,1987(2),89-90
    26.高卫东,渠立权.基于GIS的煤层底板突水预测[J],测绘通报,2003(12):16—17
    27.高延法,于永辛,牛学良.水压在底板突水中的力学作用[J],煤田地质与勘探,1996(06):15-17
    28.管恩太,武强,冀焕军.煤矿底板突水的多源地学信息复合模型研究——以焦作演马庄矿为例[J],工程勘察,2001(04):27-28
    29.桂和荣,龚乃勤,孙本魁.“深部开采底板突水控制论”研究基本思路及方案(续)[J],淮南工业学院学报(自然科学版),1999(04):11
    30.郭惟嘉,刘杨贤.底板突水系数概念及其应用[J],河北煤炭,1989(02):23-25
    31.郭惟嘉,连传杰,刘利民.改革采煤方法防治底板突水[J],煤田地质与勘探,1992(03):12—13
    32.郭惟嘉.地压作用对煤层底板突水的影响[J],采矿与安全工程学报,1991(03):32-33
    33.郭惟嘉.采面底板应力分布及对底板突水的影响[J],中州煤炭,1990(01):13—15
    34.郭维嘉.地质构造应力对底板突水影响初探[J],煤田地质与勘探,1990(01):14-15
    35.郭维嘉.关于底板突水研究中几个向题的探讨[J],煤田地质与勘探,1988(05):26-27
    36.韩进.利用VB开发煤层底板突水预测应用软件[J],焦作工学院学报,2000(02):9-11
    37.黄国明,苏文智.利用神经网络预测煤层底板突水[J],华东地质学院学报,1996(02):10—11
    38.贾茂欣,邢吉亮,张宏军.13701工作面底板突水治理技术探讨[J],江西煤炭科技,2006(03):19-21
    39.江东,王建华,陈佩佩等.基于神经网络的煤矿底板突水预测[J],灾害学,1999(01):16—17
    40.江东,王建华,陈佩佩.GIS软件支持下的煤矿水害预测研究[J],地质灾害与环境保护,1999(01):22-23
    41.姜华,陈崇柱,潘光明.10层煤开采底板突水原因分析中国科协[D],2005年学术年会第20分会场论文集,2005:78-79
    42.靳德武,王延福,马培智.煤层底板突水的动力学分析[J],西安科技学院学报,1997(04):20-21
    43.靳德武,马培智,王延福.华北煤层底板突水的随机—信息模拟及预测[J],煤田地质与勘探,1998(06):25-26
    44.荆自刚,李白英.煤层底板突水机理的初步探讨[J],煤田地质与勘探,1980(02):18—19
    45.孔海陵,陈占清.龙固煤矿采场底板突水因数与突水危害性分析[J],武汉理工大学学报,2006(09):27-29
    46.黎良杰.采场底板突水机理的研究[D],[博士学位论文],1995,78-90
    47.黎良杰,钱呜高,闻全等.底板岩体结构稳定性与底板突水关系的研究[J],中国矿业大学学报,1995(04):9—10
    48.黎良杰,张建军.煤层底板突水的计算预测及应用[J],煤田地质与勘探,1995(04):23-24
    49.黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J],煤田地质与勘探,1997(01):28-29
    50.黎良杰,殷有泉.评价矿井突水危险性的关键层方法[J],力学与实践,1998(03):26-27
    51.李德忠,毛传森,朱乐章.六煤底板突水成因及综合防治技术[J],能源技术与管理,2006(06):7-9
    52.李国臣,管登懋,王茂祥.浅谈矿山压力对底板突水的影响[J],矿山压力与顶板管理,1997(Z1):15-16
    53.李白英.预防矿井底板突水的“下三带”理论及其发展与应用,山东矿业学院学报(自然科学版),1999,18(4):11—18
    54.李加祥.煤层底板“下三带”理论在底板突水研究中的应用[J],河北煤炭,1990(04):6-7
    55.李加祥.用模糊数学预测煤层底板的突水[J],山东科技大学学报(自然科学版),1990(01):56-57
    56.李加祥.通过测量底板最大附加剪应力探求底板突水机理[J],煤田地质与勘探,1988(04):23-24
    57.李加祥,李大普,张文泉等.原始地应力与煤层底板突水的关系[J],岩石力学与工程学报,1999(04):23-24
    58.李丽,程久龙.基于信息融合的矿井底板突水预测[J],煤炭学报,2006(05):5-7
    59.李学军,赵文钦.用物探方法研究煤层底板突水的初步效果[J],河北煤炭,1995(03):17—19
    60.李学军.研究煤层底板突水的形变电阻率法[J],煤田地质与勘探,1990(06):18-19
    61.李金凯.华北型岩溶煤矿床矿坑突水水量预测研究[J],水文地质与工程地质,1985(3):12-13
    62.李庆广等.华北类型煤矿矿坑突水水量预测方法研究[J],煤炭科学技术,1987(3):26-28
    63.刘建平.工作面底板突水的灰色预测[J],煤矿安全,1993(09):23-24
    64.刘伟韬,张文泉,高延法等.底板突水预测专家系统研究[J],山东科技大学学报(自然科学版),1998(04):44-46
    65.刘伟韬,宋传文,张国玉.底板突水的专家评分层次分析预测与评价[J],工程勘察,2002(01):9—11
    66.刘蕴祥.永城矿区煤层底板裂隙灰岩突水特征及防治技术[J],中国煤炭,2004(12):26-27
    67.刘正林.井陉煤田底板突水强度和突水频率趋势预测的研究[J],中国矿业大学学报,1993(02):29-30
    68.潘国营,聂新良,王长文.焦作矿区底板岩溶突水特征与预测[J],焦作工学院学报,1999(02):78-79
    69.庞荫恒,王良.井陉矿区煤层底板突水综合分析[J],煤田地质与勘探,1982(06):29-31
    70.庞迎春.底板注浆加固法防治淮北杨庄矿底板突水[D],中国煤炭资源现状与勘探开发利用技术进展及环境保护——中国地质学会、中国煤炭学会煤炭田地质专业委员会,2004年学术交流会论文 集,2004,106-107
    71.庞迎春.底板加固法防治杨庄矿底板突水[J],煤炭技术,2004(09):27-28
    72.齐广新.带压开采煤层底板突水的预防[J],矿业安全与环保,1995(04):6-8
    73.齐广新.防止回采工作面底板突水技术——保护层带预注浆加固[J],矿业安全与环保,1993(03):32-33
    74.钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J],岩土工程学报,1995(06):11-12
    75.邱秀梅,王连国.煤层底板突水人工神经网络预测[J],山东农业大学学报(自然科学版),2002(01):75-77
    76.任玉娟.16102回采工作面底板突水水源分析[J],煤矿开采,2001(02):19-20
    77.邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究[J],岩土工程学报,2001(01):5-7
    78.山东矿业学院,开滦矿务局,开滦赵各庄矿.改革采煤方法和开采工艺预防突水灾害的研究[D],1991,68-80
    79.施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J],矿山压力与顶板管理,2000(02):15-16
    80.施龙青,韩进.开采煤层底板“四带”划分理论与实践[J],中国矿业大学学报,2005(01):26-27
    81.施龙青.薄隔水层底板突水机理及预测预报左右,[博士学位论文],1999,76-80
    82.沈光寒,李白英,吴戈.矿井特殊开采的理论与实践[M],煤炭工业出版社,1992,56-72
    83.宋景义,王成绪,刘元庆等,论承压水在岩体裂隙中的静力学效应[D],煤科总院西安分院文集(第五集),1991
    84.司海宝,杨为民,吴文金等.煤层底板突水的断裂力学模型[J],北京工业职业技术学院学报,2005(03):36-37
    85.杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[J],岩石力学与工程学报,2002,21(3):457
    86.孙苏南,曹中初,郑世书.用地理信息系统预测煤矿底板突水——以峰峰二矿小青煤采区为例[J],煤田地质与勘探,1996(06):32-33
    87.孙文斌.断层对底板突水的作用影响研究[D],山东科技大学,2006年硕士论文
    88.孙亚军,郑世书,张大顺等.信息拟合方法在焦作东部矿区底板突水预测中的初步应用[J],中州煤炭,1990(02):15—16
    89.谈丛清.9106工作面底板突水后的思考[J],江苏煤炭,1993(01):17-19
    90.陶冠米,李守好.采煤工作面底板突水注浆封堵施工技术[J],煤炭技术,2003(09):27-28
    91.汪明武,金菊良,李丽.煤矿底板突水危险性投影寻踪综合评价模型[J].煤炭学报,2002(05): 17—18
    92.王彬,李文峰.浅析矿山压力对底板突水的影响[J],山东煤炭科技,1997(03):9-11
    93.王成绪.底板突水的数值计算方法研究[J],煤田地质与勘探,1997(S1):11—13
    94.王成绪.研究底板突水的结构力学方法[J],煤田地质与勘探,1997(S1):35-36
    95.王吉松,关英斌.煤层底板突水研究的理论和方法[J],煤炭技术,2006(01):26-27
    96.王经明,董书宁,吕玲等.采矿对断层的扰动及水文地质效应[J],煤炭学报,1997(04):18-20
    97.王经明,邓西清,王厚怀.岩溶型煤矿底板岩体质量分级及其在突水评价上的应用[J],中国岩溶,2000(03):38-39
    98.王经明.承压水沿煤层底板递进导升突水机理的物理法研究,煤田地质与勘探,1999(06):22-23
    99.王连国,宋扬.底板突水煤层的突变学特征[J],中国安全科学学报,1999(05):9—11
    100.王连国,宋扬.煤层底板突水突变模型[J],工程地质学报,2000(02):31-32
    101.王良,庞荫恒,郝顾明等.采动矿压与底板突水的研究[J],煤田地质与勘探,1986(03):5-7
    102.王梦玉.煤层底板突水机理及预测方法探讨[J],煤炭科学技术,1979(09):11-13
    103.王希良,郑世书,孙亚军.GIS支持下的煤矿底板突水预报研究[J],工程勘察,2001(01):29-31
    104.王新宇.肥城矿区工作面底板突水影响因素分析[J],西部探矿工程,2001(02):19-20
    105.王秀辉,张宏.采煤工作面底板突水的预测预报方法[J],西安科技学院学报,1998(04):32-34
    106.王秀辉.采煤工作面底板突水预报的多参数测试方法[J],煤田地质与勘探,1998(S1):16—17
    107.王延福,靳德武,曾艳京.岩溶矿井煤层底板突水系统的非线性特征初步分析[J],中国岩溶,1998(04):7-9
    108.王延福,靳德武,曾艳京等.岩溶煤矿矿井煤层底板突水非线性预测方法研究[J],中国岩溶,1998(01):28-29
    109.王永龙.井下动水注浆治理采煤面底板突水[J],山东煤炭科技,2006(01):16-18
    110.王玉怀,关英斌,张建华.煤层底板岩层突水因素及作用分析[J],河北煤炭,2000(02):5-8
    111.王振安.采煤工作面底板突水的初步研究[J],煤田地质与勘探,1983(05):26-27
    112.王作宇,刘鸿泉.煤层底板突水机制的研究[J],煤田地质与勘探,1989(01):11—13
    113.王作宇,刘鸿泉.承压水上采煤[M],北京:煤炭工业出版社,1993,105—111
    114.魏久传.煤层底板岩体断裂损伤与底板突水机理研究,[博士学位论文],2000,73—80
    115.吴慧芳,段水云,高红森.太原东山煤矿15号煤层底板突水条件分析[J],煤田地质与勘探,2001(04):16—17
    116.肖洪天,荆自刚,李白英.周期来压的不同工作面长度对底板影响的电算模拟研究[J],山东矿业 学院学报,1989(2),45-47
    117.谢兴华,速宝玉,高延法等.矿井底板突水的水力劈裂研究[J],岩石力学与工程学报,2005(06):17-18
    118.徐启录.煤层底板岩溶裂隙水突水机理及防治技术[J],河北煤炭,1987(02):12-13
    119.许光泉,桂和荣,吴基文.煤矿底板突水分析及底板水防治[J],地下水,2001(03):26-27
    120.许学汉.突水预测预报研究[M],地质出版社,1992,157-158
    121.杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J],煤田地质与勘探,1997(S1):31-32
    122.尹尚先,武强.煤层底板陷落柱突水模拟及机理分析[J],岩石力学与工程学报,2004(15):13-14
    123.尹万财.工作面底板突水因素分析及防治对策研究[J],中国煤田地质,1997(03):19-20
    124.于喜东.地质构造与煤层底板突水[J],煤炭工程,2004(12):15-16
    125.于小鸽,施龙青,魏久传等.采场底板“四带”划分理论在底板突水评价中的应用[J],山东科技大学学报(自然科学版),2006(04):43-44
    126.翟德元,王泳嘉.薄隔水层井筒底板突水的突变模型[J],中国安全科学学报,1999(03):26-27
    127.张金才,刘天泉.煤层底板突水影响因素的分析与研究[J],煤矿开采,1993(04):12-13
    128.张金才.煤层底板突水预测的理论判据及其应用[J],力学与实践,1990(02):21-23
    129.张金才.承压水上开采技术措施的研究[J],煤矿开采,1991(1):19-21
    130.张少春,张西民.采煤工作面底板突水判据的建立及应用[J],陕西煤炭,2004(02):6-7
    131.张文泉,李白英,李加祥等.矿井底板突水点空间分布规律的研究[J],中州煤炭,1992(01):27-28
    132.张文泉,刘伟韬,王振安.煤矿底板突水灾害地下三维空间分布特征[J],中国地质灾害与防治学报,1997(01):9—11
    133.张文泉,肖洪天,刘伟韬.矿井底板岩体裂隙网络模拟与突水通道搜寻研究[J],煤炭学报,2000(S1):21—23
    134.张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D],山东科技大学,2004年博士论文
    135.张文志,李兴高.底板破坏型突水的力学模型[J],矿山压力与顶板管理,2001(04):19-20
    136.张西民,侯育道.采煤工作面底板突水危险性的量化评价[J],西安科技学院学报,1998(01):46-47
    137.张西民,马培智.采煤工作面顶板来压和底板突水关系的数值模拟研究[J],陕西煤炭技术,1998(01):19-21
    138.张永双,刘伟韬,卜昌森.煤层底板突水因素的综合评价—以肥城矿区为例[J],煤田地质与勘 探,1996(03):15-16
    139.张宇.杨村煤矿底板突水预测[J],煤矿现代化,2002(04):28-29
    140.张渊.开采矿压对底板的损伤破坏及其对突水的诱发作用[J],太原理工大学学报,2002(03):39-40
    141.郑纲,门玉明,庞西岐.东庞矿9103工作面底板突水前兆实时监测技术[J],煤炭科学技术,2004(03):13-14
    142.郑纲.煤矿底板突水机理与底板突水实时监测技术研究长安大学[D],2004年博士论文
    143.朱第植,王成绪.原位应力测试在底板突水预测中的应用[J],煤炭学报,1998(03):9-11
    144.汤连生.水—岩土反应的力学与环境效应研究[D],中国科学院,[博士学位论文],2000:52-54
    145. A.Mosyak. G. Hetsroni Visual study of bursting using infrared technique Experiments in Fluids[J], 2004, 37(1/7): 20-22
    146. AndersonMP. Applied Groundwater Modeling[J], NewYork: AcademicPressINC, 1992, 11-13
    147. Arriaga.M.C.S.and Verduzco F.S. On the Natural Collapse of Fractures in Rocks with Low Fluid[J], Int.J.Rock.Mech.Min.Sci. 1998, 35(4/5): 500-501
    148. Ashby.M.F and S.D.Hallam. the Failure of Brittle Solids Containing Small Cracks under Compressive Stress States[J], Acta metal, 1986, 34(3): 487-510
    149. Ashland F X, Jones W V. Investigation and mitigation of a piping-induced slope failure, Spanish Fork, Utah[A].In: Schultz R A, Siddharthan R V ed.Proceedings of the 33rd Symposium on Engineering Geology and Geotechnical Engineering[C].Rotterdam: A.A.Balkema, 1998, 118-119
    150. B. J. Mason. The oceans as source of cloud-forming nuclei Pure and Applied Geophysics[J], 1957, 36(1/1): 77-78
    151. Barendregt R W, Ongley E O. Piping in the Milk River Canyon, Southeastern Alberta, a contemporary dryland geomorphic process[J], IAHS-AISH Publication, 1977, 102-103
    152. Baud.P, Reuschle.T., Charlez.P.. An Improved Wing Crack Model for the Deformation and Failure of Rock in Compression[J], Int. J. Rock Mech. Min, Sci. & Geomech. Abstr, 1996, 33(5): 539~542,
    153. Brown, G.J. and Reddish, D. J., Experimental Relations Between Rock Fracture Toughness and Density[J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1997, 34(1): 153-155
    154. Bryan R B, Jones J A A.The significance of soil piping processes, inventory and prospect[J], Geomorphology, 1997, 87-88
    155. C.Faria Sants and Z.T Bieniawskj. Floor Design in underground coal Mines[J], Rock mcchanies and Rock Engineering, 1989,22(4): 10-12
    156. Calle E O F, Best H, Sellmeijer J B, et al. Probabilistic analysis of piping underneath water retaining structures[J], Proceedings Soil Mechanics and Foundation Engineering, 1991, 124-125
    157. Charles C. Davis. A study of the hatching process in aquatic invertebrates, XVI, Events of eclosion in Calopsectra neoflavellus Malloch (Diptera, Tendipedidae), XVII, Hatching in Argulus megalops Smith (Crustacea, Branchiura) Hydrobiologia, 1966, 27(1-2 /1): 39-40
    158. Chen, J. -T and Wang, W -C. Experimental Analysis of An Arbityarity inclined Semi-infinite Crack Terminated at the Bimaterial Interface[J], Experimental Mech, 1996, 36( 1): 7-16
    159. Cock, N.G.W. Natural Jints in Rock: Mechanical Hydraulic and Seismic Behaviour and Properties under Normal Stress[J], Int. J.Rock Mech.Min.Sci.& Geomech.Abstr, 1992, 29(3): 198-233
    160. Duveau Gand Shao,J.F.A. Modified Single Plane of Weakness Theory for the Failure of Highly Stratified Rooks[J], Int.J.Rock Mech.Min.Sci, 1998, 35(6): 807-813
    161.Dyskin A.V.Germanovish,L.N.and R.J.Jewell.etal. Some experimental results on three-dimensional crack propagation in compressin,Mechanics of Jointed and Faulted Rock,Rossmanitn(ed.) [D], Balkema.Rotleraem, 1995, ISBN.90, 5410
    162. F.A.L.T. Ribeiro, D.A. Jones. The potential of dried, low-hatch, decapsulated Artemia cysts for feeding prawn post-larvae[J], Aquaculture International, 1998, 6( 6 /12): 63-64
    163. Farifteh J, Soeters R. Factors underlying piping in the Basilicataregion, southern Italy[J], Geomorphology, 1999, 58-59
    164. Federico, V.D, Estimates of Equivalent Aperture for Nou.Newtonian Flow in a Rough-Walled Fracture[J], IntJ.Rock Mech. Min.Sci., 1997, 34(7): 1133-1137
    165. Geir.J.et.al.. "Discrete Fracture modeling of in-situ hyrologic and tacer experiments" [J] proceeding International Conference on Fracured and Jointed Rock Masses.Lake Tahoe CA, 1992(6): 215-216
    166. Germanovich, L.N.Dyskin, A.V. and Tsyrul'mikov N.M.. A MODEL OF THE DEFORMATION AND FRACTURE OF BRITTLE MATERIALS WITH CRACKS UNDER UNIAXLAL COMPRESSION.Izv RAN[J], Mekhancka Terdoge Tela, 1993, 28(1): 127-143
    167. Germanovich, L.N.Salganik, R.L. and Dyskin A.V.etal. Mechanisms of Brittle Fracture of Rock with Pre-existing Cracks in Compression[J], PAGEOPH, 1994, 143(1/2/3): 117-149
    168. Germanovish,L.N.. The effective characteristics of a medium with inclusions in a variable field[D], Dokl.Akal.Nauk, 1989, SSS R306: 1356-1362
    169. Gordeyev,Y.N., Growth of a Crack. Produced by Hydraulic Fracture in a Poroelastic Medium[J], Int. J. Rock Mech. Min. Sci & Geomech Abstr., 1993, 30(3): 233-238
    170. Guo, F.,Morgenstern, N.R., Scott, J.D.. Interpretation of Hydraulic Fracturing Breakdown Pressure[J], IntJ.Rock Mech.Min.Sci.& Geomech Abstr., 1993, 30(6): 617-626
    171. H. Kayser. Waste-water assay with continuous algal cultures: The effect of mercuric acetate on the growth of some marine dinoflagellates[J], Marine Biology, 1976, 36(1 /5): 156-159
    172. H.Wu, Pollarsd.D.D. Effect of strain Rate on a set of Fractures[J], IntJ.Rock Mech.Min.Sci & Greomech Abstr., 1993, 30(7): 869-872
    173. He Keqiang, Guo Dong, Wang Xianwei. Mechanism of the water invasion of Gaoyang Iron Mine, China and its impacts on the mine groundwater environment[J], Environmental Geology, 2006, 49( 8 / 4): 26-27
    174. Heinz Rehage, Martin Husmann, Anja Walter. From two-dimensional model networks to microcapsules[J], Rheologica Acta, 2002,41( 4 /1): 56-58
    175. Horii, H and Nemat-Nasser. Compression-Induced Microcrack Grctth in Brittle Solids: Axial Splitting and Shear Failure[M], J.Geophy. Res., 1985, 90(B4): 3105-3125
    176. Hsing, S. M.m Ghosh, A., Ahola, M. P. et al.. Assessment of Conventional Methodologies for Joint Roughness Coefficient Determination[J], IntJ.Rock Mech.Min.Sci.& Geomech Abstr., 1993, 30(7): 825-829
    177. Huang, X., Haimson, B. C, Plesha, M. E., et al.. An Investigation of the Mechanics of Rock Joints-Part I: Laboratory Investigation[J], IntJ.Rock Mech.Min.Sci.& Geomech Abstr., 1993, 30(3): 257-269
    178. Ikuo Yoshikawa, Hiroshi Kawamura, Kuniaki Okuda, Yoshiaki Toba. Turbulent structure in watet under laboratory wind waves[J], Journal of Oceanography, 1988, 44(3 / 6): 88-90
    179. Jing L. C-F Tsang. O Stephansson. DECOVALEX-An international Co-Oprative Research Project on Mathematical Models of Coupled THM Processes for Safety Analysis of Radioactive Water Repositories[J], International Journal of Rock Mechanics and Mining Science and Geomechanica Abstracts, 1995,32(5): 15-16
    180. Ju, S. H., Lesniak, J. R. and Sandor, B. I.. Numerical Simulation of Stress Intensity Factors via the Thermoelastic Technique[J], Experimental Mech, 1997, 37(3): 278-284
    181. Kulatilake, P. H, S. W., Wang, S., Stephansson, O.. Effect of Finite Size Joints on the deformability of Joninted Reck in Three Dimensions[J], IntJ.Rock Mech.Min.Sci.& Geomech . Abstr., 1993, 30(5): 479-501
    182. Kusscer.D.Vcselic.M. "The role of porewaer pressure and seepage forces on the stability of protection layers" [M], IMWA pro Cranda, 1985, 156-158
    183.Lesnic, D.Elliott.L and Ingham D.B.etal. A Mathematical Model and Numerical Investigation for Determining the Hydraulic Conductivity of Rocks[J], Int.J.Rock. Mech.Min.Sci., 1997, 34(5): 741-759, 1999, 20(3): 1-8
    
    184. Lin, D., Roegiers, J.C. A Study of Squeezing Flow in Fracture Channels[J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1993, 30(7): 841-844
    185. Liu.J.Elsworth, D. Three-dimensional Effects of Hydraulis Conductivity Enhancemunt and Desaturation around Mined Panels[J], Int.J.Rock Mech.Min.Sci., 1997, 34(8): 1139-1152
    186. Maksimovic, M. The Shear Strength Components of a Rough Rock Joint[J], IntJ.Rock Mech.Min.Sci.& Geomech. Abstr., 1996, 33(8): 769-783
    187. Mereno L. C-F Tsang. Flow Channeling in Strongly Heterogeneous Porous Media; A Numerical Study[J], Water Resour Res, 1994, 30(5): 1421-1430
    188. Mostafa A. Foda. Generation of Ripple-Size Internal Waves on a Fluidized Seafloor[J], Journal of Engineering Mathematics, 1999, 35(1-2 /2): 726-730
    189. N. Reinke, A. VoBnacke, W. Schiitz, M. K. Koch, H.. Unger Aerosol Generation by Bubble[J], Collapse at Ocean Surfaces water, 2007, 178(1-4 /1): 215-223
    190. N. Reinke, A. VoBnacke, W. Schutz, M. K. Koch, H.. Unger Aerosol Generation by Bubble Collapse at Ocean Surfaces water[J], Air, & Soil Pollution: Focus, 2001, 1(5-6/9): 138-150
    191. Napier, J.A.L.Malan, D.F.A. Vicsoplastic Discontinuum Model of Time-dependent Fracture and Seismicity Effects in Brittle Rock[J], Int.J.Rock Mech.Min.Sci., 1997, 34(7): 1075-1089
    192. Okubo, S., Nishimatsu, Y. and Fukui, K. Complete Creep Curves Under Uniaxial Compression[J], IntJ.Rock Mech.Min.Sci.& Geomech. Abstr., 1991,128(1): 77-82
    193. Olivit, R. S. and Surace, L. The Damage Assessment of Concrete Structures by Time-frequency Distribution, Experimental Mech., 1997, 37(3): 355-359
    194. Olsson, W.A. and Brown, S.R. Hydromechanical Response of a Fracture Undergoing Compression and Shear[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1993, 30(7): 845-851
    195.Parieau W, G. "Finite element analysis of water pressure and flow on shaft and tunnel stability" , Transactiongs, 1996, SME, 298-298
    196. Pariseau. W. G and Schmelter. S. C. "progress in wet mine measurements for stability" [D], 13th Annual workshop GMTC-Mine Stytems Design and Ground Control, 1995, 59-68
    197. Passaris, E. K. S., Ran, J. Q., Mottahed, P., Stability of the Jointed Roof in Stratified Rock[J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1993, 30(7): 857-860
    198. Paul F. Hudak. Hugo A. Loaiciga and F. Andrew Schoolmaster. Application of Geographic Information System to Groundwater Monitoring Network Design[J], Water Resources Bulletin, 1993, 29(3): 383-390
    199. Perry, K. E., Jr and Mckelvie, J. Measurement of Energy Release Rates for Delaminations in Compsite Materials[J], Experimental Mech., 1996, 36(1): 55-63,
    200. Qiang Wu, Mingyu Wang. Characterization of water bursting and discharge into underground mines with multilayered groundwater flow systems in the North China coal basin Hydrogeology Journal, 2006, 14( 6/9): 587-593
    201. Richard Bertram. A computational study of the effects of serotonin on a molluscan burster neuron Biological Cybernetics, 1993, 69(3/7): 168-175
    202. Robina.H.C.Wong and Chau,K.T.Crack. Coalescence in a Rock-like Material Containing Two Cracks[J], IntJ.Rock Mech.Min,Sci., 1998,35(2): 147-164
    203. S. K. Hebbar, M. F. Platzer, A. E. Fritzelas Reynolds number effects on the vortical-flow structure generated by a double-delta wing[J], Experiments in Fluids, 2000, 28( 3 / 3): 36-38
    204. S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski. Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime [J], Applied Physics A: Materials Science & Processing, 2005, 81(3 / 8): 56-71
    205. Schlaugen,E. and VanMierJ.GM.. Crack propagation in sandstone: Combined Experimental and Numerical Approach[J], Rock Mech. Rock Engng, 1995, 28(2): 93-110
    206. Seidel, J.P.and Haberfield, CM. The Application of Energy Principles to the Determination of the Sliding Resistance of Rock Joints[J], Rock Mech. Rock Engng., 1995,28(4): 211-226
    207. Sen. Z.. RQD-Fracture Frequency Chart Based on a Weibull distriution[J], IntJ.Rock Mech.Min.Sci.& Geomech. Abstr., 1993, 30(5): 555-557
    208. Shah K.R. and Wong, T.F. Fracturing at Contact surfaces Subjected to Normal and Tangential Loads[J], IntJ.Rock Mech.Min.Sci., 1997,34(5): 727-739
    209. Shen, B., Stephansson, O. Numerical Analysis of Mixed Mode I and Mode II Fracture Propagation[J], IntJ.Rock Mech.Min.Sci.& Geomech.Abstr., 1993, 30(7): 861-867
    210. Shimo, M.and Iihoshi. Laboratory Study of Water Flow Though Multiple Fractures[J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1993,30(7): 853-856
    211. Terrell,W.Miller. New insights on natural hydraulic fracture induced by abnormally high pore pressures[J], AAPG Bulletin, 1995, V.79(7): 1005-1018
    212. Thapa, B.B.Goodman, R.E. The Induced Wedge Test for Field Measurement of Joint Friction[J], IntJ.Rock Mech.Min. Sci & Geemech. Abstr., 1996, 33(6): 655-657
    213. US Department of Energy. Office of Energy Research. Office of Health and Environmental Research. DOE[J], Natural and Accelerated Bioremediation Research, Program Plan, September, DOE/ER-0659T, 158-167
    214. W. H. Parsons. Manner of emplacement of pyroclastic andesitic breccias Bulletin of Volcanology, 1967, 30(1 /12): 236-245
    215. Wang Shuangfeng, Jia Fu. Some characteristics of low-speed streaks under sheared air- water interfaces[J], Acta Mechanica Sinica, 2001, 17(2 /5): 68-76
    216. Wang Shuangfeng, Jia Fu, Niu Zhennan, Wu Zhangzhi. An experimental study on turbulent coherent structures near a sheared air- water interface[J], Acta Mechanica Sinica, 1999, 15(4 /11): 389-397
    217. Wei,Z.Q.,Egger, P., Descoeudres. Permeability Predictions for Jointed Rock Masses[J], IntJ.Rock Mech.Min.Sci.& Geomech.Abstr., 1995, 32(3): 251-261,
    218. Xiao, Z.M., Lim,M.K.,and Liew,K.M.. Determination of Stress Field in an Elastic Solid Weakened by Parallel Penny-shaped Cracks[J], Acta. Mechanics, 1996(114): 83-94
    219. Xiu, X., Plesha, M.E., Huang, X. et al. An Investigation of the Mechanics of Rock Joints-Part II: Analytical Investigation[J], Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 1993,30(3): 271-287
    220. Y. Papadimitrakis, En Hsu, R. Street The structure of the turbulent boundary layer over a mobile and deformable boundary[J], Experiments in Fluids, 1986, 4(2 / 3): 698-675
    221. Yang, H. Dynamic Crack Growth along an Elastoplastic Bimaterial Interface[J], Acta Mechanica, 1997(121): 51-77
    222. YongHong Zhao. Crack Pattern Evolution and a Fractal Damage cowstitutive Model for Rock[J], IntJ.Rock.Mech. Min. Sci., 1998, 35(3): 349-366
    223. Yoshiaki Toba. Hiroshi Kawamura Wind-wave coupled downward-bursting boundary layer (DBBL) beneath the sea surface[J], Journal of Oceanography, 1996, 52( 4 / 7): 69-80
    224. Yu.N.Gordeyen. Growth of a Crack Produced by Hydraulic Fracture in a Poroelastic Medium[J]. Int.J.Rock.Mech.Min.Sci & Geomech.Abstr., 1993, 30(3): 233-238
    225. Yumlu, M. and Ozbay, M. U. A Study of the bebaviour of Brittle Rocks Under Plane Strain and Triaxial Loading Conditions[J], Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1995, 32(7): 725-733
    226. Zhang, X., Sanderson,D.J., Harkness, R.M. et al. Evaluation of the 2-D Permeability Tensor For Fractured Rock Masses[J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1996,33(1): 17-37
    227. Zhao, J. Joint Surface Matching and Shear Strength. Part A: Joint Matching Coefficient (JMC) [J], Int.J.Rock Mech.Min.Sci.& Geomech. Abstr., 1997,34(2): 173-178
    228. Zhao, X. L., Roegiers, J. C. Determination of in situ Fracture Toughness[J], Int.J.Rock Mech.Min.Sci.& Geomech.Abstr., 1993, 30(7): 837-843
    229. Zhu, W. and Wang, P. Finite Element Analysis of Jointed Rock Masses and Engineering Application[J], Int.J.Rock Mech.Min.Sci.& Geomech.Abstr., 1993, 30(5): 537-544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700