用户名: 密码: 验证码:
深海半潜式平台初步设计中的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽阔的海洋蕴藏着丰富的资源,随着世界油气需求的增加,海底油气的开采向水深450~1500米的深水域和水深1500米以上的超深水域发展。随着水深的增加,传统的导管架和重力式等平台由于自重和成本的大幅度增大而不适合深水开发,因此适于深海作业的钻采生产系统成为了研究的热点。
     目前适用于深海油气钻采生产的平台型式主要有:张力腿平台、Spar和半潜式平台。与其它两种平台相比,半潜式平台具有相对总投资小,更大的甲板空间和甲板可变载荷,更强的生产能力,更大的工作水深范围,易于改造并具备钻井、修井、生产等多种工作功能,无需海上安装,全球全天候的工作能力和自存能力等优点。考虑投资成本、工作水深范围、井口数目、服务年限和工作地域等因素,半潜式平台将是满足深海作业的更佳的选择。随着油气开采向深海进军,半潜式平台进入了新的发展阶段,世界各国的公司和研究机构投入了大量的资金进行第六代半潜式平台的研发。
     在目前新一代半潜式平台迅速发展的背景条件下,本论文对深海半潜式平台的发展趋势作了详细分析,对深海半潜式平台初步设计中的一些问题进行了研究。
     本论文的主要工作包括以下几个方面:
     1、对半潜式平台的发展过程、新一代半潜式平台的发展趋势和特点进行了介绍,综述了与半潜式平台初步设计有关的若干方面的研究现状和研究成果。
     2、以一个第六代半潜式平台为母型,设计了四种常用的半潜式平台型式模型,通过波浪中的垂荡性能、完整稳性、拖航阻力和船体钢料重量等几方面的比较分析,选取合适的深海半潜式平台型式。
     3、根据二维切片理论求解平台的水动力系数,综合考虑经济性和波浪上的运动性能,建立了深海半潜式平台的多目标优化模型。进行正交设计,研究各设计变量对目标函数的影响程度。考虑到水动力系数计算和运动方程的非线性,采用多目标优化遗传算法—改进的非劣解排序遗传算法进行优化设计,得到多目标优化问题的Pareto解。从结果中选取三个具有代表性的方案进行分析,认为经过优化设计,平台的固有周期都远离常规波浪的周期,都具有良好的运动性能。通过对比,认为平台的运动性能有进一步改善的可能,但超过一定范围时,其改善的程度很小,反而会使成本急剧加大,优化意义不大。并选择了居中的一个方案作为初步设计结果。
     4、采用三维势流理论,对所设计半潜式平台在波浪中的运动响应和所受的波浪载荷进行详细的计算分析,并采用P-M波谱进行了短期和长期预报。所得频域计算结果可用于系泊设计的分析计算。
     5、通过模型试验测量平台在规则波中的垂荡运动响应及三个位置的气隙,验证了计算方法的可靠性
     6、在深水中,悬链线系泊系统已经不适用,张紧式系泊系统逐渐成为主要的系泊方式。为了克服传统的链索系泊缆在深水系泊应用中重量过大的问题,提高平台的可变载荷,对于新型的合成系泊缆的研究也应运而生,目前各种合成系泊缆如尼龙、聚酯绳等已广泛应用于深水系泊。本论文概述了张紧式系泊系统目前的研究方向和设计方法,设计了钢丝绳-聚酯绳-钢丝绳三段式系泊缆,并对九种不同布置方式的张紧式系泊系统进行静力分析,研究在2500米水深的超深水条件下,系泊缆的布置方式对系泊系统的回复力性能的影响程度,以及系泊缆在设计环境条件下的张力变化规律。
     7、采用时域分析方法,将平台在波浪中的运动响应频域结果转化到时域,考虑各种非线性的影响和系泊缆的动力特性分析,使预报更加可靠。引入风、浪、流的联合作用,采用耦合分析的方法,综合考虑半潜式平台和系泊系统的相互作用,得到作业工况和自存工况情况下波浪载荷、平台运动和系泊缆张力的各种时历结果。在对各种时历结果进行处理后,可得到各种结果的谱密度和Weibull概率分布,为深海系泊系统的设计和分析提供参考。
     本论文对深海半潜式平台的型式选择、方案优化设计、水动力性能理论计算与试验、运动长短期预报、系泊系统初步设计、系泊平台耦合时域分析等方面的内容进行了研究,得到了相应的研究结果,对超深水半潜式平台的初步设计具有重要参考价值。
Wide oceans contain abundant resources. With increasing worldwide demand for oil and gas, exploitation of ocean oil and gas switch to deep water and ultra-deep water fields with water depth of 450~1500 meters and more than 1500 meters respectively. Conventional platforms like jack-up platform and Gravity platform are not suitable for deep water given their substantial increase of weight and cost. Then research on drilling and production system for deep water has become hot item.
     At present, TLP (Tension leg platform), Spar and semisubmersible are three main platforms used for deepwater oil and gas exploitation. Semisubmersible has priority of less total investment compared with the other two platforms. More deck space, deck variable load, production ability and wider range of water depth are achieved in semisubmersible. Semisubmersible has multiple functions of drilling, well repairing, production and so on. It could also be easily transformed according to different requirements, and has good performance in both operation condition and survival condition. Semisubmersible is the better choice for deep water operation based on factors like cost, range of available water depth, number of well, service life, zone and so on. In fact, semisubmersible development comes to a new era as offshore oil and gas exploitation extends to deep water. Lots of companies and academic institutes invest much in a sixth-generation development of semisubmersible.
     Given the rapidly development of semisubmersible, trends of this platform are discussed here. Researches on preliminary design of deepwater semisubmersible are developed and presented in this dissertation.
     This dissertation mainly investigates the following items:
     1. History of Semisubmersible, development trends and the new generation’s characterization are described here. Present researches on preliminary design of semisubmersible are reviewed.
     2. Four common types of deepwater semisubmersible are designed based on the prototype of a sixth-generation semisubmersible. Comparative analysis of heave in waves, intact stability, towing resistance and hull steel weight is carried out, which assists the selection of the proper platform.
     3. A multi-objective optimization model of the deepwater semisubmersible is established in this dissertation. The model is determined by hydrodynamic coefficients of the platform with economic factor and performance in wave in mind. Here, a program based on the two-dimensional strip theory is developed for hydrodynamic coefficients calculation. The effect of design variables on the optimization object is also studied by design of experiment. Considering the nonlinear of motion equation and hydrodynamic computation, a multi-objective optimization genetic algorithm, non-dominated sorting genetic algorithm, is adopted in the optimization design, and Pareto front is achieved. Three representative results are selected for advanced analysis, showing that all the semisubmersibles after optimization design have good motion in wave and their natural periods are all away from the common wave period. According to comparative analysis, it is believed that semisubmersible’s motion performance will be better after optimization design. The cost increases excessively beyond some extent, while less optimization in motion performance can be expected. Finally, one intermediate optimization result is taken as preliminary design result.
     4. Motion responses and wave forces of the adopted platform are thoroughly analyzed by three-dimensional potential theory. Short term response and long term response are achieved with P-M wave spectrum. All the results are in frequency domain, and will be used in further research.
     5. Heave RAOs of tow semisubmersible are achieved by model test, and are compared with results computed by potential theory, which verify the reliability of the theory. Airgap in regular waves is also achieved.
     6. Taut mooring system now steadily replaces catenary mooring system in deep water. Also researches on synthetic mooring lines are performed with the purpose to reduce the weight of mooring line, and to increase the variable load of semisubmersible. Various synthetic mooring lines, such as nylon and polyester rope, have been widely used in deep water mooring now. Research and design on taut mooring system are reviewed and a wire-polyester rope-wire mooring line is designed in this dissertation. Static analysis of mooring system with nine different line patterns is carried out to study the effect of line patterns on restoring force and the tension of lines under design condition.
     7. More exact results are gained when applying time domain analysis that turns motion responses of semisubmersible from frequency domain to time domain, coupled with all nonlinear and dynamic effect analysis. With the interaction between semisubmersible and mooring system in mind, time history results of wave loads, motion of semisubmersible, tensions of mooring lines under both operation condition and survival condition are achieved. These results can be turned into terms of spectral density and Weibull probability distribution. All the analysis results can be used in design and analysis of deepwater mooring system.
     Studies on platform type selection, optimization design, hydrodynamic computation, model test, short and long term response, preliminary design of mooring system, and coupled analysis of mooring semisubmersible in time domain are carried out in this dissertation. The results are possessed of important value for preliminary design of deepwater semisubmersible.
引文
[1] 廖谟圣, 国外超深水钻采平台的发展给我们的启迪, 中国海洋平台, 2003, vol. 18, No. 5, pp. 1-5.
    [2] 鲍莹斌, 李润培, 顾永宁, 张力腿平台研究领域和发展趋势, 海洋工程, 1998, vol. 16, No. 4.
    [3] J. M. Bell, Y. D. Chin, S. Hanrahan, State of the Art of Ultra Deepwater Production Technologies, Offshore Technology Conference, Houston, Texas, 2005.
    [4] B. F. Ronalds, Deepwater Facility Selection, Offshore Technology Conference, 2002.
    [5] www.rigzone.com.
    [6] J. P. Hooft, A Mathematical Method of Determining Hydrodynamic Induced Forces on a Semisubmersible, Transactions - Society of Naval Architects and Marine Engineers, 1971, vol. 79, pp. 28-70.
    [7] K. Haslum, Design the Trosvik Bingo 3000, The Naval Architect, March 1981.
    [8] H. L. Minkenberg,M. F. v. Sluijs, Motion optimizaion of semi-submersibles, in OTC 1972. Dallas, Texas, 1972, pp. 131-137.
    [9] P. W. Penney,R. M. Riiser, Preliminary Design of Semi-Submersibles, North East Coast Institute of Engineers & Shipbuilders, October 1984, pp. 49-69.
    [10] E. E. Horton, L. B. McCammon, J. P. Murtha, J. R. Paulling, Optimization of Stable Platform Characteristics, Offshore Technology Conference, Dallas, Texas, 1972.
    [11] M. Takagi, S.-i. Arai, S. Takezawa, K. Tanaka, N. Takarada, A Comparison of Methods for Calculating the Motion of a Semi-submersible, Ocean Engineering, 1985, vol. 12, No. 1, pp. 45-97.
    [12] 孙复中, 半潜船运动的新理论计算方法, 中国造船, 1980, No. 4, pp. 64-78.
    [13] W. Frank, Oscillation of cylinder in or below the free surface of deep fluids, Washington D. C. , NSRDC Report 2375 1967.
    [14] S. Fuzhong, Analysis of Motion of Semusubmersible in Sea Waves, Offshore Technology Conference, Houston, Texas, 1980.
    [15] G. E. Hearn,K. C. Tong, Evaluation of Low-Frequency Wave Damping, Offshore Technology Conference, Houston, Texas, 1986.
    [16] J. P. Hooft, Determining Platforms for Minimum Motion, Ocean Industry, 1970, vol. 5, pp. 27-30.
    [17] C. H. Kim,F. Chou, Motion of a Semisubmersible Drilling Platform in Head Seas, Marine Technology, 1973, vol. 10, No. 2, pp. 112-123.
    [18] R. Kishev, A. Ivanov, L. Pomeranetz, On the practical evaluation of hydrodynamic coefficients of semisubmersible platforms, based on systematic model tests, Behaviour of Offshore Structures, Proc. 4th Int. Conf. BOSS'85, Delft, The Netherlands, 1985.
    [19] A. A. Merchant, DSS-20 A Fifth Generation Deepwater Drilling Semisubmersible Built across Two Countries.
    [20] L. Mitsui Engineering & Shipbuilding Co., A Design and Analysis Program System for Offshore Structures, Japan Shipbuilding and Marine Engineering, 1979, vol. 13, No. 1, pp. 5-33.
    [21] M. H. Patel, On the Wave Induced Motion Response of Semisubmersibles, Transactions of the Royal Institution of Naval Architects, 1983, vol. 125, pp. 221-228.
    [22] J. R. Paulling, Y. S. Hong, H. H. Chen, S. G. Stiansen, Analysis of Semisubmersible Catamaran-Type Platforms, Offshore Technology Conference, Houston, Texas, 1977.
    [23] P. W. Penny,R. M. Riiser, Preliminary Design of Semi-Submersibles, North East Coast Institute of Engineers & Shipbuilders, 1984, vol. 101, No. 2, pp. 49-70.
    [24] D. V. Reddy, B. Muggeridge, H. El-Tahan, C. C. Hsiung, Dynamic Response of Moored Semisubmersible to Bergy Bit Impact, Irregular Wave, Wind, and Current Forces, Offshore Technology Conference, Houston, Texas, 1982.
    [25] S. Sengupta,M. K. Chatterjee, Evaluation of Semisubmersible Motion Characteristics, Marine Technology, 1986, vol. 23, No. 3, pp. 217-225.
    [26] F. V. Walree,H. J. J. V. d. Boom, Wind, Wave, and Current Loads on Semisubmersibles, Offshore Technology Conference, Houston, Texas, 1991.
    [27] J. d. Weerd,J. v. Santen, STUDY OF THE MOTIONAL BEHAVIOUR OF SEMI-SUBMERSIBLES AT SHALLOW DRAFT, in GustoMSC inside, pp. 11.
    [28] 姜际升, 劳国升, 胡平贤, 半潜式平台运动的理论预报, 海洋学报, 1984, vol. 6, No. 5, pp. 678-691.
    [29] 金德贤, 张世联, 韩继文, 李润培, 刘应中, 黄祥鹿, 朱庭耀, 半潜式平台结构设计分析的工程系统-OSAS-3, 海洋工程, 1989, vol. 7, No. 2, pp. 6-15.
    [30] 李兢, 船舶在海浪中的运动与载荷的仿真研究[硕士], 哈尔滨工程大学, 2002.
    [31] O. M. Faltinsen, Sea loads on ships and offshore structures. Cambridge; New York: Cambridge University Press, 1990.
    [32] 范菊, 纪亨腾, 黄祥鹿, 浮式塔的动力计算, 海洋学报, 2001, vol. 23, No. 2, pp. 117-123.
    [33] 刘应中,缪国平, 海洋工程水动力学基础. 北京: 海洋出版社, 1991.
    [34] E. Sidiropoulos,B. J. Muga, EVALUATION OF DRIFT FORCE COMPUTATION METHODS, Offshore Technology Conference, Houston, Texas, 1980.
    [35]黄振加, 劳国升, 姜际升, 作用在离岸结构物上的二阶漂移力, 大连工学院学报, 1988, vol. 27, No. 1, pp. 67-74.
    [36] 申震亚,衣华为, 任意形状二维物体上的二阶波浪力, 水动力学研究与进展, 1988, vol. 3, No. 2.
    [37] 朱英富, 李为, 闵美松, 船舶在波浪中航行受到的平均二阶波浪力, 舰船科学技术, 1997, No. 5, pp. 21-26.
    [38] J. N. Newman, The Drift Force and Moment on Ships in Waves, Journal of Ship Research, 1967, vol. 11, No. 1, pp. 51-66.
    [39] 钱昆, 浮体在大幅波浪中的运动和荷载计算研究[博士], 大连理工大学, 2004.
    [40] W. Ma, K. Huang, M.-Y. Lee, S. Albuquerque, F. G. Palazzo, On the Design and Installation of an Innovative Deepwater Taut-Leg Mooring System, Offshore Technology Conference, Houston, Texas, 1999.
    [41] J. Birknes, A Convergence Study of Second-Order Wave Elevation on Four Cylinders, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [42] B. Sweetman,S. R. Winterstein, Airgap Prediction Use of Second-Order Diffraction and Multi-Column Models, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [43] F. H. Hsu,K. A. Blenkarn, Analysis of Peadk Mooring Force Caused by Slow Vessel Drift Oscillation in Random Seas, Offshore Technology Conference, Dallas, Texas, 1970.
    [44] B. Molin, COMPUTATIONS OF WAVE DRIFT FORCES, Offshore Technology Conference, Houston, Texas, 1979.
    [45] E. J. Powers, D. Choi, R. W. Miksad, Determination of Nonlinear Drift Force Quadratic Transfer Functions by Digital Cross-Bispectral Analysis, OffshoreTechnology Conference, Houston, Texas, 1982.
    [46]H. Maruo, The drift of a body floating on waves, Journal of Ship Research, 1960, vol. 4, No. 3, pp. 1-10.
    [47] J. A. Pinkster, Hydrodynamic Aspects of Moored Semisubmersibles and TLP's, Offshore Technology Conference, Huston, Texas, USA, 1993.
    [48] J. L. Cozijn, B. Buchner, R. R. T. v. Dijk, Hydrodynamic Research Topics for DP Semi Submersibles, Offshore Technology Conference, Houston, Texas 1999.
    [49] A. J. Voogt, J. J. Soles, R. V. Dijk, Mean and Low Frequency Roll for Semi-submersibles in Waves, Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002.
    [50] J. A. Pinkster, MEAN AND LOW FREQUENCY WAVE FORCES ON SEMI-SUBMERSIBLES, Offshore Technology Conference, Houston, Texas, 1981.
    [51] M. M. Bernitsas, J. P. J. Matsuura, T. Andersen, MOORING DYNAMICS PHENOMENA DUE TO SLOWLY-VARYING WAVE DRIFT, Proceedings of 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 2002.
    [52] Y. LIU, ON SECOND-ORDER ROLL MOTIONS OF SHIPS, Proceedings of 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003.
    [53] T. F. Ogilvie, Second-Order Hydrodynamic Effects on Ocean Platforms, Proc. Intl. Workshop Ship and Platform Motions, Berkeley Calif, 1983.
    [54] G. F. Clauss,T. E. Schellin, Slow Drift Forces and Motions on a Barge-Type Structure Comparing Model Tests With Calculated Results, Offshore Technology Conference, Houston, Texas, 1982.
    [55] J. T. Daniels, Mooring system and method for deep and ultra deep water, vol. 6408781, U. S. Patent, Ed. U. S. A. : Texaco Inc. , 2002.
    [56] R. S. Kota, W. Greiner, R. B. D'Souza, Comparative Assessment of Steel and Polyester Moorings in Ultradeep Water for Spar- and Semi-Based Production Platforms, Offshore Technology Conference, Houston, Texas, 1999.
    [57] J. M. Johnsen,O. ?ritsland, Design and Optimisation of Taut-Leg Mooring Systems, Offshore Technology Conference, Houston, Texas, 1999.
    [58] C. A. Cermelli,S. S. Bhat, Fiber Mooring for Ultra-Deepwater Applications,Proceedings of The Twelfth(2002) International Offshore and Polar Engineering Conference, Kitakyushu,Japan, 2002.
    [59] N. Haug,W. Greiner, Polyester and steel mooring designs in the Atlantic Margin, Deep and ultra deep water offshore technology, Newcastle, 1999.
    [60] C. J. M. Del Vecchio, Light weight materials for deep water moorings[Ph D.], University of Reading, 1992.
    [61] A. C. Fernandes, A. L. S. Lima, C. A. F. Oliveira, FREQUENCY DOMAIN ANALYSIS OF A DEEPWATER MONOBUOY AND ITS MOORING, Proceedings of OMAE 2003: The 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003.
    [62] R. L. M. Bosman,J. Hooker, The Elastic Modulus Characteristics of Polyester Mooring Ropes Offshore Technology Conference, Houston, Texas, 1999.
    [63] J. F. Flory, C. M. Leech, S. J. Banfield, D. J. Petruska, Computer Model to Predict Long-Term Performance of Fiber Rope Mooring Lines, Offshore Technology Conference, Houston, Texas, 2005.
    [64] J. Tule, E. Huntley, C. Phillips, H. Haslum, Red Hawk Project Polyester Soil Ingress Testing, Offshore Technology Conference, Houston, Texas, 2005.
    [65] R. Venkatesan, E. S. Dwarakadasa, M. Ravindran, Study on behavior of carbon fiber-reinforced composite for deep sea applications, Offshore Technology Conference, Houston, Texas, 2002.
    [66] R. Snell, R. V. Ahilan, T. Versavel, Reliability of Mooring Systems: Application to Polyester Moorings, Offshore Technology Conference, Houston, Texas, 1999.
    [67] P. Davies, M. Fran?ois, F. Grosjean, P. Baron, K. Salomon, D. Trassoudaine, Synthetic Mooring Lines for Depths to 3000 Meters, Offshore Technology Conference, Houston, Texas, 2002.
    [68] 马鉴恩,李凤来, 锚泊列阵的设计与研究, 海洋工程, 1996, vol. 14, No. 1, pp. 55-61.
    [69] 陈徐均, 汤雪峰, 沈. 庆, 孙芦忠, 系泊浮体布链方式优劣的理论分析, 河海大学学报, 2001, vol. 29, No. 5, pp. 84-87.
    [70] T. M. Smith, M. C. Chen, A. M. Radwan, Systematic Data for the Preliminary Design of Mooring Systems, Proceedings of the Fourth International Offshore Mechanics and Arctic Engineering Symposium, Dalls, Texas, 1985.
    [71] X. Chen,J. Zhang, Dynamic Analysis of Mooring Lines by Using Three Different Methods, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [72] A. Connaire, K. Kavanagh, R. V. Ahilan, P. Goodwin, Integrated Mooring & Riser Design: Analysis Methodology, Offshore Technology Conference, Houston, Texas, 1999.
    [73] P.-Y. Couliard,R. S. Langley, Nonlinear Dynamics of Deep-Water Moorings, Proceedings of 20th International Conference on Offshore Mechanics and Artic Engineering, Rio de Janeiro, Brazil, 2001.
    [74] P. Dove, D. Weisinger, F. Abbassian, J. Hooker, The Development and Testing of Polyester Moorings for Ultradeep Drilling Operations, Offshore Technology Conference, Houston, 2000.
    [75] S. Huang, Dynamic Analysis of Three-Dimensional Marine Cables, Ocean Engineering, 1994, vol. 21, No. 6, pp. 587-605.
    [76] D. Karunakaran, T. S. Meling, S. Kristoffersen, K. M. Lund, Weight-optimized SCRs for Deepwater Harsh Environment, Offshore Technology Conference, Houston, Texas, 2005.
    [77] C. T. kwan, Design Practice for Mooring of Floating production Systems, Marine Technology, 1991, vol. 28, No. 1, pp. 30-38.
    [78] K. Larsen,P. C. Sandvik, Efficient methods for the calculation of dynamic mooring line tension, The First European Offshore Mechanical Symposium, Trondheim, Norway, 1990.
    [79] G. B. Matter, J. S. S. Jr., S. H. Sphaier, S. H. S. Correa, I. Q. Masetti, Dynamic Analysis of the DICAS Mooring Configuration for Floating Systems, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [80] T. Nakajima, S. Motora, M. Fujino, On the Dynamic Analysis of Multi-Component Mooring Lines, Offshore Technology Conference, Houston, Texax, 1982.
    [81] A. Nesteg?rd,J. R. Krokstad, JIP-DEEPER: Deepwater Analysis Tools, Offshore Technology Conference, Houston, Texas, 1999.
    [82] B. W. Oppenheim, Interactive Design and Operations of Moorings, Journal of Offshore Mechanics and Arctic Engineering, 1989, vol. 111, pp. 311-317.
    [83] 陈家鼎,罗德涛, 锚泊定位系统的静力计算, 上海交通大学学报, 1981, No. 4.
    [84] G. Chaudhury,C.-Y. Ho, Coupled Dynamic Analysis of Platforms, Risers, and Moorings, Offshore Technology Conference, Houston, Texas, 2000.
    [85]C. Colby, N. S?dahl, E. Katla, S. Okkenhaug, Coupling Effects for a Deepwater Spar, Offshore Technology Conference, Houston, Texas, 2000.
    [86] W. Ma, M.-Y. Lee, J. Zou, E. W. Huang, Deepwater Nonlinear Coupled Analysis Tool, Offshore Technology Conference, Houston, Texas, 2000.
    [87] A. E. L?ken, N. S?dahl, ?. Hagen, Efficient Integrated Analysis Methods for Deepwater Platforms, Offshore Technology Conference, Houston, Texas, 1999.
    [88] S. Kim,P. D. Sclavounos, Fully Coupled Response Simulations of Theme Offshore Structures in Water Depths of Up to 10000 Feet, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [89] V. L. Hansen,L. Wang, Guidelines on Coupled Analyses of Deepwater Floating Systems, Offshore Technology Conference, Houston, Texas, 2004.
    [90] G. Chaudhuly, A New Method for Coupled Dynamic Analysis of Platforms, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [91] X. Chen, J. Zhang, W. Ma, On dynamic coupling effects between a spar and its mooring lines, Ocean Engineering, 2001, vol. 28, No. 7, pp. 863-887.
    [92] A. O. Vázquez-Hernández, L. V. S. Sagrilo, G. B. Ellwanger, ON THE EXTREME ANALYSIS APPLIED TO MOORED FLOATING PLATFORMS, Proceedings of OMAE'03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003.
    [93] H. Ormberg, R. Baarholm, C. T. Stansberg, Time-Domain Coupled Analysis of Deepwater TLP,and Verification against Model Tests, Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering Conference, Honolulu, Hawaii, 2003.
    [94] 黄祥鹿, 陈小红, 范. 菊, 锚泊浮式结构波浪上运动的频域算法, 上海交通大学学报, 2001, vol. 35, No. 10, pp. 1470-1476.
    [95] 黄祥鹿, 陈小红, 范菊, 二阶频域法计算系泊浮式结构的运动及锚系载荷, 第一届全国船舶与海洋工程学术会议, 2000.
    [96] T. H. J. Bunnik, G. d. Boer, J. L. Cozijn, J. v. d. Cammen, E. v. Haaften, E. t. Brake,COUPLED MOORING ANALYSIS IN LARGE SCALE MODEL TESTS ON A DEEPWATER CALM BUOY IN MILD WAVE CONDITIONS Proceedings of the 21st international Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 2002.
    [97] The Specialist Committee on Deep Water Mooring—Final Report and Recommendations to the 22nd ITTC.
    [98] C. T. Stansberg, Data Interpretation and System Identification in Hydrodynamic Model Testing, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [99] C. T. Stansberg, H. Ormberg, O. Oritsland, CHALLENGES IN DEEP WATER EXPERIMENTS – HYBRID APPROACH, Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering Rio de Janeiro, Brazil, 2001.
    [1] 马志良,罗德涛, 近海移动式平台. 北京: 海洋出版社, 1993.
    [2] K. Haslum, Design the Trosvik Bingo 3000, The Naval Architect, March 1981.
    [3] D. T. Brown, M. H. Patel, N. Kitney, H. Ketting, Wave Induced Motions and Deck Loads Of Unbraced SEMI-SUBMERSIBLES, Transactions of Royal Institution of Naval Architects, 2004.
    [4] 廖谟圣, 国外超深水钻采平台的发展给我们的启迪, 中国海洋平台, 2003, vol. 18, No. 5, pp. 1-5.
    [5] K. M. Oo, Miller, N.S., Semi-Submersible Design: The Effect of Differing Geometries on Heaving Response and Stability, The Royal Institution of Naval Architects, 1976, vol. 119, No. 3, pp. 97-119.
    [6] 长江船舶设计院, 内河船舶设计手册-船体分册. 北京: 人民交通出版社, 1977.
    [7] 潘斌, 移动式平台设计. 上海: 上海交通出版社, 1996.
    [8] E. E. Horton, Mc Cammon, L.B,Murtha,J.P.,Paulling,J.R., Optimisation of stable platform characteristics, OTC, 1972.
    [9] RigLogix, Weekly Offshore Rig Review: Big Rig Building Boom: Rigzone.com, 2006.
    [10] J. J. M. S.Wu, G. S. Virk*, The Motions and Internal Forces of a Moored Semi-submersible in Regular Waves, Ocean Engng, 1997, vol. 24, No. 7, pp. 593-603.
    [11] P. N. Stanton, Kuang, J.G., Evaluation of Semi_submersible Drilling Vessels, Journal of Petroleum Technology, 1975, vol. 27, No. 2.
    [12] 蔡岭梅,王兴权,杨万柏, 船舶静力学. 武汉: 人民交通出版社, 1995.
    [13] 陈宽, 近海工程导论. 北京: 海洋出版社, 1988.
    [14] 船舶设计实用手册编辑委员会编, 船舶设计实用手册-第一分册-总体性能: 国防工业出版社, 1962.
    [15] 方华灿, 海洋石油钻采装备与结构. 北京: 石油工业出版社, 1999.
    [16] 方华灿, 对我国深海油田开发工程中几个问题的浅见, 中国海洋平台, 2006, vol. 21, No. 4.
    [17] 何炎平,谭家华, “南海 2 号“半潜式钻井平台深水改造方案运动响应和波浪载荷分析, 中国海上油气(工程), 2003, vol. 15, No. 6.
    [18] 黄祥鹿,陆鑫森, 海洋工程流体力学及结构动力响应. 上海: 上海交通大学出版社, 1992.
    [19] 黄渝祥,邢爱芳, 工程经济学. 上海: 同济大学出版社, 1985.
    [20] 贾慧荣,何炎平,谭家华, 南海 2 号半潜式平台深灰改造方案完整稳性研究, 中国海洋平台, 2004, vol. 19, No. 2.
    [21]廖谟圣, 海洋油气工业的发展与新一代的移动式钻采平台, 中国海洋平台, 2002, vol. 17, No. 1, pp. 1-3.
    [22] 刘海霞,肖熙, 半潜式平台结构强度分析种的波浪载荷计算, 中国海洋平台, 2003, vol. 18, No. 2.
    [23] 挪威船级社, 《近海活动式平台入级规范》. 北京: 海洋出版社, 1984.
    [24] 孙意卿, 海洋工程环境条件及其载荷. 上海: 上海交大出版社, 1989.
    [25] 天津大学水文力学教研室, 海洋石油工程环境—水文分析计算. 天津: 石油工业出版社, 1983.
    [26] 张质文,虞和谦, 《起重机设计手册》: 中国铁道出版社, 1998.
    [1] J. P. Hooft, Advanced Dynamics of Marine Structures. New York: J. Wiley, 1982.
    [2] H. L. Minkenberg,M. F. v. Sluijs, Motion optimizaion of semi-submersibles, in OTC 1972. Dallas, Texas, 1972, pp. 131-137.
    [3] M. Takagi, S.-i. Arai, S. Takezawa, K. Tanaka, N. Takarada, A Comparison of Methods for Calculateing the Motion of a Semi-submersible, Ocean Engineering, 1985, vol. 12, No. 1, pp. 45-97.
    [4] P. W. Penny,R. M. Riiser, Preliminary Design of Semi-Submersibles, North East Coast Institute of Engineers & Shipbuilders, 1984, vol. 101, No. 2, pp. 49-70.
    [5] J. M. A. Vasconcellos, R. C. Batista, J. C. Cyrino, Design of Semisubmersible Columns Using multiple Criteria Methods and Expert Systems, PRATICAL DESIGN OF SHIPS AND MOBILE UNITS - PRAD'S 92, Newcastle, Inglaterra, 1992.
    [6] 潘斌, 移动式平台设计. 上海: 上海交通大学出版社, 1995.
    [7] 马志良,罗德涛, 近海移动式平台. 北京: 海洋出版社, 1993.
    [8] K. M. Oo,N. S. Miller, Semisubmersible design: the effect of differing geometries on heaving response and stability., Transactions of the Royal Institution of Naval Architects, 1977, vol. 119, pp. 97-119.
    [9] E. E. Horton, L. B. McCammon, J. P. Murtha, J. R. Paulling, Optimization of Stable Platform Characteristics, Offshore Technology Conference, Dallas, Texas, 1972.
    [10] S. Fuzhong, Analysis of Motion of Semusubmersible in Sea Waves, Offshore Technology Conference, Houston, Texas, 1980.
    [11] J. R. Paulling, Y. S. Hong, H. H. Chen, S. G. Stiansen, Analysis of Semisubmersible Catamaran-Type Platforms, Offshore Technology Conference, Houston, Texas, 1977.
    [12] L. Mitsui Engineering & Shipbuilding Co., A Design and Analysis Program System for Offshore Structures, Japan Shipbuilding and Marine Engineering, 1979, vol. 13, No. 1, pp. 5-33.
    [13] C. H. Kim,F. Chou, Motion of a Semisubmersible Drilling Platform in Head Seas, Marine Technology, 1973, vol. 10, No. 2, pp. 112-123.
    [14] 孙复中, 半潜船运动的新理论计算方法, 中国造船, 1980, No. 4, pp. 64-78.
    [15] 金德贤, 张世联, 韩继文, 李润培, 刘应中, 黄祥鹿, 朱庭耀, 半潜式平台结构设计分析的工程系统-OSAS-3, 海洋工程, 1989, vol. 7, No. 2, pp. 6-15.
    [16] 朱庭耀, 半潜式平台在波浪中的运动响应结构响应及余度分析[硕士], 上海交通大学, 1986.
    [17] W. Frank, Oscellation of cylinder in or below the free surface of deep fluids, Washington D. C. , NSRDC Report 2375 1967.
    [18] G. E. Hearn,K. C. Tong, Evaluation of Low-Frequency Wave Damping, Offshore Technology Conference, Houston, Texas, 1986.
    [19] J. P. Hooft, Determining Platforms for Minimum Motion, Ocean Industry, 1970, vol. 5, pp. 27-30.
    [20] J. P. Hooft, A Mathematical Method of Determining Hydrodynamic Induced Forces on a Semisubmersible, Transactions - Society of Naval Architects and Marine Engineers, 1971, vol. 79, pp. 28-70.
    [21] R. Kishev, A. Ivanov, L. Pomeranetz, On the practical evaluation of hydrodynamic coefficients of semisubmersible platforms, based on systematic model tests, Behaviour of Offshore Structures, Proc. 4th Int. Conf. BOSS'85, Delft, The Netherlands, 1985.
    [22] M. H. Patel, On the Wave Induced Motion Response of Semisubmersibles, Transactions of the Royal Institution of Naval Architects, 1983, vol. 125, pp. 221-228.
    [23] D. V. Reddy, B. Muggeridge, H. El-Tahan, C. C. Hsiung, Dynamic Response of Moored Semisubmersible to Bergy Bit Impact, Irregular Wave, Wind, and Current Forces, Offshore Technology Conference, Houston, Texas, 1982.
    [24] S. Sengupta,M. K. Chatterjee, Evaluation of Semisubmersible Motion Characteristics, Marine Technology, 1986, vol. 23, No. 3, pp. 217-225.
    [25] F. V. Walree,H. J. J. V. d. Boom, Wind, Wave, and Current Loads on Semisubmersibles, Offshore Technology Conference, Houston, Texas, 1991.
    [26] J. d. Weerd,J. v. Santen, STUDY OF THE MOTIONAL BEHAVIOUR OF SEMI-SUBMERSIBLES AT SHALLOW DRAFT, in GustoMSC inside, pp. 11.
    [27] 陈宏彬,李远林, 用源分布方法求解浅水中二维任意剖面在自由表面上垂荡的附加质量和阻尼系数, 船舶工程, 1997, No. 第 3 期, pp. 8-11.
    [28] 方钟圣, 计算作用在海洋大结构物上水动力的源加偶极子分步法, 海洋工程, 1985, vol. 3, No. 3, pp. 1-11.
    [29] 黄祥鹿,陆鑫森, 海洋工程流体力学及结构物动力响应. 上海: 上海交通大学出版社, 1992.
    [30] 姜际升, 劳国升, 胡平贤, 半潜式平台运动的理论预报, 海洋学报, 1984, vol. 6, No. 5, pp. 678-691.
    [31] 交通部上海船舶运输科学研究所, 船舶适航性译文集. 上海: 上海科学技术情报研究所, 1974.
    [32] 李兢, 船舶在海浪中的运动与载荷的仿真研究[硕士], 哈尔滨工程大学, 2002.
    [33] 刘应中,缪国平, 海洋工程水动力学基础. 北京: 海洋出版社, 1991.
    [34] 聂武,刘玉秋, 海洋工程结构物动力分析. 哈尔滨: 哈尔滨工程大学出版社, 2002.
    [35] 钱昆, 浮体在大幅波浪中的运动和荷载计算研究[博士], 大连理工大学, 2004.
    [36] 吴秀恒, 张乐文, 王仁康, 船舶操纵性与耐波性. 北京: 人民交通出版社, 1988.
    [37] 杨楠, 船舶运动的理论预报与研究[硕士], 大连理工大学, 2005.
    [38] 杨奕, 船舶运动预报方法研究[硕士], 哈尔滨工程大学, 2005.
    [39] 元良诚三, 船舶与海洋构造物动力学. 天津: 天津大学出版社, 1992.
    [40] 张海彬, FPSO 储油轮与半潜式平台波浪载荷三维计算方法研究[博士], 哈尔滨工程大学, 2004.
    [41] 张建, 船舶在波浪中的纵向运动响应及载荷[硕士], 大连理工大学, 2005.
    [42] 竺艳蓉, 海洋工程波浪力学. 天津: 天津大学出版社, 1991.
    [43] T. Sarpkaya,M. Isaacson, Mechanics of Wave Forces on Offshore Structures. New York: Van Nostrand Reinhold Company, 1981.
    [44] O. M. Faltinsen, Sea loads on ships and offshore structures. Cambridge; New York: Cambridge University Press, 1990.
    [45] 石磊, 王学仁, 孙文爽, 试验设计基础. 重庆: 重庆大学出版社, 1996.
    [46] 陈魁, 试验设计与分析. 北京: 清华大学出版社, 1996.
    [47] C. Qian,C. Yuan, An Integrated Process of CFD Analysis and Design Optimization with Underhood Thermal Application, 2001.
    [48] 关志华, 非支配排序遗传算法(NSGA)算子分析, 管理工程学报, 2004, vol. 18, No. 1, pp. 56-60.
    [49] 侯中喜, 陈小庆, 郭良民, 基于排挤机制改进的多目标进化算法, 国防科技大学学报, 2006, vol. 28, No. 4.
    [50] 王达, 针对多目标优化的精英保留非劣排序遗传算法, 河南化工, 2005, vol. 22.
    [51] 高永芳, 集装箱平车车体结构优化设计研究[硕士], 北京交通大学, 2007.
    [52] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, vol. 6, No. 2, pp. 182-197.
    [53] N. Srinivas,K. Deb, Multiobjective optimization using nondominated sorting in Genetic Algorithms, Evolutionary Computation, 1995, vol. 2, No. 3, pp. 221-248.
    [54] G. F. Class, Multi-Scale Model Tests with a Ring-Shaped Semi-submersible, OTC, 1978.
    [1] J. N. Newman, Marine Hydrodynamics. Cambridge, Mass: The MIT Press, 1977.
    [2] WAMIT USER MANUAL: WAMIT, Inc.
    [3] 钱昆, 浮体在大幅波浪中的运动和荷载计算研究[博士], 大连理工大学, 2004.
    [4] 张海彬, FPSO 储油轮与半潜式平台波浪载荷三维计算方法研究[博士], 哈尔滨工程大学, 2004.
    [5] DNV, SESAM User Manual WADAM ? Wave Analysis by Diffraction and Morison Theory
    [6] 刘应中,缪国平, 船舶在波浪上的运动理论. 上海: 上海交通大学出版社, 1986.
    [7] O. M. Faltinsen, Sea loads on ships and offshore structures. Cambridge; New York: Cambridge University Press, 1990.
    [8] T. F. Ogilvie, Second-Order Hydrodynamic Effects on Ocean Platforms, Proc. Intl. Workshop Ship and Platform Motions, Berkeley Calif, 1983.
    [9] H. Maruo, The drift of a body floating on waves, Journal of Ship Research, 1960, vol. 4, No. 3, pp. 1-10.
    [10] 黄祥鹿, 船舶与海洋结构运动的随机理论. 上海: 上海交通大学出版社, 1994.
    [11] G. F. Clauss,T. E. Schellin, Slow Drift Forces and Motions on a Barge-Type Structure Comparing Model Tests With Calculated Results, Offshore Technology Conference, Houston, Texas, 1982.
    [12] C.-H. Lee,J. N. Newman, Second-order Wave Effects on Offshore Structures, BOSS' 94, MIT, 1994.
    [13] J. L. Cozijn, B. Buchner, R. R. T. v. Dijk, Hydrodynamic Research Topics for DP Semi Submersibles, Offshore Technology Conference, Houston, Texas 1999.
    [14] J. A. Pinkster, Hydrodynamic Aspects of Moored Semisubmersibles and TLP's, Offshore Technology Conference, Huston, Texas, USA, 1993.
    [15] J. Birknes, A Convergence Study of Second-Order Wave Elevation on Four Cylinders, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [16] 陈学闯, 张力腿平台低频水平慢漂力研究[硕士], 天津大学, 2002.
    [17] 陈恒,王磊, 深水平台二阶波浪力研究综述, 海洋工程, 2006, vol. 24, No. 4, pp. 124-128.
    [18] 朱英富, 李为, 闵美松, 船舶在波浪中航行受到的平均二阶波浪力, 舰船科学技术, 1997, No. 5, pp. 21-26.
    [19] DNV, SESAM User Manual Postresp?Interactive Postprocessor for General Response Analysis.
    [20] 元良诚三, 船舶与海洋构造物动力学. 天津: 天津大学出版社, 1992.
    [21] 李润培,王志农, 海洋平台强度分析. 上海: 上海交通大学出版社, 1992.
    [1] 俞湘三, 陈泽梁, 楼连根, 迟云鹏, 船舶性能实验技术. 上海: 上海交通大学出版社, 1991.
    [2] B. Sweetman, Airgap Analysis of Floating Structures Subject to Random Seas: Prediction of Extremes Using Diffraction Analysis Versus Model Test Results[Ph. D], Stanford University, 2001.
    [3] 马巍巍, 余建星, 于皓, 桁架式 Spar 平台气隙响应研究, 中国海上油气, 2006, vol. 18, No. 5, pp. 353-356.
    [1] J. T. Daniels, Mooring system and method for deep and ultra deep water, vol. 6408781, U. S. Patent, Ed. U. S. A. : Texaco Inc. , 2002.
    [2] S. Chakrabarti, Handbook of Offshore Engineering, vol. 2. Amsterdam;London: Elsevier, 2005.
    [3] G. Clauss, E. E. Lehmann, C. C. Ostergaard, Offshore structures. London ; New York: Springer-Verlag, 1992.
    [4] 马志良,罗德涛, 近海移动式平台. 北京: 海洋出版社, 1993.
    [5] C. A. Cermelli,S. S. Bhat, Fiber Mooring for Ultra-Deepwater Applications, Proceedings of The Twelfth(2002) International Offshore and Polar Engineering Conference, Kitakyushu,Japan, 2002.
    [6] A. C. Fernandes,R. R. Rossi, Distored Polyster Lines for Reduced Model Testing of Offshore Mooring Lines, DEEPWATER MOORING SYSTEM: Concepts, Design, Analysis and Materials. Proceedings of the International Symposium, Houston, USA, 2003.
    [7] 王言英,肖越, 深水锚泊的新概念与新技术, 船舶工程, 2004, vol. 26, No. 2, pp. 1-3.
    [8] S. Banfield, T. Versavel, R. Snell, R. Ahilan, Fatigue Curves for Polyester Moorings - A State-of-the-Art Review, Offshore Technology Conference, Houston, Texas, 2000.
    [9] E. G. Ward, R. E. Haring, P. V. Devlin, Deepwater Mooring and Riser Analysis for Depths to 10000 Feet, Offshore Technology Conference, Houston, Texas, 1999.
    [10] J. M. Johnsen,O. ?ritsland, Design and Optimisation of Taut-Leg Mooring Systems, Offshore Technology Conference, Houston, Texas, 1999.
    [11] P. Dove, D. Weisinger, F. Abbassian, J. Hooker, The Development and Testing of Polyester Moorings for Ultradeep Drilling Operations, Offshore Technology Conference, Houston, 2000.
    [12] R. S. Kota, W. Greiner, R. B. D'Souza, Comparative Assessment of Steel and Polyester Moorings in Ultradeep Water for Spar- and Semi-Based Production Platforms, Offshore Technology Conference, Houston, Texas, 1999.
    [13] R. R. Rossi, L. C. P. Messina, L. M. N. Amarante, A. M. Kaizer, O. B. Augusto, J.R. Silva, MODU'S MOORING SYSTEMS FOR CAMPOS BASIN DEEP WATER FIELDS, 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, 2001.
    [14] N. Haug,W. Greiner, Polyester and steel mooring designs in the Atlantic Margin, Deep and ultra deep water offshore technology, Newcastle, 1999.
    [15] P. Davies, M. Fran?ois, F. Grosjean, P. Baron, K. Salomon, D. Trassoudaine, Synthetic Mooring Lines for Depths to 3000 Meters, Offshore Technology Conference, Houston, Texas, 2002.
    [16] W. Ma, K. Huang, M.-Y. Lee, S. Albuquerque, F. G. Palazzo, On the Design and Installation of an Innovative Deepwater Taut-Leg Mooring System, Offshore Technology Conference, Houston, Texas, 1999.
    [17] 任贵永, 海洋活动式平台. 天津: 天津大学出版社, 1989.
    [18] API RP 2FP1, Recommended Practice fr Design, Analysis, and Maintenance of Moorings for Floating Production Systems, American Petroleum Institue, 1993.
    [19] Det Norske Veritas, Offshore Standard - Position Mooring, 2004.
    [20] API RP 2P, Analysis of Spread Mooring Systems for Floating Drilling Units, American Petroleum Institue, 1987.
    [1] 刘应中, 物体运动的时域计算—非线性理论与数值解法, 海洋工程研究进展(第一辑), 徐植信 主编, 上海: 《中国造船》编辑部, 1985, pp. 42-52.
    [2] 李文龙, 海上石油战略储备系统研究[博士], 上海交通大学, 2003.
    [3] 马志良,罗德涛, 近海移动式平台. 北京: 海洋出版社, 1993.
    [4] T. Nakajima, S. Motora, M. Fujino, On the Dynamic Analysis of Multi-Component Mooring Lines, Offshore Technology Conference, Houston, Texax, 1982.
    [5] 刘应中, 缪国平, 李宜乐, 刘滋源, 刘和东, 黄庆玉, 马庆九, 系泊系统动力分析的时域方法, 上海交通大学学报, 1997, vol. 31, No. 11, pp. 7-12.
    [6] M. S. Triantafyllou, Preliminary Design of Mooring Systems, Journal of Ship Research, 1982, vol. 26, No. 1, pp. 25-35.
    [7] S. Huang, Dynamic Analysis of Three-Dimensional Marine Cables, Ocean Engineering, 1994, vol. 21, No. 6, pp. 587-605.
    [8] X. Chen,J. Zhang, Dynamic Analysis of Mooring Lines by Using Three Different Methods, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [9] G. B. Matter, J. S. S. Jr., S. H. Sphaier, S. H. S. Correa, I. Q. Masetti, Dynamic Analysis of the DICAS Mooring Configuration for Floating Systems, Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 2001.
    [10] P.-Y. Couliard,R. S. Langley, Nonlinear Dynamics of Deep-Water Moorings, Proceedings of 20th International Conference on Offshore Mechanics and Artic Engineering, Rio de Janeiro, Brazil, 2001.
    [11] N. Haug,W. Greiner, Polyester and steel mooring designs in the Atlantic Margin, Deep and ultra deep water offshore technology, Newcastle, 1999.
    [12] 范菊, 纪亨腾, 黄祥鹿, 浮式塔的动力计算, 海洋学报, 2001, vol. 23, No. 2, pp. 117-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700