用户名: 密码: 验证码:
部分取代芳烃与重金属对发光菌联合毒性及构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测定了部分取代芳烃(9种取代苯酚类化合物和11种硝芳烃类化合物)对发光菌的单一毒性,从单一毒性结果可以看出:所测有机物对发光菌的单一毒性大小与取代基的种类、位置和个数等因素有关。
     在测定重金属单一毒性的基础上,分别测定了二元有机-无机复合体系(重金属镉和铅分别以其单一毒性的0.2倍、0.5倍和0.8倍与取代苯酚类化合物混合,重金属铜和锌分别以其单一毒性的0.2倍、0.5倍和0.8倍与硝基芳烃类化合物混合)对发光菌的联合毒性,并采用毒性单位法(TU)和相加指数法(AI)对联合毒性进行了评价,同时根据结构-活性相关研究的方法和原理建立了可预测联合毒性的QSAR模型。
     不同浓度镉与取代苯酚类化合物对发光菌联合毒性研究结果表明:取代苯酚类化合物与镉组成的二元混合体系主要表现为相加作用或近于相加作用的弱拮抗或弱协同。在取代苯酚类化合物与镉对发光菌联合毒性的QSAR研究中,无论镉在什么浓度下,取代苯酚类化合物在混合物中的毒性都和它们的正辛醇/水分配系数的对数(lgP)和生成热(△Hf)有很好的相关性。
     不同浓度铅与取代苯酚类化合物对发光菌联合毒性研究结果表明:当铅在0.2EC50浓度时,取代苯酚类化合物与铅的联合效应主要是拮抗作用;当铅的浓度为0.5EC50时,取代苯酚类化合物与铅的联合效应和取代基的位置有关系,邻位取代苯酚类化合物与铅的联合效应主要是拮抗作用,间位取代苯酚与铅的联合效应为协同作用,而对位取代苯酚类化合物与铅的联合效应为近于相加作用;当铅的浓度为0.8EC50时,取代苯酚类化合物与铅的联合效应主要是偏于协同的相加作用或协同作用。由于铅浓度的不同,各取代苯酚类化合物与铅的二元混合体系的联合效应有很大的差别,所以所建立的不同铅浓度下的二元混合体系中取代苯酚类化合物的毒性与其结构描述符的QSAR模型不同,当铅在0.2EC50浓度时,混合物中取代苯酚类化合物的毒性主要与取代苯酚类化合物的水溶解性参数(WS)和三阶分子连接性指数(3X)相关;当铅在0.5EC50浓度时,混合物中取代苯酚类化合物的毒性主要与取代苯酚类化合物的分子相对摩尔折射率(E)和酸解离参数(pKa)有关;当铅在0.8EC50浓度时,混合物中取代苯酚类化合物的毒性主要与取代苯酚类化合物的极性/极化率参数(S)相关。
     不同浓度铜与硝基芳烃类化合物对发光菌联合毒性研究结果表明:当Cu在0.2EC50的时候,联合作用以相加为主;在此铜浓度时,硝基芳烃类化合物在混合体系中的毒性可以由Connolly溶剂排斥体积(CSEV)和极性/极化率参数(S)很好的表征,且毒性与这两个参数均呈正相关的关系。当Cu在0.5EC50的时候,拮抗作用、协同作用和相加作用都存在;当Cu在0.8EC50的时候,联合作用主要以拮抗作用为主,部分表现为相加作用;在中、高浓度铜时,硝基芳烃类化合物在混合体系中的毒性均和Connolly溶剂可及分子表面积(CAA)呈正相关。
     不同浓度锌与硝基芳烃类化合物对发光菌联合毒性研究结果表明:锌在低浓度时,其与硝基芳烃类化合物的联合毒性主要表现为拮抗作用或偏于拮抗的相加作用(约占82%),混合体系中硝基芳烃的毒性与化合物的Connolly分子可及表面积(CAA)和分子的氢键供体常数(A)有很好的相关关系;锌在中浓度时,其与硝基芳烃类化合物的联合作用也主要以拮抗作用和相加作用为主(约占91%),混合体系中硝基芳烃的毒性与化合物的椭圆度(Ov)和总能量(TE)有很好的相关关系;当锌的浓度为高浓度时,其与硝基芳烃类化合物对发光菌的联合作用为拮抗作用(约占45%)和相加作用(约占55%),混合体系中硝基芳烃类化合物的毒性与二阶分子连接性指数(2X)相关。
The single toxicity of 9 substituted phenols and 11 nitro-substituted aromatic compounds to Phtobacterium phosphoreum were determined respectively. It shows that the toxicity is related to group variety, the number of group and their substitutive positions.
     On the determination of single toxicity of heavy metals, the joint toxicity of binary mixtures of organic pollutants and heavy metals (cadmium/lead and 9 substituted phenols in different cadmium/lead concentrations of 0.2 EC50, 0.5 EC50 and 0.8 EC50; copper/zinc and 11 nitro-substituted aromatic compounds in different copper/zinc concentrations of 0.2 EC50, 0.5 EC50 and 0.8 EC50) were measured. The joint toxicity was evaluated by Toxic Unit (TU) and Additive Index (AI) methods. On the theory of quantitative structure-activity relationship (QSAR), QSAR models were developed to study the joint toxicity of organic pollutants and heavy metals.
     The result of joint toxicity of cadmium (Cd) and 9 substituted phenols to Phtobacterium phosphoreum indicated that the joint toxicity was mainly simple addition or close to simple addition. QSAR equations were built from the joint toxicity and molecular structural descriptors of substituted phenols in the different Cd concentrations. It was shown that the joint toxicity in different Cd concentrations was related to the same descriptors, the logarithm of n-octanol/water partition coefficient (lgP) and the heat of formation (△Hf).
     The result of joint toxicity of lead (Pb) and 9 substituted phenols to Phtobacterium phosphoreum was showed as following. In the Pb concentration of 0.2 EC50, the binary joint effects of Pb and substituted phenols were antagonism. In the Pb concentration of 0.5 EC50, the binary joint effects of Pb and substituted phenols were related to the position of substituted groups of substituted phenols. The joint effects of Pb and ortho-substituted phenols were mainly antagonism. The joint effect of Pb and meta-substituted phenol (m-introphenol) is synergism. Whereas the joint effects of Pb and para-substituted phenols were mainly close to additive action. In the Pb concentration of 0.8 EC50, the binary joint effects of Pb and substituted phenols were synergism. The QSAR equations were built from the joint toxicity of substituted phenols in the different Pb concentrations of 0.2 EC50, 0.5 EC50 and 0.8 EC50. It shows that when Pb was set in different concentrations, the joint toxicity of substituted phenols is related to different physical-chemical parameters. In the low Pb concentrations, the joint toxicity is related to water solubility parameter (WS) and the third order molecular connectivity index (3X). In the medium Pb concentration, the joint toxicity is related to solute excess molar refractivity (E) and ionization constant (pKa). In the high Pb concentration, the joint toxicity is related to dipolarity/polarizability parameter (S).
     The result of joint toxicity of copper (Cu) and 11 nitro-substituted aromatic compounds to Phtobacterium phosphoreum was showed as following. In the Cu concentration of 0.2 EC50, the binary joint effects of Cu and nitro-substituted aromatic compounds were mainly simple addition. In this low Cu concentration, the joint toxicity is positively related to Connolly Solvent-Excluded Volume (CSEV) and (Polarity/Polarizability (S) of a molecular. In the Cu concentration of 0.5 EC50, simple addition, antagonism and synergism all existed in mixtures of Cu and 11 nitro-substituted aromatic compounds. In the Cu concentration of 0.8 EC50, the binary joint effects were mainly antagonism, meanwhile some were simple addition. In the medium and high Cu concentrations, the joint toxicity is positively related to Connolly Accessible Area (CAA) of a molecular.
     The result of joint toxicity of zinc (Zn) and 11 nitro-substituted aromatic compounds to Phtobacterium phosphoreum was showed as following. In the Zn concentration of 0.2 EC50, the binary joint effects of Zn and nitro-substituted aromatic compounds were mainly (about 82%) antagonism and simple addition (close to antagonism). In this low Zn concentration, the joint toxicity is positively related to Connolly Accessible Area (CAA) and Overall or Effective Hydrogen Bond Acidity (A) of a molecular. In the Zn concentration of 0.5 EC50, the binary joint effects of Zn and nitro-substituted aromatic compounds were mainly (about 91%) antagonism and simple addition. The joint toxicity of Zn and p-nitrobenzoic acid was an exception, which showed synergism. In the medium Zn concentration, the joint toxicity is related to ovality (Ov) and total energy (TE) of a molecular. In the Zn concentration of 0.8 EC50, the binary joint effects were antagonism (45%) and simple addition (55%). In the high Zn concentration, the joint toxicity is positively related to the second order molecular connectivity index (2X)
引文
[1] 郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报,2001,12(3):469-473.
    [2] 周启星.复合污染生态学[M],中国环境科学出版社,1995.
    [3] 梁继东,周启星. 甲胺磷、乙草胺和铜单一与复合污染对蚯蚓的毒性效应研究[J]. 应用生态学报,2003,14(4):593-596.
    [4] Xu S ,Nirmalakhandan N. Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals [J]. Wat Res, 1998,32:2391-2399.
    [5] Prakash J, Mirmalakhandan N, Sun B et al. Toxicity of binary mixtures of organic chemicals to microorganisms[J]. Wat Res, 1996,30(6):1459-1463.
    [6] Lange JH , Thomulka KW. Use of the Vibrio haveyi Toxicity Test for Evaluating Mixture Interactions of Nitrobenzene and Dinitrobenzene[J]. Ecotoxicology and Environmental Safety,1997,38:2-12.
    [7] 童建,冯致英.环境化学物的联合毒作用[M].上海科学技术文献出版社,1994.
    [8] 张毓琪等. 环境生物毒理学[M]. 天津大学出版社, 1993.
    [9] 杨再福,陈立侨,陈华友. 重金属铜、镉对蝌蚪毒性的研究[J]. 中国生态农业学报, 2003, 11(1):102-103.
    [10] 徐永江,柳学周,马爱军. 重金属对鱼类毒性效应及其分子机理的研究概况[J]. 海洋科学,2004,28(10):67-70.
    [11] 党亚爱,王国栋,辛宝平等. 利用发光菌评价 17 种染料的毒性效应[J]. 西北农林科技大学学报(自然科学版),2003,31(3):183-186.
    [12] 于瑞莲,胡恭任.不同 pH 值下有机酸碱对发光菌的急性毒性[J]. 重庆环境科学,2003,25(10):12-14,27.
    [13] Finney, DJ.. Probit Analysis, third [M]. Cambridge University Press, Cambridge, 1971.
    [14] 杜荣骞. 生物统计学(第二版)[M].高等教育出版社,2003,4.
    [15] 卢玲,宋福. 鱼类急性毒性实验[J]. 生物学通报,2002,37(7):52-53.
    [16] 刘新会,骆文茹,王连生. 苯砜基乙酸酯类化合物发光菌毒性效应的 CoMFA 研究[J].环境化学,2005,24(1):36-40.
    [17] EIFAC. Working Party on water quality criteria for European freshwater fish: Revised report on combined effects on freshwater fish and other aquatic life of mixtures of toxicants in water[R]. EIFAC Tech Paper, 1987 ,37 Rev. 1.
    [18] K?nemann, H. Quantitative structure–activity relationships in fish toxicity studies. Part 1 : relationships for 50 industrial pollutants[J]. Toxicology, 1981, 19:209-225.
    [19] M. Vighi,a, R. Altenburger, ?. Arrhenius. Water quality objectives for mixtures of toxic chemicals: problems and perspectives[J]. Ecotoxicology and Environmental Safety, 2003, 54:139-150.
    [20] 高继军,张力平,马梅. 应用淡水发光菌研究二元重金属混合物的联合毒性[J]. 上海环境科学,2003,22(11):772-775.
    [21] 王银秋,张迎梅,赵东芹. 重金属镉、铅、锌对鲫鱼和泥鳅的毒性[J]. 甘肃科学学报, 2003, 15(1):35-38.
    [22] 苏丽敏,袁星,丁蕴铮. 用 QSAR 模型预测苯酚类化合物对发光菌的联合毒性[J]. 中国环境科学, 2003, 23(2):148-151.
    [23] Chung-Yuan Chen, Cheng-Liang Lu. An analysis of the combined effects of organic toxicants[J]. The Science of the Total Environment, 2002, 289:123-132.
    [24] Niederlehner, B R. John Cairns, Jr., Eric P. Smith. Modeling Acute and Chronic Toxicity of Nonpolar Narcotic Chemicals and Mixtures to Ceriodaphnia dubia[J]. Ecotoxicology and Environmental Safety, 1998, 39:136-146.
    [25] 王斌 ,赵劲松, 郁亚娟等. 取代联苯的定量结构活性相关及联合毒性研究[J]. 环境科学, 2004, 25(3):89-93.
    [26] Verhaar, HJM., Busser, FJM., Hermens, JLM. A surrogate parameter for the baseline toxicity content of contaminated water[J]. Environ Sci Technol, 1995,29 (3):726-734.
    [27] Zhifen Lin, Ping Zhong, Kedong Yin. Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity[J]. Chemosphere, 2003, 52: 1199-1208.
    [28] 陈碧鹃, 袁有宪 ,王会平. 乙醛、对苯二甲酸、乙二醇对鲢、草鱼的联合毒性[J]. 中国水产科学,2001,8(1):73-76.
    [29] 杜娟. 有机磷农药对卤虫的联合毒性研究[J]. 江苏环境科技,2001,14(1):9-10.
    [30] 刘国光 ,徐海娟, 王莉霞等. 锐劲特和高效氯氰菊酯对原生动物群落的联合毒性[J]. 环境科学, 2005, 26(1):185-189.
    [31] 戴家银 ,郑微云, 王淑红. 重金属和有机磷农药对真鲷和平鲷幼体的联合毒性研究[J]. 环境科学, 1997, 18(5):44-46,54.
    [32] 姚庆祯, 臧维玲, 戴习林. 铜、镉、敌敌畏和甲胺磷对南美白对虾幼虾的急性致毒及相互关系[J]. 上海水产大学学报,2003,12(2):117-122.
    [33] Eduardo Cyrino de Oliveira-Filho, Renato Matos Lopes. Comparative study on the susceptibility of freshwater species to copper-based pesticides[J]. Chemosphere , 2004, 56:369-374.
    [34] Renata Rojí?ková-Padrtová and Blahoslav Mar?álek. Selection and Sensitivity Comparisons of Algal Species for Toxicity Testing[J]. Chemosphere, 1999, 38:3329-3338.
    [35] WHO (World Health Organization). Copper. Environmental Health Criteria 200[S]. IPCS-International Programme on Chemical Safety, WHO, Geneva, 1998.
    [36] Tim Verslycke, Marnix Vangheluwe, Dagobert Heijerick. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity[J]. Aquatic Toxicology, 2003, 64:307-315.
    [37] Chen CY, Yeh JT. Toxicity of binary mixtures of reactive toxicant. Environ. Toxicol[J]. Water Qual 1996, 11:83-96.
    [38] Arnd Weyers , Gerald Vollmer. Algal growth inhibition: effect of the choice of growth rate or biomass as endpoint on the classification and labelling of new substances notified in the EU[J]. Chemosphere, 2000, 41:1007-1010.
    [39] Maria T, Margareta H, Birgitta S. Comparison of the microtox test with 96-Hr LC50 test for the Harpacticoi Nitocr spinipe[J]. Ecotoxicol Environ Safety. 1986, 11:127.
    [40] GBT15441-1995.水质、急性毒性的测定.发光细菌法[S].
    [41] 林志芬, 于红霞, 许士奋等. 发光菌生物毒性测试方法的改进[J]. 环境科学, 2001, 22(2):114-117.
    [42] 周宇, 于红霞, 丁翔等. 氯代苯类有机污染物对斑马鱼胚胎联合毒性效应的研究[J]. 农业环境科学学报, 2003, 22(3):340-344.
    [43] 朱琳, 史淑洁. 斑马鱼胚胎发育技术在毒性评价中的应用[J]. 应用生态学报, 2002, 13(2):252-254.
    [44] OECD.OECD Guideline for Testing of Chemicals: Fish, Embryo Toxicity Test With The Zebrafish (B. Rerio) [S]. Paris: OECDTG212,1996.62-76.
    [45] OECD. OECD guideline for testing of chemicals No. 421: reproduction/developmental toxicity screening test[S]. Original guideline, adopted 27thJuly 1995.
    [46] OECD. OECD guideline for testing of chemicals No. 422: combined repeated dose toxicity study withth e reproduction/developmental toxicity screening test[S]. Original guideline, adopted 22nd March1996.
    [47] Ulrike Reuter, Barbara Heinrich-Hirsch, Jürgen Hellwig. Evaluation of OECD screening tests 421 (reproduction/developmental toxicity screening test) and 422 (combined repeated dose toxicity study with the reproduction/developmental toxicity screening test) [J]. Regulatory Toxicology and Pharmacology, 2003, 38:17-26.
    [48] Bliss CF. The toxicity of poisons applied jointly[J]. Ann Appl Biol,1939, 26:585-591.
    [49] Plackett RL., Hewlett PS. Quantal responses to mixtures of poisons[J]. JR Statist Soc B, 1952, 14:141-154.
    [50] Faust M., Altenburger R .,et al. Algal toxicity of binary combinations of pesticides[J].Bull Environ Contam Toxicol, 1994, 53:134-141.
    [51] 纪云晶等. 实用毒理学手册[M]. 中国环境科学出版社,1993, 37-55.
    [52] Nirmalakhandan N., Arulgnanendran V. et al. Toxicity of mixtures of organic chemicals to microorganisms[J]. Water Research, 1994, 28(3):543-551.
    [53] Ensenbach V, Snagel R. Toxicity of binary chemical mixtures: effects on reproduction of zebrafish (brachydanio rerio) [J]. Arch Environ Contam Toxicol,1997,32(2):204-210.
    [54] 何勇田, 熊先哲. 复合污染研究进展[J]. 环境科学,1994, 15(6):79-83.
    [55] 孙金秀, 陈波, 姚佩佩. 有机磷与拟除虫菊酯农药联合作用的毒性评价[J]. 卫生毒理学杂志,2000,14(3):141-144.
    [56] Donnelly KC, Claxton LD, Huebner HJ. Mutagenic interactions of model chemical mixtures[J].Chemosphere, 1998, 37(7):1253-1261.
    [57] Sprsgue JB, Ramsay BA. Lethal levels of mixed copper-zinc solutions for juvenile salmon[J]. Fish Res Bd Can, 1965,22:425-432.
    [58] Marking LL. Method for assessing additive toxicity of chemical mixtures. Aquatic toxicicology and hazard evaluation[J]. ASTM STP Publication, 1977, 634:99-108.
    [59] K?nemann H. Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results[J]. Toxicology, 1981,19:229-238.
    [60] Janz DM, Metcalfe CD. Monadditive interactions of mixtures of 2,3,7,8-TCDD and 3,3’4,4’-tetrachlorobiphenyl on aryl hydrocarbon hydroxylase induction in rainbow trout(Oncorhynchus mykiss) [J]. Chemosphere,23(4):467-472.
    [61] Christensen and Chen. Modeling of combined toxic effects of chemicals[J]. In HazardAssessment of Chemicals, 1989, 6:125-186.
    [62] Calamari D, Vighi M. A proposal to define quality objectives for aquatic life for mixtures of chemical substances[J]. Chemosphere, 1992, 25(4):531-542.
    [63] 王连生,韩朔睽等.有机污染化学进展[M],化学工作出版社,1998.
    [64] 毛德寿,周宗灿,王志远等. 环境生化毒理学[M],辽宁大学出版社,沈阳,1986.
    [65] Isnard P, Flammarion P, Roman G, et al. Statistical analysis of regulatory ecotoxicity tests[J]. Chemosphere, 2001,45:659-669.
    [66] Deneer.J, Seinen W, Hermens JL. Growth of Daphnia magna exposed to mixtures of chemicals with diverse modes of action[J]. Ecotoxicity and environmental safety,1998,15:72-77.
    [67] Christensen ER. Dose-response functions in aquatic toxicity testing and the weibull model[J]. Wat Res,1984,18(2):213-221.
    [68] Drescher K, Boedeker W. Assessment of the combined effects of substances: the relationship between concentration addition and independent action[J]. Biometrics,1995,51:716-730.
    [69] Barthouse L W, Suter G W. Use manual for ecologyical risk assessment[M]. ORNL-6251.
    [70] 曹洪法,沈英娃. 生态风险评价研究概述[J],环境化学,1991,10(3):26-29.
    [71] Claassen M. Ecological risk assessment as a framework for environmental impact assessments[J]. Wat Sci Tech,1999,39(10-11):151-154.
    [72] Barnthouse L W. The role of models in ecological risk assessment: a 1990’s perspective[J]. Environmental Toxicology and Chemistry. 1992,11:1751-1760.
    [73] 戴树桂,游道新,鲍明亮.有毒有机污染物环境风险性评价研究[J].环境化学,1991,10(3):20-25.
    [74] EPA. Proposed guidelines for ecological risk assessement[R]. EPA/630/R-95/002B.Risk Assessment Forum,US-EPA, Washington DC,1996.
    [75] Feron VJ, Groten JP. Toxicological evaluation of chemical mixtures[J]. Food and Chemical Toxicology,2002,40:825-839.
    [76] EPA. Guidelines for the health risk assessment of chemical mixtures[S]. Federal Register51(185):34014-34025,United States Environmental Protection Agency, Washington.
    [77] EPA. Technical support document on health risk assessment of chemical mixtures[S],EPA/600/8-90/064. United States Environmental Protection Agency, Washington.
    [78] EPA. Guidelines for conducting health risk assessment of chemical mixtures[S]. Report NCEA-C-0148,United States Environmental Protection Agency, Washington.
    [79] OECD. Harmonised hazard classification criteria for mixtures[S].Report ENV/JM/MONO(2001),Oranisation for Economic Co-operation and Development, Paris.
    [80] Feron VJ ,Cassee FR, Groten JP. Toxicology of chemical mixtures: international perspective[J]. Environmental Health Perspective,1998,106:1281-1289.
    [81] Groten JP. Mixtures and interactions[J]. Food and Chemical Toxicology, 2000,38:565-571.
    [82] Placket RL, Hewlett PS. Quantal responses to mixtures of poisons[J].Journal of the Royal Statistical Society,1956,14:141-163.
    [83] Krishnan K, Haddad S, Tardif R.. PBPK modeling and extrapolation of interactions from binary to more complex mixtures, Application of Technology to Chemical Mixture Research Conference on Application of Technology to Chemical Mixtures Research[C]. National Institute of Environmental Health Sciences and Colorado State University, 2001.
    [84] Cassee FR, Groten JP, Feron, VJ, et al. Changes in the nasal epithelium of rats exposed by inhalation to mixtures of formaldehyde, acetaldehyde and acrolein[J]. Fundamental and Applied Toxicology,1996,29:208-218.
    [85] Kodell RL, Pounds JG. Assessing the toxicity of mixtures of chemicals Statistics in Toxicology[J]. Gordon and Breach, New York, 1991:559-591.
    [86] Kaiser K L E. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology[J]. SAR QSAR Environ Res, 2007, 18(1-2): 3-20.
    [87] Hansch C, Fujita T. Chem. Soc.,1964,86:1616.
    [88] 王连生. 环境化学进展[M]. 北京:化学工业出版社,1993.
    [89] Tunkel J, Mayo K, Austin C, et al. Practical considerations on the use of predictive models for regulatory purposes[J]. Environ Sci Technol, 2005, 39(7):2188-2199.
    [90] Hammett L P. Some relations between reaction rates and equilibrium constants[J]. Chem Rev, 1935, 17 (1): 125-136.
    [91] Hammett L P. The effect of structure upon the reactions of organic compounds[J]. Benzene derivatives. J Am Chem Soc, 1937, 59(1): 96-103.
    [92] Taft R M. Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters[J]. J Am Chem Soc, 1952, 74(12): 3120-3128.
    [93] Hansch C, Maloney P P, Fujita T et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients[J]. Nature, 1962, 194: 178-180.
    [94] Hansch C, Muir R M, Fujita T et al. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients[J]. J Am Chem Soc, 1963, 85(18): 2817-2824.
    [95] Fujita T, Iwasa J, Hansch C. A new substituent constant, π, derived from partition coefficients[J]. J Am Chem Soc, 1964, 86(23): 5175-5180.
    [96] 徐宝峰. 有机化合物的 QSAR 研究[M]. 化学教育,1996,3:4-7.
    [97] Schulta TW, Cronin M. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio Fisheri[J]. Environmental Toxicology and Chemistry,1997,16(2):357-360.
    [98] Cronin MTD, Schulta TW. Structure-toxicity relationships for phenols to Tetrahymena pyriformis[J]. Chemosphere,1996,32(8):1453-1468.
    [99] Gramatica P, Vighi M, Consolaro F et al. QSAR approach for the selection of congeneric compounds with a similar toxicological mode of action[J]. Chemosphere, 2001,42:873-883.
    [100] Vighi M, Gramatica P, Consolaro F, et al. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals[J]. Ecotoxicology and environmental safety,2001,49:206-220.
    [101] Hermens J, Busser F,Leeuwangh P, et al. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in photobacterium phosphoreum : the microtox test[J]. Ecotoxicology and environmental safety,1985,9:17-25.
    [102] Blum D J W:Speece R.E Quantitative structure activity relar tionships for chemicals toxicity to environmental bacteria[J]. Ecotoxi Safe,1991,22:198-224.
    [103] Verhaar H T M,LeeuwenC J V;Hermens J L M,Classic environmental pollutants[J]. Chemosphere,1992,25(4):471-491.
    [104] Blum D J W,Speece RE. Determ chemecal toxicity to aquatic species[J].Environmental Technology,1990,24(3):284-293.
    [105] 王连生. 环境健康化学[M]. 北京:科学出版社,1994.
    [106] 王连生. 有机污染化学(上册)[M]. 北京: 科学出版社, 1990.
    [107] Goss K U, Schwarzenbach R P Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds[J]. Environ Sci Technol, 2001. 35(7): 1-9.
    [108] Nguyen T H, Goss K U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments[J]. Environ Sci Technol, 2005, 39(4): 913-924.
    [109] Kaliszan R. Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography[J]. Chromatogr A, 1993, 656(1-2): 417-435.
    [110] Hansch C, Clayton J M. Lipophilic character and biological activity of drugs II: the parabolic case[J]. J Pharm Sci, 1973, 62(1): 1-21.
    [111] Hermens J, Leeueanch P, Musch A. Quantitative structure-activity relationships and mixture toxicitystudies of chloro- and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata) [J]. Ecotox Environ Safe, 1984, 8(4): 388-394.
    [112] Schultz W T, Bryant S E, Lin D T .Structure-toxicity relationships for tetrahymana: aliphatic aldehydes[J]. B Environ Contam Tox, 1994, 52 (2): 279-285.
    [113] Lin Z, Yu H, Wei D, et al. Prediction of mixture toxicity with its total hydrophobicity[J].Chemosphere,2002,46(2):305-310.
    [114] Kamlet M J, Abraham M H, Doherty R M et al. Solubility properties in polymers and biological media. 4. Correlations of octanol/water partition coefficients with solvatochromic parameters[J]. J Am Chem Soc, 1984, 106(2): 464-466.
    [115] Kamlet M J, Doherty R M, Abboud J -L M et al. Solubility: a new look[J]. Chemtech, 1986, 16(9): 566-576.
    [116] Kamlet M J, Doherty R M, Veith G D et al. Solubility properties in polymers and biological media. 7. An analysis of toxicant properties that influence inhibition of bioluminescence in Photobacterium phosphoreum (the Microtox test) [J]. Environ Sci Technol, 1986, 20(7): 690-695.
    [117] Kamlet M J, Doherty R M, Taft R W et al. Solubility properties in polymers and biological media. 8. An analysis of the factors that influence toxicities of organic nonelectrolytes to the Golden Orfe Fish(Leuciscus idus melanotus) [J]. Environ Sci Technol, 1987, 21(2): 149-155.
    [118] Kamlet M J, Doherty R M, Carr P W et al. Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons[J]. Environ Sci Technol, 1988, 22(5): 503-509.
    [119] Leahy D E. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationship: octanol-water partition coefficients and aqueous solubilities[J]. J Pharm Sci, 1986, 75(7): 629-639.
    [120] Sadek P C, Carr P W, Doherty R M. Study of retention processes in reversed-phase high-performance liquid chromatography by the use of the solvatochromic comparison method[J]. Anal Chem, 1985, 57(14): 2971-2978.
    [121] Lyman WJ, Reehl WF. Handbook of chemical property estimation methods[M].New York: McGraw-HillPress,1982:130-170.
    [122] Wilson L Y, Famini G R. Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices[J] Med Chem, 1991, 34(5): 1668-1674.
    [123] Famini G R, Renski C A, Wilson L Y. Using theoretical descriptors in quantitative structure-activity relationships: some physicochemical properties[J]. Phys Org Chem, 1992, 5(7): 395-408.
    [124] Chen JW, Feng L, Liao Y Y et al. Using AM1 Hamiltonian in quantitative structure-properties relationship studies of alkyl (1-phenylsulfonyl) cycloalkane-carboxylates[J]. Chemosphere, 1996, 33(3): 537-546.
    [125] Chen J W, Wang L S. Using MTLSER model and AM1 Hamiltonian in quantitative structure-activity relationship studies of alkyl (1-phenylsulfonyl) cycloalkane-carboxylates[J]. Chemosphere, 1997, 35(3): 623-631.
    [126] Kier I B ,Hall ,L H Molecular connectivity in chemistry and drug research[M].New York,Academic press,1976.
    [127] Free S M, Wilson J M. A mathematical contribution to structure-activity studies[J]. Med Chem, 1964,7(4): 395-399.
    [128] 张大仁,黄庆国. 分子表面积的精确和经验计算及其在 QSAR 中的应用[J].环境化学 1994, 13:234-238.
    [129] 刘次全.《量子生物学及其应用》[M].北京,高等教育出版社,1990.
    [130] Carbo R ,Leyda L, Arnau, M. How Similar is a Molecule to Another? An Electron Density Measure of Similarity Between two Molecular Structures[J]. Int Quant Chem,1980,17:1185-1189.
    [131] Wan, J,Zhang, L, Yang, G, Zhan, C-G, Quantitative Structure-Activity Relationship for Cyclic Imide Derivatives of Protoporphytinogen Oxddase Inhibition:A Study of Quantum Chemical Descriptors from Density Functional Theory[J].Chem Inf Comput Sci, 2004,44:2099-2105.
    [132] Besalu, E, Girones, X, Amat, L, Carbo-Dorca, R. Molecular Quantum Similarity and the Fundammentals of QSAR[J]. Acc Chem Res, 2002,35:289-295.
    [133] Girones, X., Carbo-Dorca, R. Molecular Quantum Similarity-Based QSARs for Binding Affinities of Several Steroid Sets [J] Chem Inf Comput Sci,2002,42:1185-1193.
    [134] 于瑞莲,胡恭任. 环境化学中有机化合物毒性的 QSAR 研究方法[J].环境科学与技术,2003,26:57-59.
    [135] Cramer III R D, Patterson D E, Bunce J D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins[J]. Journal of the American Chemical Society, 1988, 110(18): 5959-5967.
    [136] Marshall G R, Cramer III R D. Three-dimensional structure-activity relationships[J]. Trends in Pharmacological Sciences, 1988, 9 (8): 285-289.
    [137] 朱杰,盛春泉,张万年. 比较分子力场分析法(CoMFA)的研究新进展[J].化学进展,2000, 12 (2):203-207.
    [138] 侯廷军,徐筱杰. 比较分子场分析方法研究的最新进展[J].化学进展,2001, 13 (6): 436-440.
    [139] Karelson, M. Molecular Descriptors in QSAR/QSPR [M].New York, John Wiley&Sons:2000.
    [140] Balaban A T. From chemical topology to 3D geometry [J]. Chem Inf Comput Sci, 1997, 37:645-650.
    [141] Balaban A T. Topological and stereochemical molecular descriptors for dastabased useful in QSAR, similarity/dissimilarity and drug design [J].SAR QSAR Environ Res, 1998, 8:1-21.
    [142] Estrada E, Uriarte E. Recent advances on the role of topological indices in drug discovery research [J].Curr Med Chem, 2001, 8:1699-1714.
    [143] Estrada E, Molina E. 3D connectivity indices in QSPR/QSAR studies [J]. Chem Inf Comput Sci, 2001, 41:791-797.
    [144] Gasteiger J, Sadowski J, Selzer P, et al. Chemical information in 3D space [J]. Chem Inf Comput Sci, 1996, 36:1030-1037.
    [145] Gasteiger J, Burkard S U, Hemmer M C, et al. Decision support systems for chemical structure representation, reaction modeling and spectra simulation [J].SAR&QSAR in Environ Res, 2002, 13:89-110.
    [146] Engel T, Gasteiger J. Chemical structure representation for information exchange [J].Online Inform Rev, 2002, 26: 139-145.
    [147] Jaworsdk JS, Schultz TW. Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals[J]. SAR and QSAR in Environmental Research. 1:3-19.
    [148] Nys G G, Rekker R F. Statistical analysis of a series of partition coefficients with special reference to the predictability of folding of drug molecules. The introduction of hydrophobic fragmental constants (f values) [J]. European Journal of Medicinal Chemistry, 1973, 8: 521-535.
    [149] Nys G G, Rekker R F. The concept of hydrophobic fragmental constants (f values). II. Extension of its applicability to the calculation of lipophilicities of aromatic and heteroaromatic structures[J]. European Journal of Medicinal Chemistry, 1974, 9: 361-375.
    [150] Hammett L P. Linear free energy relationships in rate and equilibrium phenomena[J]. Transactions of the Faraday Society, 1938, 34: 156-165.
    [151] Taft R W. Separation of polar, steric, and resonance effects in reactivity. In: Newman M S ed. Steric Effects in Organic Chemistry[M]. Wiley, New York, 1956: 556-675.
    [152] Taft R W, Lewis I C. The general applicability of a fixed scale of inductive effects. II. Inductive effects of dipolar substituents in the reactivities of m- and p-substituted derivatives of benzene[J]. Journal of the American Chemical Society, 1958, 80 (10): 2436-2443.
    [153] Taft R W, Lewis I C. Evaluation of resonance effects on reactivity by application of the linear inductive energy relationship. V. Concerning a σR scale of resonance effects[J]. Journal of the American Chemical Society, 1959, 81 (20): 5343-5352.
    [154] Hansch C, Leo A, Taft R W. A survey of Hammett substituent constants and resonance and field parameters[J]. Chemical Reviews, 1991, 91 (2): 165-195.
    [155] Hancock C K, Meyers E A, Yager B J. Quantitative separation of hyperconjugation effects from steric substituent constants[J]. Journal of the American Chemical Society, 1961, 83 (20): 4211-4213.
    [156] Charton M. The nature of the ortho effect. II. Composition of the Taft steric parameters[J]. Journal of the American Chemical Society, 1969, 91 (3): 615-618.
    [157] Charton M. Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters[J]. Journal of the American Chemical Society, 1975, 97 (6): 1552-1556.
    [158] Ghose A K,Crippen G M Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions[J]. Journal of Chemical Information and Computer Sciences, 1987, 27 (1):21-35.
    [159] Verloop A, Hoogenstraaten W, Tipker J. Development and application of new steric substituent parameters in drug design[M]. In: Ariens E J ed. Drug Design. Academic Press, New York, 1976: 165-207.
    [160] Livingstone D J. The characterization of chemical structures using molecular properties. A survey[J].Journal of Chemical Information and Computer Sciences, 2000, 40 (2): 195-209.
    [161] Kamlet M J, Abboud J L, Taft R W. The solvatochromic comparison method. 6. The pi.* scale of solvent polarities[J]. Journal of the American Chemical Society, 1977, 99 (18): 6027-6038.
    [162] Taft R W, Kamlet M J. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities[J]. Journal of the American Chemical Society, 1976, 98 (10): 2886-2894.
    [163] Kamlet M J, Taft RW. The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities[J]. Journal of the American Chemical Society, 1976, 98 (2):377-383.
    [164] Selwood D L, Livingstone D J, Comley J C W. Structure-activity relationships of antifilarial antimycin analogs: a multivariate pattern recognition study[J]. Journal of Medicinal Chemistry, 1990, 33 (1):136-142.
    [165] Leo A, Jow P Y C, Silipo C, Hansch C. Calculation of hydrophobic constant (log P) from π and f constants[J]. Journal of Medicinal Chemistry, 1975, 18 (9): 865-868.
    [166] Leo A. Calculating LogPoct from structures[J]. Chemical Reviews. 1993, 93 (4): 1281-1306.
    [167] Karelson M, Lobanov V. S, Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 1996, 96 (3): 1027-1043.
    [168] 林志芬,于红霞,孔德洋等. 一种新的有机污染物 C18EmporeTM 膜/水分配系数测定方法的探讨[J].环境化学,2001,20(2):149-154.
    [169] 梁逸曾,俞汝勤. 分析化学手册:第十分册[M],化学计量学.北京:化学工业出版社,2000:392.
    [170] Kier L B, Hall L H. The nature of structure-activity relationships and their relation to molecular connectivity [J]. Med Chem, 1977, 12:307-312.
    [171] Randic M. Molecular ID numbers: by design[J]. Journal of Chemical Information and Computer Sciences, 1986, 26 (3): 134-136.
    [172] Randic M. On molecular identification numbers [J]. Chem Inf Comput Sci, 1984, 24(3):164-175.
    [173] Randic M. On characterization of molecular branching[J]. Journal of the American Chemical Society, 1975, 97 (23): 6609-6615.
    [174] Wiener H J. Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society, 1947, 69 (1): 17-20.
    [175] 王连生,支正良,高松亭. 分子结构于色谱保留[M].北京:化学工业出版社,1994:216-217.
    [176] Kier LB. A shape index from molecular graphs [J].Quantitative Structure-Activity Relationships, 1985, 4:109-116.
    [177] Kier L B. Shape indexes of orders one and three from molecular graphs [J].Quantitative Structure-Activity Relationships, 1986, 5(1):1-7.
    [178] 许禄,胡昌玉. 应用化学图论[M]. 北京:科学出版社,2000:22-40.
    [179] Hansen P J, Jurs P C. Chemical applications of graph theory. PartⅠ.Fundamentals and topological indices [J]. Chem Educ, 1988, 65 (7):574-580.
    [180] Schultz H P. Topological organic chemistry. 1. Graph theory and topological indices of alkanes [J]. Chem Inf Comput Sci, 1989, 29 (3):227-228.
    [181] Muller W R , Szymanski K, Knop J V, et al. An algorithm for construction of the molecular distance matrix [J]. Comput Chem, 1987, 8 (2):170-173.
    [182] Schultz H P, Chultz E B, Schultz T P. Topological organic chemistry. 2. Graph theory, matrix determinants and eigenvalues, and topological indexes of alkanes [J]. Chem Inf Comput Sci, 1990, 30 (1):2 7-2 9.
    [183] Schultz H P. Topological organic chemistry. 3. Graph theory, binary and decimal adjacency matrices, and topological indices of alkanes [J]. Chem Inf Comput Sci, 1991, 31(1):144-147.
    [184] Kier L B. Distinguishing atom differences in a molecular graph shape index[J]. Quantitative Structure-Activity Relationships, 1986, 5 (1): 7-12
    [185] Kier L B. Inclusion of symmetry as a shape attribute in Kappa index analysis[J]. Quantitative Structure-Activity Relationships, 1987, 6 (1): 8-12.
    [186] Kier L B. An index of molecular flexibility from Kappa shape attributes[J]. Quantitative Structure-Activity Relationships, 1989, 8: 221-224.
    [187] 姚瑜元,许禄. 有机化合物的结构-活性/性质相关性研究—三个新的拓扑指数及其应用 [J].化学学报,1993, 51 (11): 1041-1047.
    [188] 姚瑜元,许禄,杨翌秋等. 一种新的拓扑指数及其在有机化合物结构/性质相关性研究中的应用[J]. 环境科学学报,1994, 14 (1): 1-10.
    [189] 申琦,许禄,李华. 新拓扑指数 Am 在构效关系研究中的应用—I.对烃类气相色谱的保留指数的分析[J].分析化学,1996, 24 (10): 1152-1155.
    [190] 郭明,许禄. 新拓扑指数 Am 在有机物气相色谱法中光离子化灵敏度的分析中的应用[J].分析化学,1996, 24 (12): 1383-1386.
    [191] Kier L B, Hall L H. An electrotopological state index for atoms in molecules[J]. Pharmaceutical Research, 1990, 7 (8): 801-807.
    [192] Hall L H, Kier L B. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information[J]. Journal of Chemical Information and Computer Sciences, 1995, 35 (6): 1039-1045.
    [193] Huuskonen J J, Villa A E P, Tetko I V. Prediction of partition coefficient based on atom-type electrotopological state indices[J]. Journal of Pharmaceutical Sciences, 1999, 88 (2): 229-233.
    [194] Huuskonen J J. QSAR modeling with the electrotopological state indices: predicting the toxicity of organic chemicals[J]. Chemosphere, 2003, 50 (7): 949-953.
    [195] 刘树深,刘堰,李志良等. 一个新的分子电性距离矢量[J].化学学报,2000, 58 (11): 1353-1357.
    [196] Liu S S, Cai S X, Cao C Z et al. Molecular electronegative distance Vector (MED related to 15 properties of alkanes[J]. Journal of Chemical Information and Computer Sciences, 2000, 40 (6): 1337-1348.
    [197] Liu S S, Yin C S, Li Z L et al. QSAR study of steoroid benchmark and dipeptides based onMEDV-13[J]. Journal of Chemical Information and Computer Sciences, 2001, 41 (2): 321-329.
    [198] Liu S S, Yin C S, Wang L S. Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors[J]. Journal of Chemical Information and Computer Sciences, 2002 42 (3): 749-756.
    [199] Liu S S, Yin C S, Cai S X et al. Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons[J]. Chemometrics and Intelligent Laboratory Systems, 2002, 61 (1-2): 3-15.
    [200] 易忠胜,刘树深. 对多氯代二苯并二恶英的定量结构—气相色谱保留行为关系研究[J].计算机与应用化学,2005, 22 (7): 521-526.
    [201] Heitler W, London F.Interaction Between Neutral Atoms and Homopolar Hz[J].Zeitschrift für Physik, 1927, 44:455.
    [202] 封继康. 基础量子化学原理[M].北京:高等教育出版社,1984: 346-351.
    [203] 唐敖庆,杨忠志,李前树. 量子化学[M].北京:科学出版社.1982.
    [204] Hartree D. Calculations of atomic structure. Wiles[M]. 1957.
    [205] Born M, Oppenheimer T R, Quantum theorv of molecules[J]. Ann Phvsik, 1927, 84:457.
    [206] Born M, Huang K, Dynamical theory of crystal lattices[M]. Oxford University Press, New York, 1954.
    [207] Lowdin P O,Correlation problem in many-electron quantum mechanics Review of different approaches and discussion of some current ideas [J].Adv Chem Phys, 1959, 2:207-332.
    [208] Bauschlicher C W Jr, Langhoff S R, Accurate quantum chemical calculation [J].Adv Chem Phys, 1990, 77:103-161.
    [209] Hohenberg P, Kohn W,Inhomogeneous electron gas [J].Phys Rev B, 1964, 136:864-871.
    [210] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J].Phys Rev, 1965, 140:1133.
    [211] Becke A D, Density-functional exchange-energy approximation with correct asymptotic behavior [J].Phys Rev A, 1988, 38:3098-3100.
    [212] Perdew J P, Wang Y,Phys. Rev. B, 1986, 33:8800.
    [213] Perdew J P, Chevary J A, Vosko S H, et al, Phys. Rev. B, 1992, 46:6671.
    [214] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J].Phys Rev B, 1988, 37:785-789.
    [215] Stevens P J, Devlin J F, Chabalowski C F, et a1.J. Phys. Chem.1994. 98:11623.
    [216] Becke A D, .J. Chem. Phvs.,1995, 104:1040.
    [217] Bader R F W, Beddall P M .J. Chem. Phys.1972. 56:3320.
    [218] Todeschini R, Consonni V. Handbook of Molecular Descriptors[M]. Weinheim: WILEY-VCH, 2000.
    [219] 刘次全. 量子生物学[M].北京:高等教育出版社,1990: 12-79.
    [220] 朱永,韩世纲,朱平仇. 量子有机化学[M].上海:上海科学出版社,1986: 177-183.
    [221] Fukui K. Theory of orientation and stereoselection [M].New York:Springer Verlag, 1975: 34.
    [222] Kirschner G, Kowalski B R. The application of pattern recognition on drug design, in Drug Design [M].New York:Academic Press, 1979. Vol.III.
    [223] 梁逸曾,俞汝勤. 化学计量学[M].北京:高等教育出版社,2003.
    [224] 任若恩,王惠文. 多元统计数据分析—理论、方法、实例[M].北京:国防工业科学出版社,1999.
    [225] 陈安进,石杰. 计算机辅助药物设计中用于建模的计算方法研究进展[J].中国海洋大学学报,2005,35:407-411.
    [226] 许禄,邵学广. 化学计量学方法[M].北京:科学出版社,2004.
    [227] 张尧庭,方开泰. 多元统计分析引论[M].北京:科学出版社,1983.
    [228] 王惠文. 偏最小二乘回归方法及其应用[M].北京:国防工业科学出版社,2000.
    [229] Livingstone D J, Salt D W. Judging the significance of multiple linear regression models[J]. Journal of Medicinal Chemistry, 2005, 48 (3): 661-663.
    [230] Gramatica P, Corradi M, Consonni V. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors[J]. Chemosphere, 2001, 41 (5): 763-777.
    [231] Tetko I V, Tanchuk V Y, Kasheva T N et al. Estimation of aqueous solubility of chemical compounds using E-State indices[J]. Journal of Chemical Information and Computer Sciences, 2001, 41 (6):1488-1493.
    [232] Netzeva T I, Dearden J C, Edwards R. QSAR analysis of the toxicity of aromatic compounds to chlorella wulgaris in a novel short-term assay[J]. Journal of Chemical Information and Computer Sciences 2004, 44 (1): 258-265.
    [233] Cronin M T D, Netzeva T I, Dearden J C. et al. Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database[J]. Chemical Research in Toxicology, 2004,17 (4):545-554.
    [234] Netzeva T I, Aptula A O, Benfenati E. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs[J]. Journal of Chemical Information and modeling, 2005, 45 (1): 106-114.
    [235] Eriksson L, Johansson E, Kettaneh-Wold N, et al. Multi—and Megavariate Data Analysis: Principles and Applications [M].Ume?: Umetrics, 2001.
    [236] Stone M. Cross-validation choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society, Series B, 1974, 36 (2): 111-147.
    [237] Wold S. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978, 20 (4): 397-405.
    [238] Eastment H T, Krzanowski W J. Cross-validatory choice of the number of components from a principal component analysis[J]. Technometrics, 1982, 24 (1): 73-77.
    [239] Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Analytica Chimca Acta, 1986 185 (1): 1-17.
    [240] Wold S, Sj?str?m M, Eriksson L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58 (2): 109-130.
    [241] K?vesdi I, Dominguez-Rodriguez M. F., O^ rfi L et al. Application of neural networks in structure-activity relationships[J]. Medicinal Research Reviews, 1999, 19 (3): 249-269.
    [242] Niculescu, S P. Artificial neural networks and genetic algorithms in QSAR[J]. Journal of Molecular Structure (Theochem). 2003, 622 (1-2): 71-83.
    [243] 刘增良,刘有才. 模糊逻辑与神经网络技术[M].北京航天航空大学出版社,1996: 121.
    [244] 焦李成. 神经网络系统理论[M].西安:西安电了科技大学出版社,1992.
    [245] 焦李成. 神经网络计算[M].西安:西安电了科技大学出版社,1993.
    [246] 焦李成. 神经网络的应用与实现[M].西安:西安电了科技大学出版社,1993.
    [247] 刘焕香. 博士毕业论文:基于支持向量机方法的 QSAR/QSPR 在化学、生物及环境科学中的应用研究[D].兰州大学,2005.
    [248] Schultz T W, Cronin M T D. Essential and desirable characteristics of ecotoxicity Quantitative Structure-Activity Relationships[J]. Environ Toxicol Chem, 2003, 22(3): 599–607.
    [249] Worth A P, Bassan A, De Bruijn J, et al. The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods[J]. SAR QSAR Environ Res, 2007, 18(1-2): 111-125.
    [250] Cronin M T D, Walker J D, Jaworska J S, et al. Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances[J]. Environ Health Persp, 2003, 111(10): 1376-1390.
    [251] Organisation for Economic Co-Operation and Development (OECD). Report from the Expert Group on (Q)SARs on the Principles for the Validation of (Q)SARs[R]. 2004. Available online at: http://appli1.oecd.org/olis/2004doc.nsf/linkto/env-jm-mono(2004)24.
    [252] Organisation for Economic Co-Operation and Development (OECD). Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] models[R]. 2007. Available online at: http://www.oecd.org/dataoecd/55/22/38131728.pdf.
    [253] Organisation for Economic Co-Operation and Development (OECD). Testing and assessment Report on the regulatory uses and applications in OECD member countries of (Quantitative) Structure-Activity Relationship[(Q)SAR] models in the assessment of new and existing chemicals[R]. 2006. Available online at: http://appli1.oecd.org/olis/2006doc.nsf/linkto/env-jm-mono(2006)25.
    [254] Walker J W L, Carlsen E, Simon-hettich H B. Globas government applications of analogues, SARs and QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals[J]. SAR QSAR Environ Res, 2002, 13(6): 607-616.
    [255] Nirmalakhandan N,.Xu S, Trevizo C. Additivity in Microbial Toxicity of Nonuniform Mixtures of Organic Chemicals[J]. Ecotoxicology and Environmental Safety,1997,37:97-102.
    [256] Xing Yuan, Guanghua Lu, Jinsong Zhao. QSAR Study on the Joint Toxicity of 2,4-Dinitrotoluene with Aromatic Compounds to Vibrio fischeri. [J].Environ.Sci. Health, 2002,A37(4):573-578.
    [257] Lu GH, Wang C, Tang ZY, et al. Quantitative structure-activity relationships for predicting the joint toxicity of substituted anilines and phenols to algae[J]. Bulletin of Environmental Contamination and Toxicology,2007,78 (2): 97-101.
    [258] Lu GH, Wang C, Tang ZY, et al. Joint toxicity of aromatic compounds to algae and QSAR study [J].Ecotoxicology, 2007, 16 (7): 485-490.
    [259] Wang B, Yu G, Zhang Z, et al.Quantitative structure-activity relationship and prediction of mixture toxicity of alkanols [J]. Chinese Science Bulletin 2006, 51 (22): 2717-2723.
    [260] Lin ZF, Niu XJ, Wu C, et al. Prediction of the toxicological joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum [J] QSAR & Combinatorial Science, 2005, 24 (3): 354-363.
    [261] Lin ZF, Wei D, Wang X, et al.Chemical-chemical interaction between cyanogenic toxicants and aldehydes: A mechanism-based QSAR approach to assess toxicological joint effects[J]. SAR and QSAR in Environmental Research, 2004, 15 (2): 127-138.
    [262] Marking LL, Dawson VK. Method of assessment of toxicity or efficacy of mixtures of chemicals[J]. US Fish Wildl Serv Invest Fish Control ,1975,67:1-8.
    [263] Thomulka KW, Abbas CG, Yong DA el at. Evaluating median effective concentrations of chemical with bioluminescent bacteria[J]. Bull Environ Contam Toxicol ,1996,56:446-452.
    [264] Yangjeh AH, Jenagharad MD, Nooshyar M. Application of artificial neural Networks for predicting the aqueous acidity of various phenols using QSAR.[J] Mol Model ,2006,12: 338-347.
    [265] 金相灿. 有机化合物污染化学[M].北京:清华大学出版社,1990.
    [266] 王红娟,奚红霞,夏启斌,等.含酚废水处理技术的现状与开发前景[J].工业水处理,2002,22(6):6-9.
    [267] 巨华东. 水环境污染概论[M].北京:北京师范大学出版社,1989:112-157.
    [268] 薛良义 , 李卢 , 聂松平.苯酚和对苯二酚对鲫血细胞 DNA 损伤的研究[J]. 水生生物学报,2006,30(2):241-243.
    [269] 陈家长,孙正中,瞿建宏,等. 长江下游重点江段水质污染及对鱼类的毒性影响[J],水生生物学报,2002,26(6):635-640.
    [270] 李建宏,袁俊,倪霞,等.酚对极大螺旋藻生长的影响[J].水生生物学报,2001,25(3):294-296.
    [271] 合正基,汪旭,刘素清. 对苯二酚诱发果蝇生殖细胞非整倍体的研究[J].癌变、畸变、突变,1998,10(3):141-144.
    [272] Ashvini Chauhan, Asit K Chakraborti, et al, Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormice[J].Biochem Biophys Res Commum, 2000,270(3):733-740.
    [273] Leung T kam, Campbell Steve, The sphingomeonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation[J]. FEMS Microbiology Letters, 1999,173(1):247-253.
    [274] 王菊思,赵丽辉.合成有机物的生物降解性研究[J].环境化学,1993,12(3):161-172.
    [275] Keith L H, Telliard W A. Priority pollutants. I. A perspective view [J]. Environ Sci Technol, 1979,13:416-423.
    [276] 张忠辉,洪青,洪元范,等. Burkholderia sp. FDS-1 降解硝基苯酚类化合物的特性研究[J].环境科学,2006,27(3):582-585.
    [277] 许旋,罗一帆,徐志广,等.氯苯酚电子结构对水生物毒性的研究[J].卫生毒理学杂志,2001,15(3):167-170.
    [278] 刘够生,宋兴福,于建国,等.氯代苯酚类衍生物对水生物发光菌的定量结构-活性关系研究[J].江西师范大学学报(自然科学版),2001,25(4):313-316.
    [279] Kishino Takuo, Kobayshi Kunio. Studies on the mechanism of toxicity of chlorophenols found in fish through Quantitative Structure-Activity Relationships[J]. Wat Res, 1996,30(2):393-399.
    [280] Cronin Mark T D, Aptula Aynur O, Duffy Judith C, et al. Comparative assessment of methods to develop QSAR for the prediction of toxicity of phenols to Tetrahymena pyriformis[J]. Chemosphere,2002,49:1201-1221.
    [281] 贾广宁. 重金属污染的危害与防治[J].有色冶炼,2004 ,(2):39-42.
    [282] Grosell M, Gerdes RM, Brix KV Chronic toxicity of lead to three freshwater invertebrates-brachionus calyciflorus, chironomus tentans, and lymnaea stagnalis[J]. Environ Toxicol Chem 2006 25 (1): 97-104.
    [283] 杨晓刚, 余东游, 许梓荣. 动物铅毒性研究进展[J].中国畜牧杂志.2006,42(19):57-59.
    [284] Mahaffey K R . Introduction: advances in lead research: implicationsfor environment health [J]. Environ Health Perspect, 1990, 89 :3.
    [285] 郭笃发. 环境中铅和镉的来源及其对人和动物的危害 [J].环境科学进展,1994 , 2(3):71-76.
    [286] Humphreys D J . Effects of exposure to excessive quantities of lead on animals[J]. Br Vet J , 1991 , 147(1): 18- 30.
    [287] Ball AL, Borgmann U., Dixon DG, Toxicity of a cadmium-contaminated diet to Hyalella azteca[J].Environ Toxicol Chem, 2006, 25(9): 2526-2532.
    [288] 王夔. 生命科学中的微量元素[M]. 北京:中国计量科学出版社, 2005: 850 - 885.
    [289] DiGiul RR, Scanlon PF. Effects of cadmium ingest ion and food re2striction on energy metabol ism and tissuemetal concentrations inmallard ducks[J]. Environ Res, 1985, 37: 433 – 444.
    [290] Kagamimori S, Watanabe V I, Nakagawa H, et a1. Caseconlxol study on cardiovascular function in females with a history of heavy exposure to cadmium[J]. Bull Environ Contain Toxicol, 1986, 36: 484 - 490.
    [291] 朱毅, 胡小玲. 重金属对鱼类毒性效应研究进展[J] .水产养殖,1998 , (2) :22-23.
    [292] 赵红霞, 詹勇, 许梓荣. 重金属对水生动物毒性的研究进展(一) [J] . 内陆水产,2003 , (1) :25-29.
    [293] 卢建民,蔺玉华,李怀明. 重金属对草鱼胚胎及鲤鱼苗的毒性研究[J].水产学杂志,1995 ,8(1):55-61.
    [294] 蔺玉华,卢建民,梁智龙,等. 铬对鲤、草鱼胚胎发育及鱼苗的毒性影响[J] . 水产学杂志,2000 ,13 (2) :32-35.
    [295] 周立红, 陈学豪, 秦德忠. 4 种重金属对泥鳅胚胎和仔鱼毒性的研究[J] . 厦门水产学院学报,1994 ,16 (1) :12-19.
    [296] 姚纪花, 周平凡. 铜、锌和甲胺磷对大鳞副泥鳅胚胎发育和仔鱼成活的影响[J] . 上海水产大学学报, 1997 ,6 (1) :11-16.
    [297] 尹伊伟, 林秋奇, 邝雄建,等. 酚类及重金属对大鳞副泥鳅胚胎和鱼苗阶段的毒性研究[J] . 环境科学研究,1997 ,10 (3) :36-40.
    [298] 吴鼎勋, 洪万树. 4 种重金属对鱼免状黄姑鱼胚胎和仔鱼的毒性[J] . 台湾海峡,1999 ,18 (2) :186-189.
    [299] 段彪, 肖建光, 叶英,等. 几种重金属离子对淡水石斑鱼胚胎及仔鱼的毒性试验[J] . 重庆水产,2003 , (1) :32-34.
    [300] 修瑞琴, 许永香,高世荣.砷与钙和锌离子对鱼的联合毒性实验[J],中国环境科学,1998,13(4):349-352.
    [301] 傅迎春,修瑞琴,许永香等. 氟与硒对大型溞的联合毒性研究[J].中国环境科学,1995,15(4):280-282.
    [302] 陈家长,胡庚东,瞿建宏. 铅和铬对鱼类联合毒性的研究[J].浙江水产学院学报,1998,17(3):169-173.
    [303] 傅迎春,修瑞琴,任改英等. 用大型溞来研究氟与鉮离子对水环境的联合毒作用[J].中国公共卫生学报,1994,13(4):206-208.
    [304] Virk S, Kaur K. Impact of mixture of nikel and chromium on the protein content of flash and liver of cgprinus carpio during spawning and post spawning phases[J]. Bull Environ Contam Toxicol,1999,63(5):499-502.
    [305] 刘静玲,袁星,郞佩珍. 2,4-二硝基甲苯与共存硝基芳烃化合物对斜生栅列藻的联合毒性[J].环境科学,1997,18(5):31-36.
    [306] 袁星,郎佩珍,赫奕. 2,-二硝基苯与共存化合物对发光菌的联合毒性[J].环境化学,1995,14(6):550-552.
    [307] Chen G, Ensor CR. The combined anticon vulsant activity and toxicity of dilantin and n-methy-5-phenylsuccinimide.[J]. Lab Clin Med,41:78-83.
    [308] Thomulka KW, Lange JH. Mixture toxicity of nitrobenzene and trinityrobenzene using the marine bacterium vibrio Harveyi as the test organism[J]. Ecotoxicology and Environmental Safety,1997,36:189-195.
    [309] Chen J, Liao Y, Zhao Y et al. Quantitative structure-activity relationships and mixture toxicity studies of heterocyclic nitrogen compounds[J]. Bull Environ Contam Toxicol,1996,57:77-93.
    [310] Thomulk KW, McGee DJ, Lange JH. Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water[J].Bull Environ Contam Toxicol,1993,51(4):538-544.
    [311] Perry J, Carol A. Role of a Candida albicans P1-Type ATPase in resistance to copper and silver iontoxicity[J]. Journal of Bacteriology,2000,182(17):4899-4905.
    [312] Lloyd R. Ann.Appl.Biol.,1961,49:535-538.
    [313] 修瑞琴,许永香,傅迎春等. 1994,水生毒理联合效应相加指数法[J]. 环境化学,13(3):267-271.
    [314] Broderius S J , Kahl M D ,Acute toxicity of organic chemical mixtures to fathead minnow[J]. Aquat Toxic, 1985, 6: 307-332.
    [315] Broderius S J, Kahl MD, Hoglund MD, Use of joint response t define the primary mode of toxic action for diverse industrial organic chemicals[J]. Environ Toxicol Chem, 1995,14(9):1591-1605.
    [316] Hermens J, Konemann H, Leeuwangh P, Musch A. Quantitative structure-activity relationships in aquatic toxicity studies of chemicals and complex mixtures of chemicals[J]. Environ Toxicol Chem 1985:273-279.
    [317] Wolf W, Canton JH, Deneer JW, Weyman RCC, Hermens J. Quantitative structure-activity relationships and mixture-toxicity studies of alcohol and chlorhydrocarbons[J]. Aquat toxic,1988, 12:39-49.
    [318] 王连生,支正良. 分子连接性与分子结构-活性[M],中国环境科学出版社,1992.
    [319] Abraham MH, Benjelloun-Dakhama N, Gola JMR.,Acree WE, Cainc JWS, Cometto-Munizc JE,. Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties[J]. New J Chem, 2000, 24:825-829.
    [320] Zissimos AM, Abraham MH, Barker MC, Boxb KJ, Tam KY, Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation.[J]. Chem Soc Perkin Trans,2002,2:470–477.
    [321] Abraham M H,Le J, Acree WE, et al . Solobility of gases and vapours in propan-1-ol at 298K. [J]. Phys Org Chem, 1999,12:675-680.
    [322] Abraham MH, Poole CF, Poole SK. Solute effects on reversed-phase thin-layer chromatography. A linear free energy relationship analysis[J]. Journal of Chromatography A, 1996,749:201-209.
    [323] Abraham MH. Characterization of some GLC chiral stationary phases: LFER analysis[J]. Anal Chem, 1997,69:613-617.
    [324] Abraham MH, Kumarsingh R, Cometto-Muniz JE, et al. The determination of salvation descriptors for terpenes, and the prediction of nasal pungercy thresholds. [J]. Chem Soc, 1998, Perkin Tran.2: 2405-2411.
    [325] Schultz TW, The Use of the ionization constant(pKa) in selection models of toxicity in phenols[J]. Ecotox Environ Safe 1987. 14: 178-183.
    [326] Schultz TW, Bearden AP, Jaworska JS, A novel QSAR approach for estimating toxicity of phenols[J]. SAR QSAR Environ Res, 1996, 5:99-112.
    [327] 郞佩珍等. 松花江中有机物的变化及毒性,第一版[M],吉林科学技术出版社,1998.
    [328] Saito H, Sudo M, Shigeoka T, et al. In vitro cyto toxicity of chlorophenols to goldfish GF-scale (GFs) cells and quantitative structure-activity relationships[J]. Environmental Toxicology and Chemistry, 1991,10:235-241.
    [329] Yuan X., Lu GH, Su LM. Correlation study of toxicity of substituted phenols to river bacteria andtheir Biodegradability in River Water[J]. Biomed Environ Sci, 2005,18:281-285.
    [330] 王颖. 松花江水污染状况与对策[J].黑龙江水专学报,2005(3): 81-82.
    [331] Alexander M. Biodegradation of organicchemicals environmental concern[J].Science,1981, 211: 132-138.
    [332] US EPA. Health and environmental effects profilefor nitrobenzene [C]//Cincinnati,Ohio: US Environmental Protection Agency. Report No. EPA600/X-85/365, NTIS No. PB88-18050. 1985.
    [333] 袁星,郎佩珍,龙凤山,陆光华 .硝基芳烃对发光菌及其它水生生物毒性的相关性[J].吉林大学自然科学学报.1994.4:97-100.
    [334] 景体淞,徐镜波. 硝基芳烃化合物对大肠杆菌的毒性作用及 QSAR 分析[J].松辽学刊(自然科学版).2001.4:20-24.
    [335] 张惠兰,居学海.硝基芳烃为衍生物的定量结构-活性关系[J].环境科学与技术.2004.27(4):31-32.
    [336] 沈洛夫,姜建国,林庆生,赖凤英. 硝基芳烃类物质对盐藻的毒性试验及比较[J].海洋科学.2006 30 (5):15-17.
    [337] Cloeman J E. Zinc proteins: enzymes, storage proteins, transcription factors and replication proteins [J]. Ann Rev Biochem, 1992, 16: 897.
    [338] Wellinghausen N , Kirchner H, R ink L. The immunobiology of zine[J]. Immunol Today, 1997, 18: 519-521.
    [339] 孔祥瑞. 必需微量元素的营养、生理及临床意义[M]. 合肥: 安徽科技出版社, 1982:210-260.
    [340] Kaplan D, Stadler T. Algal biotechnology [M]. Elsevier Applied Science, 1988:179.
    [341] Wageman R, Baricl J. Speciation and rate of copperwater with implications to toxicity [J]. Water Res,1979,13:515- 523.
    [342] 王之健,汤鸿霄. 铜的形态分布与 Daphnia 性毒性关系[J].环境化学,1998,17(1):14-18.
    [343] 周宏,项斯端. 重金属铜、锌、铅、镉对小形月牙藻生长及亚显微结构的影响[J].杭州大学学报(自然科学版) ,1998.25(2):85-92.
    [344] 成志强. 重金属铜和放射性核素 3H 在鲫鱼体内的分布规律及比较[J].江苏环境科技2001.14(3):5-6.
    [345] 徐丽丽. 重金属铜对鳉鱼的急性毒性试验.中国高新技术企业,2007.4:104-105.
    [346] M cinto sh A W , Kevern N R. Toxicity ofzoop lank ton [J]. Environmental Quality, 1974, (3) : 166-170.
    [347] 陆超华 谢文造 周国君. 近江牡蛎作为海洋重金属锌污染监测生物[J].中国环境科学1998 ,18 (6) :527-530.
    [348] 陈必链,黄勤,庄惠如,施巧琴,吴松刚. 从绿色巴夫藻超微结构观察硒对锌毒性的保护效应[J].应用与环境生物学报, 2004 ,10(1) :060-063.
    [349] 戴家银,郑微云,王淑红. 铜和锌离子对真绸幼鱼组织酶活性的影响[J].环境科学,1998,9(5):60-62.
    [350] 黄辨非,王晓娟,罗静波. 3 种重金属药物对金属胚胎-仔鱼的毒性试验[J].水利渔业,2006,26(1):92-94.
    [351] 包坚敏,王志铮,陈启恒,杨阳,袁久尧. 4 种重金属对泥螺的急性毒性和联合毒性研究[J].浙江海洋学院学报(自然科学版) 2007.26(3):252-256.
    [352] 杨自军,程相朝,孙鲜明,宋文成. 锌对动物体内镉毒性的影响[J].微量元素与健康研究.1994. 11(2):9-10.
    [353] 叶锦韶,尹华,彭辉. 微生物抗重金属毒性研究进展[J]. 环境污染治理技术与设备,2002,3(4):1-3.
    [354] 戴家银,郑微云,王淑红. 重金属和有机磷农药对真鲷和平鲷幼体的联合毒性研究[J]. 环境科学, 1997 ,18 (5)∶44-46.
    [355] 谢荣,唐学玺,李永祺。有机磷农药和重金属对海洋微藻的联合毒性研究[J],海洋环境科学,1999 18(2):16-19.
    [356] 柴晓利,郭强,赵由才. 酚类化合物在矿化垃圾中的吸附性能与结构相关性研究[J]. 环境科学学报, 2007. 27 (2) : 247 – 251.
    [357] 周启星, 程 云,张倩茹等. 复合污染物与生态毒理效应的定量关系分析[J]. 中国科学,2003, 33 ( 6) :566- 573.
    [358] Connolly ML. The molecular surface package[J]. J Mol Graphics, 1993, 11, 139-141.
    [359] 张爱茜, 陈日清, 魏东斌, 王连生. 氯代芳香族化合物对羊角月牙藻的毒性及 QSAR 分析[J].中国环境科学 2000,20(2): 102-105.
    [360] 戴树桂,黄国兰,孙红文等. QSAR计算中的分子连接性指数法[J].环境化学,1994,13(3):242-245.
    [361] 朱琴,李良超,钟飞等. 多环芳烃的性质与拓扑指数关系的研究Ⅳ多环芳烃的致癌性与二阶分子连接性指数的相关性[J].荆州师范学院学报(自然科学版),2000,23(2):120-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700