用户名: 密码: 验证码:
电动修复技术机理及去除污泥和尾砂中重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是国内亟待解决的环境问题。土壤污染具有累积性、滞后性、隐蔽性和不可逆性,因此,土壤污染一般极难恢复或治理。本研究在国内外研究的基础上,结合国内实际对电复技术进行了研究和探讨。
     电动修复技术是国际环境科学和工程领域的前沿课题之一。它的基本机理是:土壤中的水在电场力的作用下发生电解反应,阴极产生氢气和氢氧根离子,阳极产生氧气和氢离子,阳极产生的氢离子在电场和浓度梯度的作用下,向土壤内部迁移和扩散,氢离子在迁移和扩散的过程中,置换和溶解土壤中的重金属污染物,被溶解后的重金属污染物在电场和浓度梯度的作用下,以离子迁移和电渗的方式朝阴极方向定向迁移,从而达到去除土壤污染物的目的。
     本文在国内外电动修复技术研究的基础上,首先探讨了电修复对红壤的适应性分析,结果表明:电动力修复技术适用于铅污染红壤,但是必须对修复技术进行改进才能用于该土壤修复;阴极酸化法能有效的提高修复效率、降低修复成本和缩短修复周期;土壤pH值是影响电动力修复效果的关键因素,土壤pH值不但可以影响土壤中重金属的存在形态还可以通过影响土壤的电导率,土壤的温度和改变土壤的含水率来影响土壤中可以迁移的重金属含量。其次,探讨了电流密度对电修复的影响,对于红壤来说,10A/m2是相对较适合的电流密度。
     在前面研究的基础上,探讨和改进了电修复技术处理污泥中重金属。实验I表明,污泥在电动力的作用下,经过5d后,Cd、Zn、Cu的总去除率分别为64.50%、65.02%;易于被植物吸收的不稳定态(可交换态、碳酸盐结合态和铁锰氧化物结合态)的处理效果明显,不稳定态的去除率分别68.60%、75.73%。电动力修复技术处理污泥中的重金属是可行的,修复后的污泥有利于土地利用。实验Ⅱ结果表明,污泥pH值是影响电动力修复效果的关键因素,污泥pH值不但可以影响污泥中重金属的存在形态还可以通过影响污泥的电导率、污泥的温度和改变污泥的含水率来影响污泥中可以迁移的重金属含量。降低污泥pH值能有效的提高修复效率、降低修复成本和缩短修复周期。实验Ⅲ分析了硫杆菌对电动力去除污泥中重金属的影响机理。硫杆菌处理后的污泥,pH值降低,部分重金属从稳定态转化为可溶态。经硫杆菌预处理后的泥样和未经预处理的泥样,在同样条件下用电动力处理,处理结果为:预处理后Cd的去除率从61.85%上升到72.54%,Cu从34.26%上升到63.51%,Zn从65.06%上升到71.22%。预处理对Cu的影响比Cd、Zn大得多。用电动力处理Cu超标污泥中重金属时,将污泥先用硫杆菌预处理,可有效地提高其去除效果,处理后的污泥有利于农用。
     本研究在前面的基础上,以铅锌选矿尾砂为样品,分别用电修复技术、阴极酸化技术和生物淋滤-电修复联合基础处理样品,探索电修复技术在处理污泥中重金属的应用前景。结果表明:直接用电修复处理尾砂时,铜、铅、锌3者的处理效率为别为75.8%、37.8%和几乎无效果;应用中间循环冲洗技术处理尾砂时,铜、铅、锌3者的处理效率为别为81.4%、48.58%和36.3%;应用生物淋滤-中间循环冲洗—电修复连用技术时,效果最佳,铜、铅、锌3者的处理效率为别为82.8%、56.1%和47.5%。
Soil contaminated by heavy metals is one of the environmental problems that should be resolved urgently. Soil pollution is accumulative, lagging, dormant, and irreversible, therefore, soil pollution is usually difficult to be remedied and treated. This paper mainly studied phytoremediation and electroremediation of lead contaminated red soils. The studies based on the researches of at home and abroad and combined actual conditions.
     Electroremediation technique is an advancing task of global environment science and technology. Its principle is that: application of direct electric current via electrodes immersed in a saturated soil results in oxidation at the anode, generating an acid front that cause desorption and dissolution of heavy metals. The desorped and soluted heavy metals are migrated toward cathode reservoir by electric field and ions concentration grads by the means of electromigration, electroosmosis and diffusing.
     Firstly, a series of tests about lead spiked red soil sample are conducted, the results show: the electroremediation technology is efficient to remedy Pb contaminated red soil; pH value of red soil is the major factor of dominating electroremediation efficiency: pH value of red soil can not only lead to high tank voltage and high temperature of red soil by means of decreasing electro-conductivity of soil, but also reduce remediation efficiency by precipitating Pb and then decreasing mobility of Pb. Hence, electroremediation techniques should be enhanced so as to efficiently remove Pb from contaminated red soil; control pH value of the cathode reservoir with HNO3 can improve the removal efficiency. The enhanced test removal efficiency of Pb is 79.5%, and the energy consumption is 285kw/m3.soil; 10 A/m2 is the suitable current density for electroremediation.
     Secondly, a series of experiments used sludge samples are conducted to research and explore electroremediation. Experiment I showed the curve of removal efficiencies of different speciation Cd and Zn. The total removal efficiencies of Cd and Zn in municipal sewage sludge were 64.5% and 52.36% after five days electroremediation. The removal efficiencies of labile state fractions of Cd and Zn were 68.6%, 60.6% correspondingly. The labile state fractions that could be easily absorbed by plants included the exchangeable, carbonate and Fe and Mn oxides fraction. The electroremediation technique was fitted for removing heavy metals from municipal sewage sludge, and the electro remedied sludge was favorable to land utilization.
     ExperimentⅡshowed pH value of municipal biosolids is the major factor of dominating electroremediation; pH value of red soil can not only lead to high tank voltage and high temperature of municipal biosolids by means of decreasing electro-conductivity of soil, but also reduce remediation efficiency by precipitating Pb and then decreasing mobility of Pb. Hence, electroremediation techniques should be enhanced so as to apply to remedy heavy metals contaminated municipal biosolids. Control pH value of the cathode reservoir with HNO3 can improve the removal efficiency, decrease cost of remediation and shorten duration of remediation.
     The influence of thiobacillus ferrooxidans on the Speciation of Heavy Metals in the Sewage were analyzed and the removal efficiencies of heavy metals from sewage sludge by electrokinetics in experimentⅢ.The pH value of the sludge sample which was pretreated by thiobacillus ferrooxidans reduced. Because of this, the heavy metals of the sewage sludge transformed from stable state to labile state. The samples pretreated by thiobacillus ferrooxidans and pretreated were electroremedied under the same conditions, the results were that the removal efficiencies of Cd raised from 61.85% to 72.54%,Cu from 34.26% to 63.51%, and Zn from 65.06% to71.22%, after pretreated. The effect of pretreated by thiobacillus ferrooxidans on Cu was much obviously than Cd or Zn. The sewage sludge pretreated by thiobacillus ferrooxidans could effectively enhance the removal efficiency of Cu while it is exceeded the control standards of land utilization. The electroremedied sludge which was pretreated by thiobacillus ferrooxidans was favorable to land utilization.
     Based on foregoing results, sampled with nonferrous tailings, the expectation of electroremediation technique to dispose tailings are conducted using electrokinetic’s, middle recycle washing technology, bioleaching-electroremediation technology, respectively. The results shows: the removal efficiency of Cu, Pb and Zn is 75.8, 37.8 and o% in test 1, respectively; the removal efficiency of Cu, Pb and Zn is 81.4%, 48.6% and 36.3% in test 2, respectively; the removal efficiency of Cu, Pb and Zn is 82.8%, 56.1% and 47.5% in test 3, respectively.
引文
[1] Singer M J, Munns D N. Soils, an introduction. Fourth edition, New Jersey: Prentice-Hall, Inc,1999,45-61
    [2] 周泽义,胡长敏,王敏健等. 中国蔬菜重金属污染及控制. 资源生态环境网络研究动态,1999,10(3):21-27
    [3] 骆永明. 金属污染土壤的植物修复. 土壤,1999,(5):261-265
    [4] 周启星.复合污染生态学. 北京:中国环境科学出版社,1995,4-9
    [5] Young K. Destruction of ecological habitats by mining activities. Agricultural Ecology, 1988,(16):37-40
    [6] 陈志良,仇荣亮. 重金属污染土壤的修复技术. 环境保护,2002,29(6):21-23
    [7] 陈 怀 满 , 郑 春 荣 , 涂 从 等 . 中 国 土 壤 重 金 属 污 染 现 状 与 防 治 对 策 . Ambio,1999,(28):130-134
    [8] 张春艳,韩宝平,王晓,杨航,刘建华. 典型城市工业区 TSP 中重金属污染研究. 中国环境监测,2007, 23(2): 71-74
    [9] 茹淑华,孙世友,王凌,耿暖,张国印. 蔬菜重金属污染现状、污染来源及防治措施. 河北农业科学,2006,10(3):88-91
    [10] 王浩 , 陈玉松 , 胡开林 , 韩冰 , 党艳 . 污水灌溉研究综述 . 江苏环境科技2007,20(2): 73-76
    [11] 蔡嗣经 , 杨鹏 . 金属矿山尾矿问题及其综合利用与治理 . 中国工程科学,2000,12(14):89-92
    [12] 夏星辉,陈静生. 土壤重金属污染治理方法研究进展. 环境科学,1997,18 (3):72-75
    [13] 李永涛,吴启堂.土壤污染治理方法研究.农业环境保护,1997,16(3):118-122
    [14] Forstner, U. In R. Leschber, et al. Chemical methods for assessing bioavailable metals in sludges and soils. Elsevier, London, 1985,1-30
    [15] Xian X. Chemical partitioning of cadmium, zinc, lead and copper in soils near smelters. J. Environ Sci Health, 1987, 11(5):527-541
    [16] Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant Soil, 1989,113(2):257-264
    [17] Clevenger T E, Mullins W. The toxic extraction procedure for hazardous waste. In: Trace substances in environmentalhealth XVI. Univ. of Missouri, Columbia, MO, 1982,77-82
    [18] Lena Q M, Gade N Rao. Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils. Environ. Qual, 1997,26(2):259-264
    [19] Tessler A, Campbell P G C, Blsson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979,51(6):844–850
    [20] McGregor R G, Blowes D W and Jambor J L, et al. The solid Phase controls on the mobility of heavy metals at the Copper Cliff tailingsarea, Sudbury, Ontario, Canada. Comtam. Hydrol, 1998, (33): 247-271
    [21] Blowes D W and Jambor J L. The porewater geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Appl. Geochem., 1990,(5):327-346
    [22] Straglini W. M., Doelman P., Salomons W. et al. Chemical time bombs: predicting the unpredictable. Environment, 1991,(33): 4-30
    [23] Zhuang J, Yu G R, Liu X Y, et al. Characteristics of lead sorption on clay minerals.in relation to metal oxides. Pedosphere, 2000, 10(1): 11-20
    [24] Zhao X L, Qing C L, Wei S Q, et al. Heavy metal runoff in relation to soil characteristics. Pedosphere, 2001, 11(2):137-142
    [25] Li Y T, Becquer T, Quantin C, Benedetti M, et al. Microbial activity indices: Sensitive soil quality indicators for trace metal stress. Pedosphere, 2005, 15(4): 409-416
    [26] Casagrande, L. The application of electro-osmosis to practical problems in foundations and earthworks. Building Technical Paper No.30; H.M.S.O., London,1987,567-578
    [27] Diana Cabrera-Guzman, Joseph T. Swartzbaugh and Andrew W. Weisman. The use of electrokineics for hazardous waste site remediation. Air Waste Manage. Assoc,1990,(40):1670-1676
    [28] Yalcin B. Acar and Akram N. Alshawabkeh. Principles of electrokinetics remediation. Environ Sci.Technol, 1993, 27(13): 2638-2647
    [29] 蒋先军,骆永明.土壤重金属污染的植物提取修复技术及其应用前景. 农业环境保护,2000:19(3):179-183
    [30] 赵爱芬,赵雪. 植物对污染土壤修复作用的研究进展.土壤通报,2000,31 (1):43-46
    [31] 唐世荣,黄昌勇. 污染土壤的植物修复技术进展. 上海环境科学,1996, 15(12): 37-39,47
    [32] 周启星,宋玉芳. 植物修复的技术内涵及展望. 安全与环境学报,2001,1(3): 48-53
    [33] 王庆仁,崔岩山,董艺婷. 植物修复—重金属污染土壤整治有效途径. 生态学报,2001,21(2): 326-331
    [34] 薛生国,陈英旭. 中国首次发现的锰超积累植物—商陆. 生态学报,2003 ,23 (5) :935 - 937
    [35] 陈同斌,韦朝阳,黄泽春,等. 砷超富集植物娱蛤草及其对砷的富集特征. 科学通报,2002 ,47(3) :207 - 210
    [36] 韦朝阳,陈同斌,黄泽春,等. 大叶井口边草—一种新发现的富集砷的植物. 生态学报,2002, 22(5) :777 - 778
    [37] 刘威,束文圣,蓝崇钰. 宝山茧菜(Viola Baoshanensis) —一种新的镉超富集植物. 科学通报, 2003, 48(19) :2 046-2 048
    [38] 杨肖娥,龙新宪. 东南景天(Sedum alfredii) —一种新的锌超积累植物. 科学通报,2003,47(13) :1 003 - 1 006
    [39] 姜理英,石伟勇,杨肖娥,等. 铜矿区超积累 Cu 植物的研究. 应用生态学报,2002,13(7) :903 - 908
    [40] 束文圣,杨开颜,张志权,等. 湖北铜绿山古铜矿冶炼植被与优势植物的重金属含量研究. 应用与环境生物学报,2001 ,7(1) :7 - 12
    [41] 万云兵,仇荣亮. 重金属污染土壤中提高植物提取、修复功效的探讨. 环境污染治理技术与设备,2002 ,3(4) :56 - 59
    [42] 徐立明. 蚯蚓在环境保护中的作用. 农业环境保护,1984 , (4) :23 -25
    [43] 邢新会. 环境生物修复技术的研究进展. 化工进展,2004 ,23(6) :579- 584
    [44] 俞 协 治 , 成 杰 民 . 蚯 蚓 对 土 壤 中 铜 、 镉 生 物 有 效 性 的 影 响 . 生 态 学报,2003 ,23(5) :922 – 928
    [45] Camesano T A , Logan B E. Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media . Environmental Science and Technology ,1998 , 32 : 1699-1708
    [46] Ma Q Y, Traina SJ , Logan TJ , et al . In situ lead immobilization by apatite. Environmental Science and Technology ,1993 ,(27):1803-1810
    [47] Ma Q Y, Logan TJ , Traina S J . Lead immobilization from aquesous solutions and contaminated soil using phosphate rocks. Environmental Science and Technology , 1995 ,29 :1118–1126
    [48] Zhang P C , Ryan J A , Bryndzia L T. Pyromorphite formation from goethite adsorbed lead . Environmental Science and Technology. 1997,(31):2673 –2678.
    [49] Brown Jr. G E , Foster AL , Ostergren J D. Mineral surfaces and bioavailability of heavy metals : A molecularscale perspective. Proc Nat Acad Sci , USA 96 : 3388 -3395
    [50] Ryan J N , Elimelech M. Review: Colloid mobilization and transport in groundwater. Colloids Surf . , A: Physiochem Eng Aspect. 1996 ,107 : 1056-1061
    [51] Kersting A B , Efurd D W, Finnegan D L , et al . .Migration of plutonium in groundwater at the Nevada test site. Nature ,1999 ,397 : 56-59.
    [52] Seta A K, Karathanasis A D. Colloid2facilitated transport of metolachlor through intact soil columns. Journal of Environmental Science and Health , Part B ,1996 , 31 : 1808-1815
    [53] 朱永官.土壤-植物系统中的微界面过程及其生态环境效应.环境科学学报,2003,23(2:)205-210
    [54] Xu Wei-hua, LIU Yun-guo, LI Xin, ZENG Guang-ming. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. J. Hazardous Materials.B126,2005,17-22.
    [55] Leduc, L. G.; Ferroni, G. D.; Trevors, J. T. Resistance to heavy metals in different strains of Thiobacillus ferrooxidans World J. Microbiol.Biotechnol,1997, 13, 453-455.
    [56] Suzuki, I.; Lee, D.; Mackay, B.; Harahuc, L.; Oh, J. K. Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans. Appl. Environ.Microbiol,1999, 65, 5163
    [57] Giacomomaini, Ajayk. Shaarman, Garrysunderland, Christopher. J. Knowles, and simona. J Ackman. An Integrated Method Incorporating Sulfur-Oxidizing Bacteria and Electrokinetics To Enhance Removal of Copper from Contaminated Soil. Environ. Sci. Technol,2000, 34,1081-1087
    [58] David W. Blowes*, John L. Jambor and Christine J. Hanton-Fong Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment,Joutel, Que? bec. Applied Geochemistry,1998,13, 6: 687-705
    [59] Zhang Hui-zhi, LIU Yun-guo, ZENG Guang-ming, LI Xin. Accumulation of Heavy Metals in Plant Growing on Soils Contaminated by Mn Mine Tailing.Pedosphere,2006,16(1):131-136.
    [60] Tang Chun-fang, Wei-hua, LIU Yun-guo, LI Xin, ZENG Guang-ming. Effects of Exogenous Spermidine on Antioxidant System Responses of Typha latifolia L.Under Cd2+ Stress. J. Integrative Plant Biology,2005,47(4):428-434.
    [61] LIU Yun-guo; LI Xin; ZENG Guang-ming. Dynamics of pH Value and Metal Elements of Rainfall Within Mixed Forests in Japanese Pine and Cypress. Trans Nonferrous Met. Soc. China,2002,12(3): 549-554.
    [62] Zhang Hui-zhi, LIU Yun-guo, ZENG Guang-ming, LI Xin. Characteristics of tailings from metal mines in Hunan Province, China. J. Cent. South Univ.Technol,2005,12(2):225-228
    [63] Probstein, R. E and Hicks R. E. Removal of contaminants from soils by electric fields. Sci,1993,260: 498-503
    [64] Jihad Hamed, Yalin B. Acar and Robert J. Gale .Pb(Ⅱ)removal from kaolinite by electrokonetics. Geotech.Engrg,1991,117(2): 240-270
    [65] Gale R J, Li H, Acar Y B. Soil decontamination using electrokinetic processing. Studies in Environmental Science, 1994,59:621-654
    [66] 杨建永,黄文钿. 胶结充填电渗脱水实验研究. 黄金,1996,17(3):24-26
    [67] Shang Julle Q. Electrokinetic dewatering of clay slurries as engineered soil covers. Can Geotech, 1997,34(1):78-86
    [68] Shapiro A P, Probstein R F. Removal of contaminants from staturated clay by electroosmosis. Environ Sci Technol,1993,27:283-291
    [69] 于天仁 . 土壤电化学性质及其研究方法 . 第二版 , 北京 : 科学出版社 . 1976,75-79
    [70] Paul C.Hiemenz,周祖康,马季铭译. 胶体与表面化学原理. 第一版,北京:北京大学出版社. 1986,39-46
    [71] Thevanayagam S, Rishindran T. Injection of nutrients and teas in clayey soils using electrokinetics. Geotechnical and geoenvironmental engineering,ASSE, 1998,124(4):330-338
    [72] Eykholt G R, Daniel D E. Impact of system chemistry on electroosmosis in contaminated soils. Geotech.Engrg, ASCE,1994,120(5):797-815
    [73] Shang J Q. Zeta potential and electroosmotic permeability of clay soils. Can. Geotech,1997,34(4):627-631
    [74] Raymoud S L, Loretta Y L. Enhancement of electrokinetic extraction from Lead-spiked soils. Environ Engrg,ASCE,2000,126(9):849-857
    [75] Yeung A T, Hsu C, Menon R M. Physicochemical soil-contaminant interactions during electrokinetic extraction. J Hazardous Material,1997,55:221-237
    [76] Baraud F, Tellier S, Astuc M. Temperature effect of ionic transport during electrokinetic treatment at constant pH. J Hazardous Mater B,1999,64:263-281
    [77] Acar Y b, Hamed , J., Alshawabkeh et al. Removal of Cd( Ⅱ) from saturated kaolinite by application of an electrical current. Geotechnique,1994,44(2): 239-254
    [78] Li Z, Yu J W and Neretnieks I. Removal of Cu( Ⅱ ) and Cr( Ⅲ ) from sand byelectromigration. Env. Sci. Health. A,1997, 32: 1293-1308
    [79] Reddy, K. R., Parupudi, U. S. Removal of chromium, nikel and cadmium from clays by in-situ electrokinetic remediation. Soil Contaminant,1997,6(4): 391-407
    [80] Haran B S, Popov B N, and White R E. Development of a new electrochemical technique for decontamination of hexavalent chromium from low surface charged soils. Environ. Prog,1996,15(3): 166-172
    [81] Li Z, Yu J W and Neretnieks I. Removal of Pb( Ⅱ ), Cd( Ⅱ ) and Cr( Ⅲ) from sand by electromigration. J.Haz. Mat,1997,55: 295-304
    [82] Reddy K R, Parupudi U S and Devulapalli S N. Effects of soil composition on removal of chromium by electrokinetics. J.Haz. Mat,1997, 55: 135-138
    [83] LeHecho I, Tellier S and Astruc M. Industrial site soils contaminated wit arsenic or chromium: Evaluation of the electrokinetic method. Environ. Technol,1998, 19: 1095-1102
    [84] Weng, C. H., Taiyama, L. R., and Huang, C. P. Electro-osmosis for the in-situ treatment of chromium-contaminated soil. Hazardous Industrial Wastes,1994, 26: 496-505
    [85] Hansen, H. K., Ottosen, L. M., Kliem, B. K., and Villumsen, A. Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb and Zn. Chem. Technol. Biotechnol,1996, 70: 67-73
    [86] Eykholt, G. R. Development of pore pressure by nonuniform electroosmosis in clays. J.Haz. Mat,1997,55: 171-186
    [87] Runnells, D. D., and Larson, J. L. A laboratory study of electromigration as a possible field technique for the removal of contaminants from ground water. Ground Water Monitoring Revue,1986, 6: 85-91
    [88] Runnells, D. D., and Wahli, C. In situ electromigration as a method for removing sulfate, metals and other contaminants from groundwater. Ground Water Monit. Remediat,1993, 13(1): 121-129
    [89] Li, Z., Yu, J. W., and Nerenieks, I. A new approach to electrokinetic remediation of soils polluted by heavy metals. Contam. Hydrol,1996, 22: 241-253
    [90] Li, Z., Yu, J. W., and Nerenieks, I. Electroremdiation: Removal of heavy metals from soils by using cation selective membrane. Environ. Sci. Technol,1998, 32(3): 394-397
    [91] Riberio, A. B., and Mexia, J. T. A dynamic model for the electrokinetic removal of copper from a polluted soil. Haz. Mat,1997, 56: 257-271
    [92] Cox, C. D., Shoesmith, M. A., and Ghosh, M. M. Electrokinetic remediation ofmercury-contaminated soils using iodine/iodide lixiviant. Environ. Sci. Technol,1996, 30(6): 1933-1938
    [93] Hamed, J., Acar, Y. B., and Gale, R. J. Pb( Ⅱ) removal from kaolinite by electrokinetics. Geotech. Eng,1991, 117(2): 241-271
    [94] West, L. J., Stewart, D. I. Effect of zeta potential on soil electrokinesis. Geoenvironment 2000, ASCE, Geotechnical Special Publication,1995, 46(2): 1535-1549
    [95] Akram N. Alshawabkeh and Yalcin B Acar. Electrokinetic remediation. Ⅱ: Theoretical model. Geotech.Engrg,1996, 122(3): 186~196.
    [96] Menon, E. M., Hsu, C., and Yeung, A. T. Experimental and modeling studies on electro-kinetic extraction of lead from Georgia kaolinite. Environment Geotechnics,1996, l2:1039-1044
    [97] Wong, J. S., Hicks, R. E., and Probstein, R. F. EDTA-enhanced electroremediation of metal-contaminated soils. Haz. Mat,1997, 58: 285-299
    [98] Reed, R. B., Berg, M. T., Thompson, J. C., and Hatfield, J. H. Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam. Environ. Eng,1995, 121(11): 805-815
    [99] Sah,, J. G., and Chen, J. Y. Study of the electrokinetic process on Pb and Cd spiked soils. Haz. Mat,1998, 58: 301-315
    [100] Pamukcu, S., Khan, L. I., and Fang, H. Y. Zinc detoxifyication of soils by electro-osmosis. Trancp. Res. Rec,1991, 1288: 41-46
    [101] Jacobs, R. A., Senguin, M. Z., and Probstein, R. F. Model and experiments on soil remediation by electric fields. Envir. Sci. Health,1994, 29(9): 1933-1955
    [102] Acar, Y. B. et al. Electrokinetic remediation: Basics and technology status. Haz. Mat,1995, 40: 117-137
    [103] Grim, R. E. s, R. E., and Tondorf, S. Electrorestoration of metal contanminated soils. EnvClay Mineralgy. McGraw-Hill, New York. 1968:68-75
    [104] Hicks, R. E., and Tondorf, S. Electroremediation of metal contaminated soils. Environ. Sci. Technol,1994, 28(12): 2203-2210
    [105] Lageman, R., Pool, W., and Seffiga, G. Electro-remediation: Theory and practice. Chem. Ind, 1989, 18: 585-590
    [106] Mitchell, J. K., and Yeung, A. T. Electro-kinetic flow barriers in compacted clay. Transp. Res. Rec,1991, 1288, 1-9
    [107] Laursen, S. Laboratory investigation of electroosmosis in bentonites and natural clays. Can. Geotech,1997, 34: 664-671
    [108] Ho, S. V., and Shapiro, A. P. Scale-up aspects of Lasagna(TM) processs for in situ soil decontamination. Haz. Mat,1997, 55: 39-60
    [109] Grundl, T., and Reese, C. Laboratory study of electrokinetic effects in complex natural sediments. Haz. Mat,1997, 55: 187-201
    [110] West, L. J., Stewart, D. I., and Shaw, B. Resistivity imaging of electrokinetic transport in soil. Geoenvironmental Engineering,1997, 564-574
    [111] Gèrland J. Zagury, Yves Dartiguenave and Jean-Claude Setier. Ex situ electroreclamation of heavy mentals contaminated sluge: Pilot scale study. Environ.Engrg. ASCE,1999, 125(10): 972-978
    [112] Sah J G,Chen J Y. Study of the electrokinetic process on Cd and Pb spiked soils. J Hazadous Mater,1998,58:301-315
    [113] Yeung A T, Hsu C, Menon R M. EDTA-enhanced electrokinetic extraction of lead. J Geotechnical engineering,1996,122(8):666-673
    [114] Mohamed A M O. Remediation of heavy metal contaminated soils via integrated electrochemical processes. Waste Management,1996,16(8): 741-747
    [115] Wong J S H, Hcks R E, Probstein R F. EDTA-enhanced electroremediation of metal-contaminated soils. J Hazardous Mater,1997,55:61-79
    [116] Puppala S K, Alshawabkeh A N. Acar Y B et al. Enhanced electrokintic remediation of high sorption capacity soil. J Hazardous Mater, 1997, 55: 203-220
    [117] Li R, Li L Y. J. Enhancement of Electrokinetic Extraction from Lead-Spiked Soils. Environ Engineering,2000,126(9):849-857
    [118] Coletta T F, Bruell C J Ryan D K et al. Cation-Enhanced Removal of Lead from Kaolinite by Electrokinetics. J Environ Engineering,1997,123(12):1227-1233
    [119] Kim S, Moon S, Kim K. Removal of heavy metals from soilsusing enhanced electrokinetic soil processing. Water, Air, and Soil pollution,2001,125:259-272
    [120] Huang Y J, Tsai C H, Liaw B J. In Situ XANES Study of Electrokinetic Remediation of Cadmium-Contaminated Soils. Bull Environ Contam Toxicol, 2003,71:682-688
    [121] Marceau P, Broquet P, Baticle P. Electrokinetic remediation of cadmium-spiked clayey medium Pilot test. Geochemical,1999,328:32-47
    [122] Manna M, Sanjay K, Shekhar R. Electrochemical cleaning of soil contaminated with a dichromate lixiviant. Int J Miner Process,2003,72:401-406
    [123] Reddy K R. Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Management, 1999,19:269-282
    [124] Reddy K R, Donahue M, Sassaoka R. Preliminary assessment of electrokinetic remediation of soil and sludge contaminated with mixed waste. Air Waste Manage Assoc,1999,49:823-830
    [125] Reddy K R, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediaton in clays. Advances in Environmental Reseach,2003,7: 353-3651
    [126] Reddy K R, Parupidi U S, Davulapali S N et al. Effects of soil composition on the removal of chromium by electrokinetics. J Hazardous Mater,1997,55:135-158
    [127] Reddy K R, Chinthamreddy S. Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J Geotechnical Geoenvironmental Engineering,2003,129(3):263-277
    [128] Zhou D M, Alshawabkeh A N, Deng C F et al. Electrokinetic removal of chromium and coper from contaminated soils by lactic acid enhancement in the catholyte. J Environmental Sciences,2004,16(4):529-532
    [129] Li Z M, YU J W, Neretnieds I. Electroremediation: removal of heavy metals from soils by busing cation selectrive membrane. Environ Sci Technol,1998,32(3): 394-397
    [130] Zhou D M, Alshawabkeh A N, Deng C F et al. Electrokinetic removal of chromium and coper from contaminated soils by lactic acid enhancement in the catholyte. J Environmental Sciences,2004,16(4):529-532
    [131] Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere,2004,56:265-273
    [132] Sawada A, Tanaka S, Fukushima M et al. Electrokinetic remediation of clayey soils containing copper( Ⅱ )-oxinate using humic acid as a surfactant. J Hazadous Mater B,2003,96:145-154
    [133] Ottosen L M, Hansen H K, Laursen S et al. Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ Sci Technol, 1997,31(6):1711-1715
    [134] Zhou D M, Zorn R, Czurda K. Electrochemical remediation of copper contaminated kaolinite by conditioning anolyte and catholyte pH simultaneously. J Environmental Sciences,2003,15(3):396-400
    [135] Ottosen L M, Hansen H K, Ribeiro A B et al. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. J Hazardous Mater, 2001,B85:291-299
    [136] Suèr P, Allard B. Mercury transport and speciation during electrokinetic soil remediation. Water, Air and Soil Pollution,2003,143:99-109
    [137] Suèr P, Lifvergren T. Mercury-Contaminated Soil Remediation by Iodide and Electroreclamation. J Environ Engineering,2003,129(5):441-446
    [138] Reddy K R, Chaparro C, Saichek R E. Iodide-enhanced electrokinetic remediation of mercury-contaminated soils. J Environ Engineering, 2003, 129(12):1137-1148
    [139] Thoming J, Kliem B K, Ottosen L M. Electrochemically enhanced oxdation reactions in sandy soil polluted with mercury. The Science of the Total Environment,2000,261:137-147
    [140] Reddy K R, Parupudi U S. Removal of chromium, nikel and cadmium from clays by in-situ electrokinetic remediation. Soil Contaminant,1997,6(4):391-407
    [141] Karim M A, Khan L I.Removal of heavy metals from sandy soil using CEHIXM process. J Hazardous Mater,2001,B81:83-102
    [142] Castellote M, Andrade C, Alonso C. Nondestructive decontaminateion of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals. Environ Sci Technol,2002,36(10):2256-2261
    [143] Yang G C C. Long Y W. Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process. J Hazardous Mater, 1999 B69:259-271
    [144] Ko S, Schlautman M A, Carraway E R. Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ Sci Technol,2000, 34(8):1535-1541
    [145] Li A, Cheung K A, Reddy K R. Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene. J Environ Engineering,2000,126(6): 527-533
    [146] Chung H I, Kamon M. Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Engineering Geology, 2005,77:233-242
    [147] Yang J W, Lee Y J, Park J Y et al. Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Engineering Geology,2005,77:243-251
    [148] Kolosov A Y, Popov K I, Shabanova N A et al. Electrokinetic removal of Hydrophobic organic compounds from soil. Russian J Applied Chemistry,2001, 74(4):631-635
    [149] Weng C H, Yuan C, Tu H H. Removal of trichloroethylene from caly soil by series-electrokinetic process. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2003,7(1):25-30
    [150] Yang G C C, Liu C Y. Remediation of TCE contaminated soils by in situ EK-Fenton process. J Hazardous Mater,2001,B85:317-331
    [151] Palma L D, Ferrantelli P. Petrucci E. Experimental study of the remeditaion of atrazine contaminated soils through soil extration and subsequent peroxidation. J Hzardous Mater,2003,B99:265-276
    [152] Yuan C, Weng C H. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process. Chemosphere,2004,57:225-232
    [153] Maini G, Sharman A K, Sunderland G et al. An Integrated Method Incorporating Sulfur-Oxidizing Bacteria and Electrokinetics To Enhance Removal of Copper from Contaminated Soil. Environ Sci Technol,2000,34(6):1081-1087
    [154] Rabbi M F, Clark B, Gale R J et al. In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Management,2002,20:279-286
    [155] Sidolio’Connor S, Lepp N W, Edwards R ea al. The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale fasibility study. Environmental Monitoring and Assessment,2000,84:141-158
    [156] Ho S V, Athmer C J, Sheridan P W et al. The Lasagna thechnology for in situ soil remediation. 1. small field test. Environ Sci Technol,1999,33(7):1086-1091
    [157] Ho S V, Athmer C J, Sheridan P W et al. The Lasagna thechnology for in situ soil remediation. 1. small field test. Environ Sci Technol,1999,33(7):1092-1099
    [158] Ho S V, Athmer C J, Sheridan P W et al. Scale-up aspects of the LasagnaTM process for in situ soil decontamination.J Hazardous Mater,1997,55:39-60
    [159] Roulier M, Kemper M, Al-Abed S et al. Feasibility of electrokinetic soil remediation in horizontal LasagnaTM cells. J Hazardous Mater,2000,B77: 161-176
    [160] Marks R E, Acar Y B, Gale R J. In situ remediation of contaminated soils containing hazardous mixed wastes by bioelectrokinetic remediation and other comprehensive technologies. In: remediation of hazardous waste contaminated soils, New York: Marcel Dekker,1994,405-427
    [161] Geokinetics Inc. (EK). Electrokinetically enhanced bioremediation-project table. www.moltoni.com.an/geoekbiotable.html,2001-05-18
    [162] Van C L. Electrokinetics: Technology overview report. US groundwaterremediation technologies analysis centre. www.clu-m.org/download/remed/ electro-o.pdf,1997-01-17
    [163] (日)土壤标准分析 ? 测定法委员会编, 秦荣大, 郑永章译. 土壤分析标方法. 第一版. 北京:北京大学出版社, 1988,76-77
    [164] 中国科学院南京土壤研究所编. 土壤理化分析. 第一版. 上海. 上海科技出版社, 1978,57-210.
    [165] Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem,51: (7) (1979) 844–851.
    [166] Sutherland R A,Tack F M G.Fractionation of Cu Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research,2003,8:37-50.
    [167] 李学垣. 土壤化学. 北京:高等教育出版社,2001,185-193
    [168] Park J S, Kim S O, Kim K W et al. Numerical analysis for electrokinetic soil processing enhanced by chemical conditions of the electrode reservoirs. J Hazardous Materials B,2003,99:71-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700