用户名: 密码: 验证码:
羌塘盆地白垩系海相油页岩的发现及其石油地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羌塘中生代盆地被认为是青藏高原油气资源潜力最大和最有希望首先取得勘探突破的盆地。近年来,在羌塘盆地胜利河、长梁山、长蛇山、托纳木等地发现了目前我国规模最大的海相油页岩一北羌塘油页岩带。这些油页岩之上普遍沉积了低孔、低渗的膏岩盖层。这一发现一方面找到了大量的油页岩资源,另一方面证实了羌塘盆地具备良好的区域性封盖层,解决了羌塘区域封盖保存条件不好这一长期困扰人们的问题。
     本文重点开展了以下几个方面的研究工作:1)羌塘盆地白垩系海相油页岩系沉积时期的生物年代地层、地层分布、沉积相的展布、沉积体系及该时期的岩相古地理特征分析;2)海相油页岩系沉积时期的古气候和古环境研究;3)海相油页岩的矿物学及有机地球化学分析;4)海相油页岩系沉积控制因素分析,并建立海相油页岩系的沉积演化模式。
     具体研究成果如下:
     (1)羌塘盆地白垩系海相油页岩系沉积于索瓦组上段中。通过区域地层划分与对比,与该套油页岩系同时沉积的地层还有白龙冰河组和雪山组,白龙冰河组主要为富含菊石地层,分布于盆地的西北部;而雪山组主要出露于盆地的边缘地区。另外,首次在南羌塘安多县鄂斯玛地区发现了早白垩世孢粉和丰富的海相沟鞭藻,这一发现对于研究羌塘盆地沉积构造演化具有重要的地质意义。
     (2)海相油页岩系沉积时期主要发育河流—三角洲沉积体系、海湾沉积体系和浅海陆棚沉积体系,分别又可进一步细分为三角洲相、河流相;潮坪相、泻湖相和蒸发岩相;陆棚相和碳酸盐台地相。
     (3)对胜利河、半岛湖、那底岗日、龙尾湖以及托纳木等剖面白垩系索瓦组上段及温泉剖面的雪山组样品中分析出的孢粉定量分析表明,海相油页岩沉积时期为温暖潮湿的气候环境,而其上部的膏岩和泥灰岩组合则沉积于炎热干旱的气候环境,这种垂向上的古气候变化特征在整个羌塘盆地都普遍存在。
     (4)对长梁山油页岩和胜利河油页岩剖面的样品进行了常量、微量和稀土元素分析。结果表明,油页岩沉积时期,为缺氧一贫氧的还原环境,而非油页岩沉积时期以氧化环境为主。
     (5)对海相油页岩的常用有机地化指标(TOC、Pr/Ph、C35升藿烷指标)分析表明,油页岩的TOC含量均较高,一般都反映了缺氧的沉积环境。油页岩的Pr/Ph基本都小于1.0,显示植烷优势,反映了还原、缺氧的沉积环境,而非油页岩沉积时期的沉积环境偏向氧化。在Pr/Ph—Pr/nC17—Ph/nC18三角图解中,油页岩大部分处于盐湖成因有机质的范围内,也说明了油页岩形成于高盐度、还原的沉积环境,与C35升藿烷指数判定的结果也基本一致。
     (6)胜利河油页岩TOC含量在4.31%~21.37%之间,均值为8.40%;托纳木油页岩的TOC含量也较高,最大值为25.68%,平均为9.32%;长梁山剖面油页岩的TOC含量在2.96%~23.47%之间,平均值为9.56%;长蛇山油页岩样品的TOC含量在4.53%-9.49%之间,平均值为7.74%。长蛇山油页岩干酪根类型主要为Ⅱ1型,少数为Ⅱ2和Ⅲ型;胜利河油页岩主要为Ⅱ1和Ⅱ2型干酪根,而托纳木油页岩的干酪根类型主要为Ⅱ1型和Ⅰ型。
     (7)对白垩系海相油页岩的沉积控制因素进行了分析,包括缺氧富氧状态、古生产力、古气候、粘土矿物的混积作用、古地形条件以及海平面变化等。其中,油页岩的总有机碳含量(TOC)与古环境元素指标Mo.V存在较强的相关关系,相关系数分别为0.975和0.917,而与古生产力指标P/Ti、Ba/A1之间为弱相关或无相关关系,相关系数分别为0.481和-0.739。因此,本文认为海相油页岩的形成以“保存模式”为主,有机质沉积时的水体环境对高有机碳含量的油页岩的形成起到了主导作用。油页岩上部以膏岩为主的沉积组合在横向上受蒸发泻湖相控制,而在垂向上则受到了古气候条件的制约。
The Mesozoic Qiangtang Basin is regarded to be of the largest oil and gas resource potential and the most hopeful exploration area on the Qinghai-Tibet Plateau. Recent years, the largest marine oil shale zone in China was found in the Shengli River, Changliang Mountain, Changshe Mountain and Tuonamu regions in the Qiangtang Basin, which was called the North Qiangtang Basin Oil Shale Zone. In addition, overlying the oil shale, where generally deposited low porosity and low permeability gypsum. This discovery, on one hand, found plenty of oil shale resources, and on the other hand, confirmed that there were good regional seals in the Qiangtang Basin and solved the problem of bad regional sealing preservation condition.
     In this paper, we focus on the following several research works, including1) the chronostratigraphy, stratigraphic distribution, the distribution of sedimentary facies, depositional system and the lithofacies palaeogeography characteristics during the Cretaceous marine oil shale series deposition;2) the palaeoclimate and palaeoenvironment during the Cretaceous marine oil shale series deposition;3) the mineralogy and organic geochemistry of the marine oil shale;4) the control factors and the sedimentation model of the marine oil shale series.
     The results are listed as follows:
     (1) The Cretaceous oil shale series were mainly deposited in the Upper part of the Suowa Formation (Fm). Through regional stratigraphic classification and correlation, it reveals that the Upper part of the Suowa Fm, Bailongbinghe Fm and Xueshan Fm were the contemporaneous and heteropic deposits. The Bailongbinghe Fm was rich in ammonites and distributed in the northeastern part. The Xueshan Fm mainly outcropped in the edge of this basin. Additionally, the early Cretaceous sporopollen and rich marine dinoflagellates were first found in the Anduo region of South Qiangtang Basin, which would be of important geological significance for the study of sedimentary tectonic evolution of the Qiangtang Basin.
     (2) During the Cretaceous oil shale series deposition, there were mainly three depositional systems, including:fluvial-delta depositional system, gulf depositional system and neritic platform depositional system, and they could be further subdivided into delta facies, fluvial facies; tidal flat facies, lagoon facies and evaporate facies; shelf facies and carbonate platform facies, respectively.
     (3) According to the quantitative analysis of the sporopollen fossils of the Upper part of the Suowa Fm in the Shengli River, Bandao Lake, Nadi Kangri, Longwei Lake and Tuonamu sections, and of the Xueshan Fm in the Wenquan section, it shows that the climate during the marine oil shale deposition period was warm and humid, while the climate during the gypsum and marl deposition overlying the oil shale was hot and arid. Furthermore, this vertical changed climate was universal in the whole Qiangtang Basin.
     (4) We selected the Changliang Mountain section and Shengli River oil shale section as study objects for trace and rare elements analysis. The result shows that during the marine oil shale deposition, the palaeoenvironment was anoxic to dysoxic reductive environment. However, the palaeoenvironment was mainly oxic during the non-oil shale deposition.
     (5) According to the analysis of the common organic geochemical index (TOC, Pr/Ph and C35hopane index), it revealed that the TOC content of the marine oil shale was high, which generally reflected the anoxic depositional environment. The Pr/Ph ratio of the oil shale was almost less than1.0, showing phytane advantages, and revealed a reductive and anoxic depositional environment. While during the non-oil shale deposition, the sedimentary environment changed to be oxic. In the Pr/Ph-Pr/nC17-Ph/nC18triangular diagram, most of the oil shale samples were dropped into the salt lake area, illustrating high salinity and reductive sedimentary environment, which was consistent with the C35hopane index determination result.
     (6) The TOC content of the Shengli River oil shale ranges from4.31%to21.37%, with an average of8.40%; the TOC content of the Tuonamu oil shale is also very high, and the maximum is25.68%, with an average of9.32%; the TOC content of the Changliang Mountain oil shale varies from2.96%to23.47%, with an average of9.56%; and the TOC content of the Changshe Mountain is between4.53%and9.49%, with an average of7.74%. The Changshe Mountain oil shale is mainly of type Ⅲ and a few type Ⅱ2and Ⅲ kerogen; the Shengli River oil shale is mainly type Ⅲ and type Ⅱ2kerogen, while the Tuonamu oil shale is mainly type Ⅲ and type Ⅰ kerogen.
     (7) The control factors of the development of the Cretaceous marine oil shale were analysed, including:the redox state, palaeo-productivity, paleoclimate, the mixed deposits with clay mineral, differential palaeotopography and the sea level change. There is a significant positive relationship between TOC and palaeoenvironment element index Mo (r=0.975) and V (r=0.917), while TOC shows a weak and negative relationship between the palaeo-productivity index P/Al (r=0.481) and Ba/A1(r=-0.739). Therefore, this paper proposes that the formation of the Cretaceous marine shale is mainly of preservation mode. The water environment during the organic matter deposit played a leading role in the formation of high TOC content in the oil shale. The gypsum overlying the oil shale was controlled by evaporated lagoon facies in the lateral and controlled by the palaeoclimate condition in the vertical.
引文
①青海区域地质调查队,《温泉幅》1:20万区域地质调查报告,1987.
    ②吉林大学地质调查研究院.中华人民共和国区域地质调查报告(1:25万玛依岗日幅地质报告).2006.
    [1]鲁兵,李永铁,刘忠.青藏高原的盆地形成与分类[J].石油学报,2000,21(2):21-26.
    [2]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学技术出版社,2000.
    [3]Kapp P., Yin A, Manning C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet [J]. Geology,2000,28 (1):19-22.
    [4]尹福光.2003.羌塘盆地中央隆起性质与成因[J].大地构造与成矿学,27(2):143-146.
    [5]刘怀山,韩晓丽.西藏羌塘盆地天然气水合物地球物理特征识别与预测[J].西北地质,2004,37(4):33-38.
    [6]黄继钧.藏北羌塘盆地构造特征及演化[J].中国区域地质,2001,20(2):178-186.
    [7]杨桂芳,藤玉洪,卓胜广,等.藏北羌塘盆地双湖地区油气成藏条件[J].地质通报,2003,22(4):285-289.
    [8]伍新和,王成善,伊海生,等.两藏羌塘盆地中生界烃源岩特征[J].西北地质,2005,38(4):78-85.
    [9]谭富文,王剑,王小龙.2002.西藏羌塘盆地—中国油气资源战略选区的首选目标[J].沉积与特提斯地质,22(1):16-21.
    [10]汪正江,王剑,陈文西,等.青藏高原北羌塘盆地胜利河上侏罗统海相油页岩的发现[J].地质通报.2007,26(6):764-768.
    [11]付修根,王剑,汪止江,等.藏北羌塘盆地海相油页岩沉积环境[J].新疆石油地质,2007,28(5):529-533.
    [12]王剑,付修根,李忠雄,等.藏北羌塘盆地胜利河—长蛇山油页岩带的发现及其意义[J].地质通报,2009,28(6):691-695.
    [13]王剑,付修根,杜安道,等.羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年[J].海相油气地质,2007,12(3):21-26.
    [14]曾胜强,王剑,陈明,等.北羌塘盆地索瓦组上段的时代、古气候及石油地质特征[J].现代地质,2012,26(1):10-21.
    [15]曾胜强,王剑,付修根,等.北羌塘盆地长蛇山油页岩剖面烃源岩生烃潜力及沉积环境[J].中国地质,2013a,(录用待刊).
    [16]王剑,付修根,李忠雄,等.北羌塘盆地油页岩形成环境及其油气地质意义[J].沉积与特提斯地质,2010,30(3):11-17.
    [17]吴滔,熊兴国,易成兴,等.北羌塘坳陷胜利河组膏岩沉积环境[J].新疆石油地质,2010,31(4):376-378.
    [18]谭富文,王剑,李永铁,等.羌塘盆地侏罗纪末-早白垩世沉积特征与地层问题[J].中国地质,2004,31(4):400-405.
    [19]刘建清,贾保江,杨平,等.羌北坳陷雪山组地层形成环境及古地理意义[J].地层学杂志,2008, 32(1):33-40.
    [20]蒋忠惕.羌塘地区侏罗系地层的若干问题[C]//青藏高原地质文集(3).北京:地质出版社,1983:87-112.
    [21]方德庆,云金表,李椿.北羌塘盆地中部雪山组时代讨论[J].地层学杂志,2002,26(1):68-72.
    [22]李亚林,王成善,伍新和,等.藏北托纳木地区发现上侏罗统海相油页岩[J].地质通报,2005,24(8):783-784.
    [23]付修根,王剑,汪正江,等.藏北羌塘盆地晚侏罗世海相油页岩生物标志物特征、沉积环境分析及意义[J].地球化学,2007,36(5):486-496.
    [24]Fu X G, Wang J, Tan F W, et al. Geochemical and palynological investigation of the Shengli River marine oil shale (China):Implications for paleoenvironment and paleoclimate [J]. International Journal of Coal Geology,2009,78(3):217-224.
    [25]Fu X G, Wang J, Tan F W, et al. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China):Relationships with oil shale Formation[J]. Oil Shale,2009,26(3): 373-381.
    [26]付修根,王剑,汪正江,等.藏北羌塘盆地海相油页岩沉积环境[J].新疆石油地质,2007,28(5):529-533.
    [27]王剑,付修根,李忠雄,等.北羌塘盆地油页岩形成环境及其油气地质意义[J].沉积与特提斯地质,2010,30(3):11-17.
    [28]吴滔,熊兴国,易成兴,等.北羌塘坳陷胜利河组膏岩沉积环境[J].新疆石油地质,2010,31(4):376-378.
    [29]伊海生,林金辉,赵兵,等.藏北羌塘地区地层新资料[J].地质论评,2003,49(1):59-65.
    [30]方德庆,庞庆山,张永清,等.羌塘盆地北部上侏罗统东湖剖面的划分与对比[J].大庆石油学院学报,2000,24(1):15-18.
    [31]Fu Xiugen, Wang Jian, Qu Wenjun, et al. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang basin, northern Tibet, China [J]. Oil Shale,2008,25(1):47-55.
    [32]李忠雄,何江林,熊兴国,等.藏北羌塘盆地上侏罗—下白垩统胜利河油页岩特征及其形成环境[J].吉林大学学报(地球科学版),2010,40(2):264-272.
    [33]Fu X G, Wang J, Zeng Y H, et al. Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China [J]. Chemie der Erde,2011,71(1):21-30.
    [34]Fu X G, Wang J, Zeng Y H, et al. Concentrations and modes of occurrence of platinum group elements in the Shengli River oil shale, northern Tibet, China [J]. Fuel,2010,89(12):3623-3629.
    [35]Fu X G, Wang J, Zeng Y H, et al. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China [J]. International Journal of Coal Geology,2010,81(3):191-199.
    [36]Fu X G Wang J, Zeng Y H, et al. Geochemistry of platinum group elements in marine oil shale from the Changshe Mountain area (China):Implications for modes of occurrence and origins[J]. International Journal of Coal Geology,2011,86(2-3):169-176.
    [37]周山富,杨方之.孢粉地质学[M].杭州:浙江大学出版社,2007,1-151.
    [38]张立平,王东坡.松辽盆地自垩纪古气候特征及其变化机制[J].岩相古地理,1994,14(1):12-16.
    [39]辛存林,孙柏年,韦利杰,等.甘肃窑街中侏罗世孢粉组合及其古环境意义[J].兰州大学学报(自然科学版),2006,42(3):8-13.
    [40]赵秀兰,赵传本,关学婷,等.利用孢粉资料定量解释我国第三纪古气候[J].石油学报,1992,13(2):215-225.
    [41]黄清华,赵来时,卢占武,等.内蒙古海拉尔盆地大磨拐河组孢粉化石及其时代浅析[J].地质科技情报,2006,25(1):19-26.
    [42]高瑞祺,赵传本,乔秀云,等.松辽盆地白垩纪石油地层孢粉学[M].北京:地质出版社,1999,1-373.
    [43]Murray R W, Buchholtz M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, Californian:assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta,1991,55 (7):1875-1895.
    [44]Broecker W S, Peng T H. Tracers in the Sea. New York:Eldigio Press,1982.
    [45]Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic sediments:Implications for the geological record [J]. Marine Geology,1993,113(1-2):67-88.
    [46]Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic, and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996,145(1-4):65-78.
    [47]Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybd enum removal from the sea and its concentration in black shales:EX-AFS evidence [J]. Geochimica et Cosmochimica Acta,1996,60(19), 3631-3642.
    [48]Tribovillard N, Algeo T W, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology,2006,232(1-2):12-32.
    [49]Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsyl vanian Kansas-type cyclothems [J]. Chemical Geology,2004,206(3-4):289-318.
    [50]Meyer E E, Burgreen B N, Lackey H, et al. Evidence for basin restriction during syn-collisional basin formation in the Silurian Arisaig Group, Nova Scotia [J]. Chemical Geology,2008,256(1-2):1-11.
    [51]Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA) [J]. Chemical Geology,2004,206(3-4):373-391.
    [52]Emerson S R, Huested S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater [J]. Marine Chemical,1991,34(3-4):177-196.
    [53]Kimura H, Watanabe Y. Ocean anoxia at the Precambrian-Cambrian boundary [J]. Geology,2001, 29(11):995-998.
    [54]Finkelman R B. Trace element in coal [J]. Biological Trace Element Research,1999,67(3):197-204.
    [55]严德天,陈代钊,王清晨,等.扬子地区奥陶系-志留系界线附近地球化学研究[J].中国科学D辑:地球科学,2009,39(3):285-299.
    [56]Myers K J, Wignall P B. Understanding Jurassic organic-rich mudrocks-New concepts using gamma-ray spectrometry and palaeoecology:examples from the Kimmeridge clay of Dorset and the Jet rock of Yorkshire. In:Leggett J K, Zuffa G G, eds. Marine Clastic Sedimentology. London:Graham and Trotman,1987,1-45.
    [57]Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science,1996, 272(5265):1155-1158.
    [58]Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China:implications for organosedimentary metal enrichment and silicification in the early Cambrian[J]. Palaeogeography Palaeoclimatology Palaeoecology,2007,254(1-2): 194-216.
    [59]腾格尔,刘文汇,徐永昌,等.缺氧环境及地球化学判识标志的探讨—以鄂尔多斯盆地为例[J].沉积学报,2004,22(2):365-372.
    [60]Peters K E, Moldowan J M. The Biomarker Guide:Interpreting Molecular Fossils in Petroleum and Ancient Sediments [M]. Prentice Hall Inc.,1993:1-347.
    [61]Didyk B M, Simoneit B R T, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature,1978,272:216-222.
    [62]Fu Jiamo, Sheng Guoying, Peng Pingan, et al. Peculiarities of salt lake sediments as potential source rocks in China[J]. Organic Geochemistry,1986,10(1-3):119-126.
    [63]Peters K E, Moldowan J M.生物标记化合物指南—古代沉积物和石油分子化石的解释[M].姜乃煌,张水昌,等泽.北京:石油工业出版社,1995,4-148.
    [64]梁狄刚,张水吕,张宝民,等.从塔里小盆地看中国海相生油问题[J].地学前缘,2000,7(4):534-547.
    [65]Tissot B P, Welte D H. Petroleum Formation and Occurrence-A New Approach to oil and Gas Exploration, Springer-Verlag, Berlin, Heidelberg, New York,1978,1-538.
    [66]Demaison G J, Moore G T. Anoxic Environments and oil Source Bed Genesis[J]. Organic Geochemistry,1980,2(1):9-31.
    [67]陈践发,张水吕,王大锐,等.中国典型叠合盆地油气形成富集与分布预测.中国石油勘探开发研究院,国家重点基础研究(973)项目中期评估报告(G1999043306),2001.
    [68]赵文智,张光亚,何海清,等.中国海相石油地质与叠合含油气盆地[M].北京:地质出版社,2002,1-360.
    [69]Hunt J M. Petroleum Geochemistry and Geology[M]. New York:Freman,1979,1-273.
    [70]王成善,伊海生,刘池洋,等.西藏羌塘盆地古油藏发现及其意义[J].石油与天然气地质,2004,25(2):139-143.
    [71]王剑,付修根,谭富文,等.羌塘中生代(T3-K1)盆地演化新模式[J].沉积学报,2010,28(5):884-893.
    [72]Kapp P, Yin A, Manning C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet [J]. Geology,2000,28(1):19-22.
    [73]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学技术出版社, 2000,208-220,321-359.
    [74]西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社,1993,100-188.
    [75]尹福光,潘桂棠,李兴振,等.昆仑造山带中段蛇绿混杂岩的地质地球化学特征[J].大地构造与成矿学,2004,28(2):194-200.
    [76]尹福光.羌塘盆地中央隆起性质与成因[J].大地构造与成矿学,2003,27(2):143-146.
    [77]边千韬,沙金庚,郑祥身.西金乌兰晚二叠世-早三叠世石英砂岩及其大地构造意义[J].地质论评,1993,53(5):699-703.
    [78]常承法.特提斯及青藏碰撞造山带的演化特点[M].见:大陆岩石圈的构造与资源.北京:海洋出版社,1992,1-18.
    [79]刘增乾,李兴振.三江地区构造岩浆带的划分与矿产分布规律[M].北京:地质出版社,1993.
    [80]赵政璋,李永铁,叶和飞,等.青藏高原中生界沉积相及油气储盖层特征[M].北京:科学出版社,2001.
    [81]刘训.青藏高原不同地体的地层、生物区系及沉积构造演化史[M].北京:地质出版社:1992,1-115.
    [82]边千韬,沙金庚,郑祥身.西金乌兰晚二叠世—早三叠世石英砂岩及其大地构造意义[J].地质科学,1993,28(4):327-335.
    [83]潘裕生.青藏高原的形成与隆升[J].地学前缘,1999,6(3):153-163.
    [84]钟大赉等.滇川西部古特提斯造山带[M].北京:科学出版社,1998.
    [85]谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志,2000,19(2):121-130.
    [86]邓万明.藏北东巧—怒江超基性岩的岩石成因.见:喜马拉雅地质(Ⅱ).北京:地质出版社,1984.
    [87]王希斌,鲍佩声,陈克樵.西藏的蛇绿岩[J].中国区域地质,1987,3(2):248-256.
    [88]王鸿祯.中国古地理图集.北京:地质出版社,1985.
    [89]潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京:地质出版社,1997:121-128.
    [90]王希斌,鲍佩声,邓万明,等.西藏蛇绿岩[M].北京:地质出版社,1987.
    [91]赵政璋,李永铁,叶和飞,等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社,2001.
    [92]余光明,王成善.西藏特提斯沉积地质.地质专报:第11号.北京:地质出版社,1990:1-132.
    [93]张旗,周德进,李秀云.古特提斯大洋岩石圈地慢的性质及下地馒的印记.见:张旗主编,蛇绿岩与地球动力学研究[M].北京:地质出版社,1996:181-184.
    [94]李秋生,王建平.西藏东部丁青—恕江蛇绿混杂岩带的地质特征[A].见:张旗主编.蛇绿岩与地球动力学研究[C].北京:地质出版社,1996:195-198.
    [95]李红生.西藏丁青地区早着落时放射虫[J].微体古生物学报,1988,3:1-9.
    [96]游再平.西藏丁青蛇绿混杂岩40Ar/39Ar年代学[J].西藏地质,1998,2:24-30.
    [97]王建平,刘彦明,李秋生,等.西藏丁青蛇绿岩特征、时代及其地质意义[J].微体古生物学报,2002,1 9(4):417-420.
    [98]王乃文,王思恩,刘桂芳,等.西藏拉萨地区的海陆交互相侏罗系与白垩系[J].地质学报,1983,57(1):83-95.
    [99]夏邦栋,张开均,孔庆友,等.青藏高原内部三条磨拉石带的确定及其构造意义[J].地学前缘1999,6(3):173-180.
    [100]王国芝,王成善.西藏羌塘基底变质岩系的解体和时代厘定[J].中国科学(D辑),2001,31(增刊):77-82.
    [101]李才,王天武,杨德明,等.西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究[J].长春科技大学学报,2000,30(2):105-109.
    [102]李才.羌塘基底质疑[J].地质论评,2003,49(1):4-9.
    [103]李才,程立人,张以春,等.西藏羌塘南部发现奥陶纪—泥盆纪地层[J].地质通报,2004,23(5-6):602-604.
    [104]李才,翟庆国,程立人,等.青藏高原羌塘地区几个关键地质问题的思考[J].地质通报,2005,24(4):295-301.
    [105]黄继钧.藏北羌塘盆地构造特征及演化[J].中国区域地质,2001,20(2):178-186.
    [106]黄继钧.羌塘盆地基底构造特征[J].地质学报,2001,75(3):333-337.
    [107]文世宣.西藏北部地层资料[J].地层学杂志,1979,3:150-156.
    [108]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980.
    [109]谭富文,王剑,付修根,等.藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义[J].岩石学报,2009,25(1):139-146.
    [110]李才,程立人,张以春,等.西藏羌塘南部发现奥陶纪-泥盆纪地层[J].地质通报,2004,23(5-6):602-604.
    [111]王成善,胡承祖,吴瑞忠,等.西藏羌塘地区的地质特征兼论古特提斯海的构造格局[J].大自然探索,1985,4:75-83.
    [112]王成善,胡承祖,吴瑞忠,等.西藏北部查桑-茶布裂谷的发现及其地质意义[J].成都地质学院学报,1987,14(2):33-47.
    [113]邓万明,尹集祥,呙中平.羌塘茶布—双湖地区基性超基性岩和火山岩研究[J].中国科学(D辑),1996,26:296-301.
    [114]潘桂棠,陈智梁,李兴振,等.东特提斯多弧—盆系统演化模式[J].岩相古地理,1996,16:52-65.
    [115]王剑,谭富文,李亚林,等.青藏高原重点沉积盆地油气资源潜力分析[M].地质出版社,2004.
    [116]鲁兵,刘池阳,刘忠,等.羌塘盆地的基底组成、结构特征及其意义[J].地震地质,2001,23(4):510-520.
    [117]李才,程立人,胡克,等.西藏羌塘南部地区的冰海杂砾岩及其成因[J].长春科技大学学报, 1995,25(4):368-374.
    [118]李才,和钟烨,杨德明.西藏羌塘地区几个地质构造问题[J].世界地质,1996,15(3):18-24.
    [119]邓希光,丁林,刘小汉,等.青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学[J].科学通报,2000,45(21):2322-2326.
    [120]李才.龙小错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报.1987,17(2):155-166.
    [121]李才,王天武,杨德明,等.西藏羌塘中央隆起区物质组成与构造演化[J].长春科技大学学报,2001,31(1):25-36.
    [122]Li Y J.Wu H R, Li H S, et al. The Chabu-Chasang zone in North Tibet. Scientia Geologica Sinica. 1994,3:151-160.
    [123]Haines S., Klemperer S., Brown L., et al. INDEPTH Ⅲ seismic data:From surface observations to deep crustal processes in Tibet. Tectonics,2003, doi:10.1029/2001TC001305.
    [124]Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Reviews of Earth and Planetary Science,2000,28:211-280.
    [125]李才,翟庆国,董永胜,等.青藏高原龙木错—双湖板块缝合带与羌塘古特提斯洋演化记录[J].地质通报,2007,26(1):13-21.
    [126]李才.青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J].地质论评,2008,54(1):105-119.
    [127]Kapp, P., Yin, A., Manning, C.E., et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet [J]. Tectonics,2003, doi:10.1029/2002TC001383.
    [128]Pullen, A., Kapp, P., Gehrels, G.E., et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean [J]. Geology,2008,36(5),351-354.
    [129]翟庆国,李才,程立人,等.西藏羌塘角小日地区二叠纪蛇绿岩的地质特征及意义[J].地质通报,2004,23(12):1228-1230.
    [130]王剑,丁俊,王成善,等.青藏高原油气资源战略选区调查与评价[M].北京:地质出版社,2010.
    [131]王剑,汪正江,陈文西,等.藏北北羌塘盆地那底岗日组时代归属的新证据[J].地质通报,2007,26(4):404-409.
    [132]王剑,付修根,陈文西,等.北羌塘沃若山地区火山岩年代学及区域地球化学对比—对晚三叠世火山-沉积事件的启示[J].中国科学(D辑),2008,38(1):33-43.
    [133]付修根,王剑,汪正江,等.藏北羌塘盆地菊花山地区火山岩SHRIMP锆石U-Pb年龄及地球化学特征.地质论评,2008,54(2):232-242.
    [134]Fu X G, Wang J, Tan F W, et al. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China):Age and tectonic implications [J]. Gondwana Research,2009, doi:10.1016/j.gr.2009.04.010.
    [135]朱同兴.从弧后盆地到前陆盆地的沉积演化—以西藏北部羌塘中生代盆地分析为例[J].特提 斯地质,1999,23(2):1-15.
    [136]王剑,付修根,陈文西,等.藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J].沉积学报,2007,25(4):487-494.
    [137]付修根,王剑,汪正江,等.藏北羌塘盆地上三叠统那底岗日组与下伏地层沉积间断的确立及意义[J].地质论评,2007,53(3):329-336.
    [138]陈文西,王剑,汪正江,等.藏北羌塘盆地菊花山地区晚三叠世古岩溶不整合面的发现及其意义[J].地质论评,2007,53(5):699-703.
    [139]王成善,伊海生,李勇,等.西藏羌塘盆地地质演化与油气远景评价.北京:地质出版社,2001.
    [140]瓦赫拉梅耶夫B A著,孙革,张志城,郑少林译.侏罗-白垩纪全球植物群及气候[M].南京:南京大学出版社,1991,35-54.
    [141]Li J G, Batten D J. Early Cretaceous palynofloras from the Tanggula Mountains of the northern Qinghai-Xizang (Tibet) Plateau, China[J]. Cretaceous Research,2004,25(4):531-542.
    [142]Trevisan L. Dicheiropollis, a pollen type from Lower Cretaceous sediments of southern Tuscany (Italy). Pollen et Spores,1971,13(4):561-596.
    [143]Hochuli, P A. North Gondwanan floral elements in lower to middle Cretaceous sediments of the Southern Alps (southern Switzerland, northern Italy). Review of Palaeobotany and Palynology,1981, 35(2-4):337-358.
    [144]黎文本.塔里小盆地北部早白垩世孢粉组合[J].古生物学报,2000,39(1):28-45.
    [145]陈文彬,贺永忠,古王忠,等.藏北南羌塘安多县鄂斯玛地区早白垩世孢粉化石Dicheiropollis的发现及其地质意义[J].地质通报,2012,31(10):1602-1607.
    [146]黎文本.辽宁义县金家沟义县组砖城子层孢粉组合[J].古生物学报,2010,49(1):44-53.
    [147]张望平Dicheiropollis在云南富民盆地安宁组孢粉组合中的出现及其意义[J].微体古生物学报,1995,12(1):39-49.
    [148]阴家润.青海南部奇异蚌动物群生态环境与时代探讨[J].古生物学报,1990,29(3):284-299.
    [149]尹风娟,侯宏伟.陕西彬县地区中侏罗世延安组孢粉植物群及其意义[J].植物学报,1999,41(3):325-329.
    [150]黄嫔,管永明,杨晓清.江苏句容深层早侏罗世孢粉植物群的发现[J].微体古生物学报,2000,17(1):85-98.
    [151]黄嫔,张光富.吉林延边智新盆地大拉子组孢粉组合[J].微体古生物学报,2002,19(3):263-275.
    [152]Vakhrameev V A. Range and paleoecology of Mesozoic conifers, the Cheirolepidiaceae[J]. Paleontological Journal,1970,4:12-25.
    [153]赵海滨,尹志刚,万晓樵,等.据孢粉分析黑龙江嘉荫地区晚白垩世气候变化对恐龙绝灭的影响[J].现代地质,2006,20(2):216-224.
    [154]崔莹,席党鹏,万晓樵.大庆油田徐22井青山口组/姚家组微体生物及其古气候响应[J].现代 地质,2007,21(3):484-490.
    [155]Alvin K L. Cheirolepidiaceae:biology, structure and paleoecology [J]. Review of Palaeobotany and Palynology,1982,37(1-2):71-98.
    [156]谭富文,王剑,王小龙,等.藏北羌塘盆地上侏罗统中硅化小的发现及意义[J].地质通报,2003,22(11-12):956-958.
    [157]朱丽霞.羌塘盆地胜利河-托纳小地区早白垩世沉积环境及石油地质意义[D].北京:中国地质科学院硕十学位论文,2011,46-53.
    [158]Dean W E, Gardner, J.V., Piper, D.Z. Inorganic geochemical indicators of glacial interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 1997,61(21),4507-4518.
    [159]Carine Lezin, Bernard Andreu, Pierre Pellenar, et al. Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe. Chemical Geology,2013,341: 1-15.
    [160]Ketris M P, Yudovich Y E. Estimations of clarkes for carbonaceous biolithes:world average for trace element contents in black shales and coals. International Journal of Coal Geology,2009,78 (2): 135-148.
    [161]何江林,王剑,付修根,等.羌塘盆地胜利河油页岩有机地球化学特征及意义[J].沉积学报,2010,28(3):626-634.
    [162]Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia [J]. American Association of Petroleum Geologists Bulletin,1985,69(8):1241-1254.
    [163]Peters K E and Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry,1991,17(1): 47-61.
    [164]胡修棉.藏南白垩系沉积地质与上白垩统海相红层—大洋富氧事件[D].成都:成都理工大学博十学位论文,2002.
    [165]陈文彬,廖忠礼,付修根,等.北羌塘盆地布曲组烃源岩生物标志物特征及意义[J].沉积学报,2007,25(5):808-814.
    [166]赵政璋,李永铁,叶和匕,等.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2001.
    [167]Fu X G, Wang J, Zeng Y H, et al. Trace elements and their behaviour during the combustion of marine oil shale from Changliang Mountain, northern Tibet, China[J]. Environmental Earth Science, 2012, doi:10.1007/s 12665-012-2199-5.
    [168]Tissot B T, Durand B, Espitalie J, et al. Influence of nature and diagenesis of organic matter in formation of petroleum [J]. AAPG Bulletin,1974,58(3):499-506.
    [169]傅家谟,秦匡宗.干酪根地球化学[M].广州:广东科技出版社,1995:443-468.
    [170]张厚福,方朝亮,高先志,等.石油地质学.北京:石油工业出版社,1999.
    [171]Pujol F, Berner Z, Stuben D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections:Chemostratigraphic constraints. Palaeogeography Palaeoclimatology Palaeoecology,2006,240(1-2):120-145.
    [172]Rimmer S M, Thompsona J A, Goodnighta S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales:Geochemical and petrographic evidence. Palaeogeography Palaeoclimatology Palaeoecology,2004,215(1-2):125-154.
    [173]Turgeon S, Brumsack H J. Anoxic vs. dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy. Chemical Geology,2006,234(3-4):321-339.
    [174]Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography Palaeoclimatology Palaeoecology,2011,308(1-2):65-83.
    [175]曾胜强,干剑,付修根,等.羌塘盆地白垩系海相油页岩发育的控制因素分析[C].地质论评,2013b,59(Supp):709-710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700