用户名: 密码: 验证码:
Ⅱ-Ⅵ族硫化物纳米复合材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源短缺是21世纪人类面临的两大难题,光催化技术因其反应速度快、条件温、效率高和直接利用取之不尽的太阳能来源驱动反应等独特性质,而成为解决这两大难题的一种新型的绿色技术。Ⅱ-Ⅵ族硫化物中的CdS、 ZnS作为典型的半导体材料,成为研究重点,CdS为窄带隙半导体(2.42eV),能响应可见光,但其自身光生电子-空穴对分离效率低,并且存在光腐蚀现象,限制了其光催化活性;ZnS较宽的带隙(3.7eV),仅能被紫外光激发,限制了其可见光的响应,从而限制了其对太阳能的利用率。因此,以CdS和ZnS为基础开发具有高效率、高稳定性的可见光催化剂成为本论文的研究目标。本文利用还原氧化石墨烯复合硫化镉(RGO/CdS)、还原氧化石墨烯复合硫化锌(RGO/ZnS)和ZnxCd1-xS三元固溶体等体系来提高该体系材料的可见光催化性能。
     1)采用微波法一步反应制备了还原氧化石墨烯复合硫化镉(RGO/CdS)纳米材料,利用XRD、 SEM、 TEM、 EDS、 DRS、 Raman、 XPS、 FTIR等手段对样品进行了结构、成分、形貌表征和光电流测试。研究结果证明反应得到了还原氧化石墨烯(RGO)片层与CdS纳米颗粒的复合材料,CdS纳米颗粒均匀分布在RGO表面。以RGO/CdS为光催化剂,利用可见光降解罗丹明B测试结果表明RGO/CdS纳米复合材料的光催化效率明显高于纯CdS,其中当RGO复合量为10%时光催化效率最高,在80min内将Rh B几乎完全降解,循环试验证明样品具有良好的稳定性。实验表明RGO的加入使得CdS纳米颗粒的尺寸变小,拓宽了材料的光响应范围、增大了吸收强度、抑制了光生电子-空穴对的复合,从而提高了样品的光催化活性和稳定性。
     2)采用微波法一步反应制备了还原氧化石墨烯复合硫化锌(RGO/ZnS)纳米材料,利用XRD、 SEM、 TEM、 EDS、 DRS、 FTIR、 Raman、电化学等手段对样品进行了结构、成分、形貌表征和光电流测试。结果证明复合材料中ZnS纳米颗粒为六方纤锌矿结构,反应过程中GO被还原,直径在50nm左右的ZnS纳米球均匀分布在RGO片层表面。RGO/ZnS复合材料光电流的显著增强说明RGO片层与ZnS颗粒之间存在光生电子的有效传递。以RGO/ZnS为光催化剂,紫外光下降解Rh B。实验证明RGO/ZnS具有较高的光催化效率,其中当复合物中RGO含量为8%时样品具有最高的光催化效率,循环实验证明材料具有较好的稳定性,探讨了RGO/ZnS光催化机理。
     3)在室温离子液体1-丁基-3-甲基咪唑硫氰酸盐中,以硫氰酸锌为锌源,硫钒酸锌为锌源,采用微波法成功制备了ZnxCd1-xS固溶体纳米材料,改变反应物中Zn/Cd比来制备不同组分的固溶体。利用XRD、 SEM、 TEM、 EDS、 DRS等手段对样品进行行了结构、成分、形貌表征和光电流测试,结果表明得到的系列复合材料均为六方纤锌矿结构,并且ZnxCd1-xS样品德吸收带边均位于可见光区。尽管具有类似的尺寸和结构,不同组分的ZnxCd1-xS固溶体光催化剂在可见光下对甲基橙(MO)溶液表现出不同的催化效率,其中Zn0.36Cd0.64S具有最高的光催化效率,可见光下照射4h后降解率达到85%,明显优于纯的CdS和ZnS,研究发现在光催化过程中穴主要起着氧化剂的作用。
The increasingly serious environmental pollution and energy shortages have become the two major problems in the21st century. Photocatalysis technology has been considered as a novel "green" approach to solve these problems due to its mild reaction conditions, high efficiency and the inexhaustible solar resource. The typically binary II-VI sulfide, especially CdS and ZnS, have attracted much attention and become the focus of our research. CdS has a narrow band gap (2.42eV), and can respond to the visible light. But the low separation efficiency of electron-hole pairs and photocorrosion limit its photocatalytic activity. The relatively large band gap of3.7eV for ZnS limits its photoresponse to the visible light region, and thus limits the utilization of solar energy. Therefore, Based on CdS and ZnS, the way to efficiently exploit novel photocatalysts with high efficiency and high stability is the goal of our study. According to the above analysis, we successfully prepared Reduced Graphene Oxide/CdS(RGO/CdS), Reduced Graphene Oxide/ZnS(RGO/ZnS) and ZnxCd1-xS solid solution to improve its photocatalytic performance.
     1) The RGO/CdS nanocomposites were successfully prepared by a microwave method and the structure, composition and morphology of the synthesized products were systematically characterized by X-ray powder (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), UV-vis diffuse reflectance spectra (DRS), Raman scattering, X-rays photoelectron spectroscopy (XPS), fourier transformation infrared spectroscopy (FTIR) and photocurrent test. The results indicated that CdS nanoparticles distributed evenly on the reduced graphene sheets. Using the degradation of rhodamine B as model reactions in the aqueous phase under visible light, the sample RGO/CdS-10%possessed the best activity and good stability after3-cycle experiments under same condition. The conversion of RhB degradation was almost to100%after80min of irradiation. The significant enhancement in photoactivity can be ascribed to be the smaller morphology of CdS nanoparticles in the nanocomposites and the introduction of graphene which reinforced the adsorptivity of the photocatalysts, suppressed the electron-hole pair recombination, and extended the light absorption range in the as-synthesized RGO/CdS nanocomposite photocatalyst.
     2) The RGO/ZnS nanocomposites were successfully prepared by a microwave method and the structure, composition and morphology of the synthesized products were systematically characterized by X-ray powder (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), UV-vis diffuse reflectance spectra (DRS), fourier transformation infrared spectroscopy (FTIR), Raman scattering and photocurrent test. The results indicated that ZnS has hexagonal wurtzite structure and GO has been successfully reduced to RGO sheets. RGO sheets have been successfully decorated by dense ZnS nanoballs with a mean diameter of50nm composed of many smaller self-assembled ZnS nanoparticles. The obvious enhancement observed from photocurrent spectroscopy suggests that there is photoinduced electron-transfer between ZnS nanoparticles and RGO sheets. The as-prepared RGO/ZnS nanocomposites show an excellent photocatalytic activity toward the photodegradation of rhodamine B and the sample RGO/ZnS-8%possessed the best activity. Frthermore, the mechanism of photocatalytic process of new graphene-based material is discussed briefly in this study.
     3) ZnxCd1-xS nanoparticles were successfully synthesized by microwave method in ethylene glycol with1-butyl-3-methylimidazolium thiocyanate ([BMIMJSCN) cadmium thiocyanate (Cd(SCN)2) as the cadmium resource and zinc thiocyanate (Zn(SCN)2) as the zinc resource. The composition of the solid solution was adjusted by controlling the Zn/Cd molar ratios. The prepared nanoparticle was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), UV-vis diffuse reflectance spectra (DRS) and photocurrent test to analyse its structure, composition and morphology. The results showed that all of the prepared samples were wurtzite phase and the absorption onsets were in visible light range. Despite the analogous size and configuration, the solid solution with different Zn/Cd molar ratio exhibit composition-dependent photocatalytic efficiencies for degradation of Methyl Orange solution under visible light illumination. Among all the photocatalysts, the sample Zn0.36Cd0.64S possessed the best activity, consistenting with the results of photocurrent test. The conversion of MO degradation was up to85%after4h of irradiation which was obviously superior to CdS and ZnS under identical conditions. At the same time, we found that in the photocatalytic process under visible light, holes contributed to the degradation.
引文
[1]J.W.Tang, Z.G.Zou, J.H.Ye. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation [J].Angew. Chem. Int. Ed,2004,43:2263-4466.
    [2]A.Fuiishima, K.Honda. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,37:238-254.
    [3]J.H.Carey, J.Lawrence, H.M.Tosine. Photodechorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. B. Environ. Contam.Tox,1976,16: 697-701.
    [4]S.N.Frank, A.J.Bard. Heterogeneous Photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem,1977, 81:1484-1486.
    [5]R.W.Matthews. Purification of water with near u.v. illuminated suspensions of titanium dioxide [J].Water. Res,1990,24:653-660.
    [6]L.Phillips, G.B.Raupp. Infrared spectroscopic investigation of gas-solid heterogeneous photocatalytic oxidation of trichloroethylene [J].J. Mol. Catal,1992, 77:297-311.
    [7]U.Stafford, K.A.Cray, P.V.Kamat, A.Varma. An in-situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface [J]. Chem. Phys. Lett,1993,205:55-61.
    [8]N.F.Steven, J.B.Allen, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconfuctor powder [J]. J. Phys. Chem,1977,81: 1484-1486.
    [9]K.L.Jonathan, J.B.Allen. Photochemistry of colloidal semi-conducting iron oxide polymorphs [J], J. Phys. Chem,1987,91:5076-5083.
    [10]E.Thimsen, S.Biswas, C.S.Lo, et al. Predicting the Band Structure of Mixed Transition Metal Oxide:Theory and Experiment [J]. J. Phys. Chem. C.2009, 113(5):2014-2021.
    [11]X.B.Chen, S.H.Shen, L.J.Guo, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev,2010,110(11):6503-6570.
    [12]A.L.Linsebigler, G.Lu, Jr.J.T.Yates. Photocatalysis on TiO2 surfaces:principles, mechanisms and selected results [J]. Chem. Rev,1995,95(3):735-758.
    [13]胡鹏,镉铅硫化物纳米材料的合成与表征[D],武汉:武汉理工大学,2008.
    [14]T.Ohno, T.Mitsui, M.Matsumura. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light [J]. Chem. Lett,2003,32:364-365.
    [15]W.Zhao, W.Ma, C.Chen, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation [J]. J. Am. Chem. Soc,2004,126: 4782-4783.
    [16]T.Tachikawa, S.Tojo, K.Kawai, et al. Photocatalytic oxidation reactibvity of holes in the sulfur and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy [J]. J. Phys. Chem. B,2004,108:19299-19306.
    [17]A.Fujishima, X.T.Zhang. TiO2 photocatalysis:present situation and future approaches [J]. CR. Chim,2006,9:750-760.
    [18]Y.L.Su, X.W.Zhang, S.Han, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition [J].Electrochem. Commun,2007,9:2291-2298.
    [19]S.W.Lam. K.Cmang, T.M.Lim, R.Amal, G.K.C.Low. The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol [J]. Appl.Catal. B-Environ,2007,72:363-72.
    [20]Y.Tian, T.Tatsuma. Mechallisms and applications of plasmon induced charge eparation at TiO2 films loaded with gold nanopmicles [J]. J. Am. Chem. Soc. 2005,127:7632-7637.
    [21]A.Sasahara, K.Hiehata, H.Onishi. Metal to oxide charge transfer obsended by a kelvin probe force microscope [J]. Catal.Surv. Asia,2009,13:9-15.
    [22]V.Subramallian, E.Wol. P.V.Kamat. Semiconductor metal composite nanostluctures to what extent do metal nanopanicles inlprove the photocatalvtic activity of TiO2 films [J]. J. Phvs. Chem. B.2001.105:11439-11446.
    [23]L.Du, A.Fumbe, K.Yamamoto, K.Hara, R.Katoh, M.Tachiva. Plasmon induced charge separation and recombination dynamics in Gold-TiO2 nanopanicle systems:dependence on TiO2 parrticle size [J]. J.Phys. Chem. C.2009,113: 6454-6462.
    [24]Y.Nosaka, K.Norimatsu, H.Miyama. The function of metals in metal-compounded semiconductor photocatalysts [J].1984,106:128-130.
    [25]N.Chandrasekharan, P.V.Kamat. Improving the photoelectrochemical perfomancc of nanostructured TiO2 films by adsoption of gold nanoparticles [J]. J. Phys. Chem. B,2000,104:10851-10857.
    [26]A.L.Linsebigler, G.Q.Lu, T.John. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev,1995,95:735-758.
    [27]S.J.Lord, H-L.D.Lee, R.Samuel, et al. Azido Push-Pull Fluorogens Photoactivate to Produce Bright Fluorescent Labels [J]. J. Phys. Chem. B,2010,114: 14157-14167.
    [28]T.V.Nguyen, S.S.Kim, O.B.Yang. Water decomposition on TiO2-SiO2 and RuS2/TiO2-SiO2 photocatalysts:the effect of electronic characteristics [J]. Catal. Commun,2004,5:59-62.
    [29]A.Hameed, T.Montilli, V.Gombac, P.Fomasiero. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite[J] J. Am. Chem. Soc,2008,130:9658-9669.
    [30]F.Osterloh. Inorganic materials as catalysts for photochemical splitting of water [J]. Chemistry of materials,2008,20:35-54.
    [31]Y.Bessekhouad. D.Robert, J.Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as all available configuration for photocatalytic degradation of organic pollutant [J]. J. Photoch. Photobio. A.2004,163:569-580.
    [32]M. Long, W. M. Ca. J. Cai, et al. Efficient photoeatalytic degradation of phenol over Co3O4/IBiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B,2006,110:20211-20216.
    [33]X. G. Peng. J. Wiekham, A.P. Alivisatos, Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal Semiconductor nanocrystal growth:"Foeusing" of size distributions [J]. J. Am. Chem. Soc,120:5343-5344.
    [34]A.Ohtomo, M.Kawasaki, T.Koida, K.Masubuehi, H.Koinulna, Y.Sakurai, Y.Yoshida, T.Yasuda, Y.Segawa, MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy [J]. Appl. Phys. Lett.,1998,72:2466-2468.
    [35]D.M.Bagnall, Y.F.Chen, M.Y.Shen, Z. Zhu. T. Goto. Room temperature exeitonic stimulated emission from zinc oxide ePilayers grown by plasma-assisted MBE [J]. J. Crys. Growth,1998,184/185:605-609.
    [36]Y.Xiao, P.E.Barker. Semiconductor nanocrystal probes for human metaphase chromosomes [J], Nuleic Acids Res.2004,32:28-34.
    [37]V.Stsiapura, A.Sukhanova, M.Artemyev, et al. Quasi-nanowires from fluorescent semiconductor nanocrystals on the surface of oriented DNA molecules [J], Opt. Spectrosc,2006,100:854-861.
    [38]W.Z.Wang, I.Germanenko, M.Samy. Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS [J], Chem. Mater, 2002,14:3028-3033.
    [39]C.C.Chen, J.J.Lin. Controlled growth of cubic cadmium sulfide nanoparticles using patterned self-assembled mono layers as a template [J]. Adv. Mater,2001, 13:136-139.
    [40]张皓,硫化镉及硫化镉复合材料的制备与表征[D],济南:山东大学,2003.
    [41]K.Novoselov, A.Geim, S.Morozov, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666.
    [42]A.Geim, K. Novoselov. The rise of graphene [J]. Nature Materials,2007,6: 183-191.
    [43]黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学,2009,39(9):887-896.
    [44]K.S.Novoselov, Z.Jiang, Y.Zhang, et al. Room-temperature quantum hall effect in graphene [J]. Science,2007,315:1379-1379.
    [45]P.M.Ostrovsky, I.V.Gornyi, A.D.Mirlin. Quantum criticality and minimal conductivity in graphene with long-range disorder [J]. Phys. Rev. Lett,2007,98: 256801.
    [46]Beenakker, C.W.J. Colloquium:Andreev reflection and Klein tunneling in graphene [J]. Reviews of Modern Physics,2008,80:1337-1354.
    [47]X.Chen, J.W.Tao. Y.Ban, et al. Goos-Hanchen-like shifts for Dirac fermions in monolayer graphene barrier [J]. European Physical Journal B,2011,79:203-208.
    [48]W.L.Wang, S.Meng, E.Kaxiras, et al. Graphene nanoflakes with large spin [J]. Nano Lett,2008,8:241-245.
    [49]C.Lee, X.Wei, J.W.Kysar, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,321:385.
    [50]J.C.Meyer, A.K.Geim, M.I.Katsnelson, et al. The structure of suspended graphene sheets [J]. Nature,2007,446:60-63.
    [51]C.Berger, Z.M.Song, X.B.Li, et al. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science,2006,312:1191-1196.
    [52]K.S.Kim, Y.Zhao, H.Jang. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature,2009,457:706-710.
    [53]A.Reina, X.Jia, J.Ho. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J]. Nano Letters,2009,9:30-35.
    [54]A.N.Obraztsov, E.A.Obraztsov, A.V.Tyuminaet. Chemical vapor deposition of thin graphite films of nanometer thickness [J]. Carbon,2007,45:2017-2021.
    [55]H.Huang, W.Chen, S.Chen, et al. Bottom-up Growth of Epitaxial Graphene on 6H-SiC (0001) [J]. ACS Nano.2008,2:2513-2518.
    [56]P.W.Sutter, J.I.Flege, E.A.Sutter. Epitaxial graphene on ruthenium [J]. Nature Materials,2008,7:406-411.
    [57]C.GNavarro, R.T.Weitz, A.M.Bittner, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets [J]. Nano Lett,2007,7: 3499.
    [58]S.Gilje, S.Han, M.Wang, et al. A chemieal route to graphene for device applications [J]. Nano Lett,2007,7:3394.
    [59]X.L.Li, et al. Chemically derives ultrasmooth graphene nanoribbon semiconductors [J]. Science,2008,319:1229.
    [60]T. Kyotani, N.Sonobe, A.Tomita. Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae [J]. Nature,1988,331:331-333.
    [61]Y.Cui, S.N.Kim, S.E.Jones, et al. Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides [J]. Nano Letters,2010,10:4559-4565.
    [62]R.Verdejo, B.F.Barrosr, et al. Functionalized graphene sheet filled silicone foam nanocomposites [J]. J. Mater. Chem,2008,18:2221-2226.
    [63]S.Stankovich, D.A.Dikin, G.H.B.Dommett, et al. Graphene based composite materials [J]. Nature,2006,442:282-286.
    [64]X.Chao, X.Wang, J.Zhu. Graphene/metal particle nanocomposites [J].J. Phys. Chem. C,2008,112:19841-19845.
    [65]G Williams, B. Serger, P. V. Kamat. TiO2-graphene nanocomposites:UV-assisted photocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2:1487-1491.
    [66]A. N. Cao, Z. Liu, S. S. Chu, et al. A facile one-step method to produce graphene-CdS Quantum Dot nanocomposites as promising optoelectronic materials [J]. Adv. Mater,2010,22:103-106.
    [67]N. R. Khalid, E. Ahmed, Z. G. Hong. Ehanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation [J]. Curr. Appl. Phys, 2013,13:659-663.
    [68]Z. Y. Ji, X. P. Shen, M. Z. Li. Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties [J]. Nanotechnology,2013, 24:115603-115612.
    [69]M. S. Zhu, Z. Li, B. Xiao. Surfactant assistance in improvement of photocatalytic hydrogen production with porphyrin non-covalently functionlized graphene nanocomposite [J]. Appl. Mater. Inter,2013,5:1732-1740.
    [70]Z. G. Mou, S. H. Yin, M. S. Zhu. RuO2/TiSi2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation [J]. Phys. Chem. Chem. Phys,2013,15:2793-2799.
    [1]H. B. Yin, Y. J. Wada. T. Kitamura, et al, Photoreductive Dehalo Genation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts[J], Environ Sci. Technol.,2001,35:227-231.
    [2]X. Fu, W.A.Zeltner, M.A.Anderson. The gas-phase photocatalytic mineralization of benzene Oil poroustitanic-basedcatalysts [J]. Appl. Catal. B:Environ.1995: 209.
    [3]B.A.Korgel, Monbouquette H.G. Synthesis of size-monodisperse CdS nanocrystals Using phosphatidylcholine vesicles as true reaction compartments [J], J. Phys. Chem.1996.100:346-351.
    [4]T.Hirai, H.Sato, I.Komasaw. Mechanism of formation of CdS and ZnS ultraFine particles in reverse micelles [J]. Ind. Eng. Chem. Res.,1994,33:3262-3367.
    [5]V.T.Dmitri, R.Koeppe, S.Gotzinger. Highly emissive colloidal CdSe/CdS heterostructurcs of mixed dimensionality [J]. Nano.Lett,2003,3:1677-1681.
    [6]Z.A.Peng, X.J.Peng. Formation of high-quality CdTe, CdSe, and CdS nanocryatals using CdO as precursor [J]. J. Am. Chem. Soc,2001.123:183-184.
    [7]P.Zhang, L.Gao. Synthesis and characterization of CdS nanorods via hydrothermal micromulsion [J]. Langmuir,2003.19:208-210.
    [8]曹维良,张凯华,张敬畅.表面修饰纳米CdS制备中两个重要影响因素及结构表征[J].无机化学学报,2002,18:997-1002.
    [9]C.Amitabha, M.Soumi, H.Raghuraman. Reverse micellar organization and dynamics:a wavelength-selective fluorescence approach [J]. J. Phys. Chem. B, 2002,106:13002-13009.
    [10]H.Q.Cao, Y.Xu, J.M.Hong, Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template [J]. Adv. Mater.,2001, 13:1393-1394.
    [11]W.W.So. J.S.Jiang, Y.W.Rhee. K.J.Kim. S.J.Moon. Preparation of nanosized crystalline CdS particles by the hydrothermal treatment [J]. J. Colloid. Interf. Sci., 2001,237:136-141.
    [12]S.H.Liu, X.F.Yin, J.Yin, X.D.Ma, J.Y.Yuan, Z.K.Zhu. Prepation and characterization of polymer-capped CdS nanocrystals [J]. J. Phys. Chem. Solids, 2003,64:455-458.
    [13]K.Biswas, C.N.R.Rao. Use of ionic liquids in the synthesis of nanocrystals and nanorods of semiconducting metal chalcogenides [J]. Chem. Eur. J.2007,13, 6123-6129.
    [14]X.P.Li, Y.N.Gao, L.Y, L.Q.Zheng. Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal procedd and their application in photocatalysis [J]. J. Solid. State. Chem.2010,183,1423-1432.
    [15]P.V.Braun, P.Osenar, S.I.Stupp, Semiconducting superlattices templated by molecular assemblies [J]. Nature,1996,380:325-328.
    [16]S.H.Yu, Y.S.Wu, J.Yang, et al. A novel solventthermal synthetic route to nanoctrystalline CdE (E=S, Se, Te) and Morphological Control [J]. Chem. Mater, 1998,10:2309-2312.
    [17]F.Gao, Q.Y.Lu, D.Y.Zhao. In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15 [J]. Chem. Phys. Lett,2002,360:585-591.
    [18]R.Thiruvengadathan, O.Regev, Hierarchically ordered cadmium sulfide nanowires dispersed in aqueous solution [J]. Chem. Mater,2005,17,3281-3287.
    [19]J.D.Phillip, P.S.Anura, D.S.Dilip, M. P. Laurence. Synthesis of cadmium and zinc semiconductor compounds from an ionic liquid containing choline chloride and urea [J]. Thin Solid Films,2007,515,5751-5754.
    [20]刘辉,李文友,尹洪宗.CdS纳米粒子制备的影响因素及CdS纳米粒子的酚藏红花体系的光谱特性[J].化学学报,2005,63:301-306.
    [21]S.William. Jr.Hummers, E.O.Richard. Preparation of graphene oxide [J]. J. Am. Chem. Soc,1958,80:1339-1339.
    [22]T.Nakajima, A.Mabuchi, R.Hagiwara. A new structure model of graphite oxide [J]. Carbon.1988,26(3):357-361.
    [23]D.Y.Pan, S.Wang, B.Zhao, M.H.Wu, et al. Li storage properties of disordered graphene nanosheets [J]. Chem. Mater,1999.21,3136-3142.
    [24]Q.Li, B.D.Guo, J.G.Yu, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets [J]. J. Am. Chem. Soc,2011,133,10878-10884.
    [25]N.Zhang, Y.H.Zhang, X.Y.Pan, X.Z.Fu, S.Q.Liu, Y.J.Xu. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst foe selective organic transformation under ambient conditions [J]. J. Phys. Chem. C,2011,115.23501-23511.
    [26]G.Williams, B.Serger, P.V.Kamat. TiO2-graphene nanocomposites:UV-assisted photocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2:1487-1491.
    [27]T.Szabo, E.Tombacz, E.Illes. Dekany. Enhanced acidity and pll-dependent surface charge characterization of successively oxidized graphite oxides [J]. Carbon,2006,44,537-545.
    [28]H.L.Guo, X.F.Wang, Q.Y.Qian, F.B.Wang, X.H.Xia. A green approach to the synthesis of graphene nanosheets [J]. ACS Nano,2009,3:2653-2659.
    [29]GI.Titelman, V.Gelman, S.Bron, R.L.Khalfin, Y.Cohen, H.Bianco-Peled. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide [J]. Carbon,2005,43:641-649.
    [30]Y.C.Si, E.T.Samulski. Synthesis of water soluble graphene [J]. Nano. Lett.2008, 8:1679-1682.
    [31]C.Nethravathi, M.Rajamathi. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon, 2008,46:1994-1998.
    [32]A.B.Bourlinos, D.Gournis, et al. Graphite oxide:Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids [J]. Langmuir,2003,19:6050-6055.
    [33]C.Nethravathi, T.Nisha, N.Ravishankar, C.Shivakumara, M.Rajamathi. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide [J]. Carbon,2009,47:2054-2059.
    [34]C.A.Arguello, D.L.Rousseau, S.P.S.Porto. First-order Raman Effect in wurtzite-type crystals [J]. Phys. Rev,1969,181:1351-1363.
    [35]B.B.Cao, Y.Jiang, C.Wang, et al. Synthesis and lasing properties of highly ordered CdS nanowire arrays [J]. Adv. Funct. Mater,2007,17:1501-1506.
    [36]H.Y. He, T.Riedl, A.Lerf, J.Klinowski. Solid-state NMR studies of the structure of graphite oxide [J]. J. Phys. Chem,1996,100:19954-19958
    [37]S.Chen, J.W.Zhu, X.Wang. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties [J]. J. Phys. Chem. C,2010, 114:11829-11834.
    [38]R.S.Vemuri, S.K.Gullapalli, D.Zubia, J.C.Mc.Clure, C.V.Ramana. Structural and chemical properties of highly oriented cadmium sulfide (CdS) cauliflower films [J]. Chem. Phys. Lett,2010,495:232-235.
    [39]S.G.Pan, X.I I.Liu. CdS-Graphene nanocomposite:synthesis, adsorption kinetics and high photocatalytic performance under visible light irradiation [J]. New. J. Chem,2012,36:1781-1787
    [40]Y.H.Zhang, Z.R.Tang, X.Z.Fu, Y.J.Xu. TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials? [J], ACS Nano,2010,12:7303-7314.
    [1]M.Carbon, GHarbeke. Optical properties and band structure of wurtzite-type crystals and rutile [J]. Phys. Rev. A,1965,137:1467-1476.
    [2]J.S.Jie, W.J.Zhang, Y.Jiang, X.M.Meng, Y.Q.Li, S.T.Lee. Photoconductive characteristics of single-crystal CdS nanoribbons [J]. Nano. Lett,2006,6: 1887-1892.
    [3]Y.Jiang, W.J.Zhang, J.S.Jie, X.M.Meng, J.A.Zapien, S.T.Lee. Homoepitaxial growth and lasing properties of ZnS nano wires and nanoribbon arrays [J]. Adv. Mater,2006,18:1527-1532.
    [4]S.Xiong, B.Xi, C.Wang, et al. Tunable synthesis of various wurzite ZnS architectural structures and their photocatalytic properties [J]. Adv. Funct. Mater, 2007,2728-2738.
    [5]D.F.Moore, Y.Ding, Z.L.Wang. Crystal-orientation ordered ZnS nanowire bundles [J]. J. Am. Chem. Soc,2004,126:14372-14373.
    [6]C.Ma, D.Moore, J.Li, Z.L.Wang. Nanobelts, nanocombs and nano-windmills of wurtzite ZnS [J]. Adv. Mater,2003,15:228-231.
    [7]S.M.Chen, L.Li, X.Wang, et al. Dense and vertically-aligned centimetre-long ZnS nanowire arrays:ionic liquid assisted synthesis and their field emission properties [J]. Nanoscale,2004,4:2658-2662.
    [8]J.Liu, Z.P.Guo, W.J.Wang, et al. Heterogeneous ZnS hollow urchin-like hierarchical nano structures and their structure-enhanced photocatalytic properties [J]. Nanoscale,2011,3:1470-1473.
    [9]S.W.Cao, Y.J.Zhu. Iron oxide hollow sphere:Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties [J]. Acta. Mater,2009,57:2154-2165.
    [10]S.L.Xiong, B.J.Xi, C.M.Wang, et al. Tunable synthesis of various wurtzite ZnS architectural structures and their photocatalytic properties [J]. Adv. Fun. Mater, 2007,17:2728-2738.
    [11]Y.H.Zhang, Z.R.Tang, X.Z.Fu, Y.J.Xu. TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:Is TiO2-graphene truly different from other TiO2-carbon composite materials [J]. ACS Nano,2010,12:7303-7314.
    [12]W.J.Ren, Z.H.Ai, F.L.Jia, et al. Low temperature preparation and visible light photocatalytic activity of mesoprous carbon-doped crystalline TiO2 [J], Appl. Cata.2007,69:138-144.
    [13]A.Hameed, T.Montilli, V.Gombac, P.Fomasiero. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite [J] J. Am. Chem. Soc.2008,130:9658-9669.
    [14]Y.Bessekhouad, D.Robert, J.Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as all available configuration for photocatalytic degradation of organic pollutant[J]. J. Photoch. Photobio. A,2004,163:569-580.
    [15]C.A.Arguello, D.L.Rousseau, S.P.S.Porto. First-order raman effect in wurtzite-type crystals [J]. Phys. Rev,1969,181:1351-1363.
    [16]B.B.Cao, Y.Jiang, C.Wang, et al. Synthesis and lasing properties of highly ordered CdS nanowire arrays [J]. Adv. Funct. Mater,2007,17:1501-1506.
    [17]S.Chen, J.W.Zhu, X.Wang. One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties [J]. J. Phys. Chem. C,2010, 114:11829-11834.
    [18]Y.W.Zhang, J.Q.Tian, H.Y.Li, et al. Biomolecule-assisted, environmentally friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites with enhanced photocatalytic performance [J]. Langmuir,2012,28:12893-12900.
    [1]W.J.Li, D.Z.Li, Z.X.Chen. H.J.Huang, M.Sun, Y.H.He, X.Z.Fu. High-efficient degradation of dyes by ZnxCd1-xS solid solutions under visible light irradiation [J] J. Phys. Chem. C,2008,112:14943-14947.
    [2]F.Yang, N.N.Yan, S.Huang, Q.Sun, L.Z.Zhang, Y.Yu. Zn-doped CdS nanoarchitectures prepared by hydrothermal synthesis:mechanism for enhanced photocatalytic activity and stability under visible light [J]J. Phys. Chem. C,2012, 116:9078-9084.
    [3]W.Yu, P.F.Fang, S.J.Wang. Hydrothermal synthesis and growth mechanism of ZnxCd1-xS nanoflake dendrites [J]. J. Alloy. Compd.2009,486:780-784.
    [4]W.Z.Wang, W.Zhu, H.L.Xu. Monodiaperse, mesoporous ZnxCd1-xS nanoparticles as stable visible-light-driven photocatalysts [J]. J. Phys. Chem.C,2008,112: 16754-16758.
    [5]Y.Q.Chen, X.H.Zhang, C.Jia, Y.Su. Q.Li. Synthesis and characterization of ZnS, CdS, and composition-tunable ZnxCdl-xS alloyed nanocrystals via a mix-solvothermal route [J]. J. Phys. Chem. C,2009,113:2263-2266.
    [6]J.B.Chen, S.Lin, GY.Yan, L.Y.Yang, X.Q.Chen. Preparation and its photocatalysis of ZnxCd1-xS nano-sized solid solution with PAMAN as a template [J]. Catal. Commun,2008.9:65-69.
    [7]O.L.Stroyuk, O.Y.Rayevska, A.V.Kozytskiy, S.Y.Kuchmiy. Electron energy factors in photocatalytic methylviologen reduction in the presence of semiconductor nanocrystals [J]. J. Photochem. Photobio. A,2010,210:209-214.
    [8]X.H.Liao, N.Y.Chen, S.Xu. S.B.Yang. J.J.Zhu. A microwave assisted heating method for the preparation of copper sulfide nanorods [J]. J. Cryst. Growth,2003, 252:593-598.
    [9]A.B.Panda, G.Glaspell, M.S.El-Shall, Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires [J]. J. Am. Chem. Soc,2006.128: 2790-2791.
    [10]E.Muthuswamy, A.S.Lskandar, M.M. Amador, S. M. Kauzlarich. Facile synthesis of germanium nanoparticles with size control:microwave versus conventional heating [J]. Chem. Mater.
    [11]S.Kumar, A.K.Chawla, N.Kumar, R.Chandra. High temperature powder diffraction study of (Zn, Cd)S and ZnxCd1-xS nanopowders [J]. RSC. Adv,2011, 1:1078-1082.
    [12]F.del Valle, A.Ishikawa, K.Domen, et al. Influence of Zn concentration in the activity of Cd1-xZnxS solid solution for water splitting under visible light [J] Cat. Tod,2008,143:51-56.
    [13]L.Wang, W.Z.Wang, M.Shang, W.Z.Yin, S.M.Sun, L.Zhang. Enhanced photocatalytic hydrogen evolution under visible light over Cdl-xZnxS solid solution with cubic zinc blend phase [J]. Int. J. Hydrogen. Energ,2010,35: 19-25.
    [14]M.W.DeGroot, K.M.Atkins, A.Borechi, H.Rosner, J.F.Corrigan. A molecular precursor approach for the synthesis of composition-controlled ZnxCd1-xS and ZnxCd,.xSe nanoparticles [J]. J. Mater. Chem,2008,18:1123-1130.
    [15]J.Zhang, J.G.Yu, M.Jaroniec, J.R.Gong. Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance [J]. Nano Letters,2012,12:4584-4589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700