用户名: 密码: 验证码:
长定子中低速磁浮列车悬浮架动态特性及轻量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具备安全舒适、绿色环保、噪声和污染小等性能的磁浮列车,是人类地面客运交通运输现代化的重要标志。而中低速磁浮列车更以其低噪声、低能耗、线路适应性强及线路成本低等优点成为城市内部有竞争力的新型公共交通工具。
     悬浮架是磁浮列车重要的工作部件,运行工况复杂,既是整个列车的承载平台,又是列车牵引和转向的工作平台,其动态特性和结构可靠性对车辆有直接影响,有必要对其动态特性进行研究。同时,磁浮列车为电磁悬浮,对其自重有严格要求,为增大载重及提高列车运行可靠性,在进行结构有限元分析的基础上,对其开展轻量化研究具有重要意义。本文以西南交通大学长定子中低速同步驱动磁浮列车悬浮架为原型,开展了悬浮架动力学建模、仿真和轻量化研究工作。主要研究内容如下所示:
     (1)建立了包括沉浮、点头、侧滚振动方向的悬浮架动力学数学模型,采用Newmark显示积分法编制了动力学仿真程序,开展了悬浮架系统动力学仿真分析。重点对磁隙、抗侧滚悬挂参数变化时悬浮架的输出响应进行了分析比较,并对线路不平顺对悬浮架动态响应的影响进行了研究,探索了合理的悬挂参数取值范围。
     (2)分析了西南交通大学长定子中低速磁浮列车悬浮架的稳态响应特性,分析结果表明悬浮架动态输出响应平稳。同时,研究了悬浮架结构解耦时左右模块之间弹性悬挂约束的影响,为悬浮架抗侧滚悬挂参数优化提供参考。
     (3)结合长定子中低速磁浮列车悬浮架装配实体模型和Workbench有限元分析软件,对四种运行工况下的悬浮架进行了静力学分析。并且,基于最危险工况对悬浮架进行了模态分析和谐响应分析。分析结果表明悬浮架的刚度和强度满足列车承载要求,振动频率处于安全区间。
     (4)基于灵敏度分析确定了悬浮架合理的优化设计变量,建立了以悬浮架结构重量最轻为目标的优化数学模型,在保证强度、刚度和一阶模态固有频率前提下,实现了悬浮架的轻量化设计。
     综上所述,本文对长定子中低速磁浮列车悬浮架垂向动力学和轻量化设计进行了理论分析和仿真研究,其研究结果对悬浮架结构改进和悬挂参数选取具有参考价值,对提高车辆的运行平稳性和可靠性具有重要意义。
As a safe and comfortable, green, less noisy and pollutive traffic mode, magnetic levita-tion vehicles has become the important modern symbol of the human ground passenger transport. Furthermore, the middle-low speed maglev vehiele with the advantage of low noise, low power, good line adaptability and low cost, has become a new competitive public transport on the interior of city.
     The levitation chassis is one important part of mgalev train with complex working con-ditions. It is the carrying platform of the maglev train, but also the working platform of traction and steering. Its attributes also affect the dynamic performance and structural relia-bility of the whole tarin directly. It is neeessary to Research the dynamic characteristics of levitation chassis. At the same time, the suspension mode of maglev train is the electro-magnetic levitation, and maglev train has the stringent requirements on its own weight. In order to increase the load and improve the reliability of train operation, there is important significance to do the structural optimization job on the basis of its structure finite element analysis. Based on the long stator middle and low speed maglev vehicle of Southwest Jiao-tong University, the dissertation carried out the research on modeling, simulation and lightweight analysis of levitation chassis system dynamics, the detailed research works and main results were as follows.
     (1) Based on bouncing, pitching and rolling directions of vibration, the vertical dynam-ics model of levitation chassis was established, and the equations of motion of the model were derived. A simulation program using a Newmark explicit integration method was de-signed to simulate the vibration dynamic characteristics. The influences of suspension pa-rameters which were different stiffness and damping values and line irregularity frequency changed on the dynamic characteristics of levitation chassis were studied. Therefore the rea-sonable value interval of suspension parameter was explored.
     (2) The steady-state response characteristics of the long stator middle-low speed maglev levitation chassis were obtained on the basis of its supposed design data. The results showed that the dynamic characteristics of levitation chassis have good performance. At the same time, the influence of elastic suspension constraints between the left and right module when the structure decoupled was studied. It provided a reference for the optimization of an-ti-rolling suspension parameters on the levitation chassis.
     (3) With the assembly entity SolidWorks model of the long stator low-speed maglev train levitation chassis and the ANSYS Workbench analysis software, the static perfor-mances of levitation chassis under the four working conditions of maglev vehicle were ana-lyzed, and the modal analysis and harmonic analysis of levitation chassis were studied based on the most dangerous condition. The analysis results showed that the stiffness and strength of levitation chassis met the load requirements of maglev vehicle, and the vibration frequen-cies were in a safe range.
     (4) Based on the sensitivity analysis, the reasonable design variables of levitation chas-sis were determined and the optimization mathematical model was established aim to have the minimum weight of levitation chassis. On the premise of guaranting strength, stiffness and vibration frequency, the lightweight design of levitation chassis was achieved.
     In conclusion, the theoretical analysis and simulation studies on the vertical dynamics and lightweight design of the long stator middle-low speed maglev levitation chassis were obtained. The results have reference values for structural improvements of levitation chassis and selection of suspension parameters, besides it is of great significance to improve riding quality and reliability of maglev vehicle.
引文
[1]魏庆朝,孔永健,时瑾.磁浮铁路系统与技术[M].北京:中国科学技术出版社,2010.
    [2]谢建平,陈治亚.城际轨道交通在城市群发展中的意义[J].城市轨道交通研究,2008,(11)10-12.
    [3]魏立华,丛艳国.城际快速列车对大都市区通达性空间格局的影响机制分析[J].经济地理,2004,24(6):834-837.
    [4]张佩竹.我国中低速磁浮交通工程的自主创新技术研究[J].铁道工程学报,2009,(10):90-94.
    [5]王莉.混合EMS磁悬浮系统研究[D].西南交通大学博士论文,2006.
    [6]徐正国.电磁永磁混合悬浮磁悬浮模型车控制方案的研究[D].中国科学院研究生院博士论文,2005.
    [7]Richard Thornton,Tracy Clark,Ken Stevens. MagneMotion Maglev System[J]. Transportation Re-search Record:Journal of the Transportation Research Board,2003,1838:50-57.
    [8]卢乃宽.高速轮轨和磁悬浮技术在世界轨道交通运输系统中的发展[J],中国铁道科学,2003,24(6):105-110.
    [9]Shinichi KUSAGWA, Jumpei BABA, Katsuhikob SHUTOH, Eisuke MASADA. Comparison of To-tal Performances for High-Speed EMS-type Magnettieally Levitated Railway Vehiele[J]. Maglev, 2004:942-952.
    [10]Shiniehi KUSAGWA. Weight reduetion of EMS-type maglev vehiele with a novel hybrid control seheme of magnets[J]. IEEE TRANSACTIONS ON MAGNETICS,2004,40(4):3066-3068.
    [11]桑瑞星等.跨越时空-高科技与现代交通[M].北京:科学普及出版社,2004.
    [12]朱卫国.城市轨道交通综述[J].城市车辆,2003(3):37-40.
    [13]吴祥明.磁浮列车[M].上海:上海科技出版社,2003.
    [14]Miehio Takahashi, Gerald Kwok, Koji Kubota. Marketing strategy of the HSST system[J]. Maglev, 2006:53-57.
    [15]俞展猷.中运量城市轨道交通型式应用综述[J].机车电传动,2010,(1):13-18.
    [16]Hyung-Woo Lee, Ki-Chan Kim, Ju Lee. Review of Maglev Train Technologies[J]. IEEE TRANS-ACTIONS ON MAGNETICS,2006,2(7):1917-1925.
    [17]佟力华,马沂文,胥刃佳.适用于城市交通的中低速磁悬浮技术[J].电力机车与城轨车辆,2003(5):4-6.
    [18]李希宁,佟来生.中低速磁浮列车技术研究进展[J].电力机车与城规车辆,2011,34(2):1-4.
    [19]简炼.中低速磁浮技术引领绿色交通[J].都市快轨交通,2011,24(5):11-13.
    [20]Z. Zhang, L. She, L. Zhang, C. Shang, W. Chang. Structural optimal design of a perma-nent-electromagnetic suspension magnet for middle-low-speed maglev trains[J]. IET Electrical Systems in Transportation,2011,1(2):61-68.
    [21]]史黎明,李耀华,徐善纲.磁悬浮方式与磁浮列车的几种方案比较[J].磁浮交通,2004,(1):67-71.
    [22]邹振民.新世纪城市理想的交通工具—介绍日本HSST磁悬浮列车系统[J].铁道通信信号,2001,37(11):37-39.
    [23]]Masaaki Fujin,罗芳HSST-100的全面运行试验与名古屋东山坡线工程[J].国外铁道车辆,2001, 38(2):29-31.
    [24]手岛雄一,安藤直树,邹振民.2005年日本国际博览会交通通道将正式启用HSST[J]世界轨道交通,2004,1(3):23-26.
    [25]Tejima Y,刘志荣HSST将于日本2005国际博览会投入商业运营[J].变流技术与电力牵引,2005,(3):50-52.
    [26]Federal Transit Administration. Assessment of CHSST maglev for U Surban transportation [R]. Washington D C:Federal Transit Administration,2002.
    [27]长野秀洋,王渤洪.常导型磁悬浮交通系统HSST磁悬浮列车的最近动向[J].变流技术与电力牵引,2002,(6):8-9.
    [28]Rolf Hellinger,Peter Mnich. Linear Motor-Powered Transportation:History, Present Status, and Fu-ture Outlook [J]. PROCEEDINGS OF THE IEEE,2009,97(11):1892-1900.
    [29]A. Mongini. The maglev deployment program of the United States. The 16th International Confer-ence on magnetically levitated systems and linear drives[C]. MAGLEV'2000, Rio de Janeiro, Brazil, 2000:21-26.
    [30]Thompson T. Practical Issues in the Use of NdFeB Permanent Magnets in Maglev, Motors, Bearings, and Eddy Current Brakes [J]. PROCEED INGS OF THE IEEE,2009,97(11):1758-1767.
    [31]Richard Thomton, Tracy Clark, Brian Perreault, etc. An M3 Maglev System for Old DominionUni-versity[C]. SanDeigo, California, USA:[s.n.], [2008-12-15~18]. http://www.maglev.Ir/eng/docu-ments, html.
    [32]The M3 Urban Transportation System [R]. The report Submitted to the Federal Transit Administra-tion As Part of FTA Project MA-26-7077, Version 1,2003.
    [33]Richard D.Thomton. Efficient and Affordable Maglev Opportunities in the United States [J]. PRO-CEEDINGS OF THE IEEE,2009,97 (11):1901-1921.
    [34]I.K. Kim, M.H. Yoo. Maglev Development and commercial application in Korea. The 16th Interna-tional Conference on magnetiedlly levitated systems and linear drives[C]. MAGLEV'2000, Rio de Janeiro, Brazil,2000:40-43.
    [35]Hyungsuk Han, Seokjoon Moon, Hanwook Cho. State-of-the-art Multibody Dynamic Simulations of EMS-type Maglev Vehicles at KIMM[C]. San Diego, USA:[s.n.], [2008-12-15~19]. http://www. maglev. ir/eng/docu ments.html.
    [36]Hyung-Suk Han, Young-Joong Kim, Byung-Chun Shin, etc. Simulation of Dynamic Interaction be-tween Maglev and Guideway using FEM [C]. Dresden, Germany:[s.n.], [2006-09-13~15]. http: //www. maglev.ir/eng/documents.html.
    [37]M. Mossi, N. Macabrey. Update of the Swissmetro Projeet. The 16th International Conference on magnetieally levitated systems and linear drives[C], MAGLEV'2000, Rio de Janeiro, Brazil, 2000:27-34.
    [38]周又和,武建军,郑晓静.磁浮列车的动力稳定性分析与Liyapunov指数[J].力学学报,2000,32(1):42-50.
    [39]赵春发,翟婉明.磁浮车辆/高架桥垂向耦合动力学研究[J].铁道学报,2001,23(5):27-33.
    [40]赵春发,翟婉明.磁悬浮车辆随机振动响应分析及其平稳性研究[J].中国机械工程,2002,13(16):1402-1407.
    [41]赵春发.磁悬浮车辆系统动力学研究[D].西南交通大学博士论文.2002.
    [42]赵春发,翟婉明.常导电磁悬浮动态特性研究[J].西南交通大学学报,2004,39(4):464-468.
    [43]赵春发,翟婉明,王其昌.低速磁浮车辆曲线通过动态响应仿真分析[J].中国铁道科学,2005,26(3):94-98.
    [44]赵春发,翟婉明.低速磁浮车辆导向方式及其横向动态特性[J].中国铁道科学,2005,26(6):28-32.
    [45]翟婉明,赵春发,蔡成标.磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J].交通运输工程学报,2001,1(1):7-12.
    [46]王洪波.EMS型低速磁浮列车/轨道系统的动力相互作用问题研究[D].国防科学技术大学博士论文.2007.
    [47]曾佑文,王少华,张昆仑.EMS磁浮列车-轨道垂向耦合动力学研究[J].铁道学报,1999,21(2):21-25.
    [48]Shib Ren, Ariel Romeijn, Kees Klap. Dynamic simulation of the maglev vehicle/guideway system[J]. Journal of Bridge Engineering,2010,15(3):269-278.
    [49]Zhi-Su Zhao. Elastic-rigid dynamic modeling of the maglev vehicle exhibited at CSTM and natu-ral-frequencies analyzing for its bogie[J]. Journal of Vibration Engineering,2008,21(6):626-629.
    [50]Jin Shi, Qingchao Wei, Chuanfeng Wan, Yashi Deng. Study on dynamic responses of high-speed maglev vehicle/guideway coupling system under random irregularity[J]. Chinese Journal of Theo-retical and Applied Mechanics,2006,38(6):850-857.
    [51]Jin Shi, Qingchao Wei, Yang Zhao. Analysis of dynamic response of the high-speed EMS maglev vehicle/guideway coupling system with random irregularity[J]. Vehicle System Dynamics,2007, 45(12):1077-1095.
    [52]Eunho Kong, Ji-Seok Song, Bu-Byoung Kang, Sungsoo Na. Dynamic response and robust control of coupled maglev vehicle and guideway system[J]. Journal of Sound and Vibration,2011,330(25): 6237-6253.
    [53]Namjin Lee, Hyungsuk Han, Jongmin Lee, Byunggwan Kang. Maglev vehicle/guideway dynamic interaction based on vibrational experiment[C]. Proceeding of International Conference on Electri-cal Machines and Systems, ICEMS 2007,2007:1999-2003.
    [54]Myung-Kwan Song, Yozo Fujino. Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction[J]. Structural Engineering and Mechanics,2008, 29(4):355-380.
    [55]H.S.Han, B.H.Yim, N.J.Lee, Y.C.Hur, S.S.Kim. Effects of the guideway's vibrational characteristics on the dynamics of a Maglev vehicle[J]. Vehicle System Dynamics,2009,47(3):309-324.
    [56]Wonseok Chung, Seung Yup Jang,; Inho Yeo. Experimental and numerical investigation on dynamic amplification factors of an urban maglev guideway[J]. KSCE Journal of Civil Engineering,2011, 15(3):527-536.
    [57]蒋海波,罗世辉,董仲美.中低速磁浮列车抗侧滚梁分析[J].铁道车辆,2006,44(11):8-10.
    [58]李云峰,陈革,李杰.中低速磁悬浮列车五单元转向架曲线通过研究[J].机车电传动,2007,(4):26-29.
    [59]张锟,李杰,常文森.磁悬浮列车转向架的结构解耦分析[J].机车电传动,2005,(1):22-23.
    [60]张耿,李杰,李金辉.低速磁浮列车防侧滚吊杆运动学研究[J].铁道学报,2012,34(4):28-33.
    [61]韩强,阳奕鹏,姚小虎等.五转向架城轨磁浮车辆的动力学[J].华南理工大学学报(自然科学版),2010,38(1):102-107.
    [62]曾佑文,王少华,张昆仑.磁浮列车车辆-轨道耦合振动及悬挂参数研究[J].西南交通大学学报, 1999,34(2):168-173.
    [63]刘德生,李杰,常文森.EMS型磁浮列车模块的运动耦合研究[J].铁道学报,2006,28(3):22-26.
    [64]蒋启龙,连级三,岳德坤.磁浮列车模块的机械耦合分析[J].铁道学报,2005,27(1):36-39.
    [65]周益,刘放,李贤坤,迟振华.中低速磁浮列车悬浮架垂向动力学分析[J].机械设计与研究,2012,28(5):4-7.
    [66]赵洪伦,俞程亮,王文斌.高速磁浮列车车体承载结构优化设计研究[J].铁道学报,2007,29(4):43-47.
    [67]Shuguang Yao, Hongqi Tian, Ping Xu. Structure optimal design of maglev train car body[C], Pro-ceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals-Logistics:The Emerging Frontiers of Transportation and Development in China,2008:2339-2347.
    [68]黄翠英,徐巍,姚生军,郑宝奎.中低速磁浮列车转向架防侧滚梁结构优化[J].铁道车辆,2013,51(1):20-24.
    [69]周益,刘放,何岚,李飞.长定子中低速磁浮直线电机动力学数值分析与优化设计[J].机械设计与制造,2012,(5):36-38.
    [70]罗玗琪,许平,谢卓君.磁浮列车走行机构结构优化研究[J].城市轨道交通研究,2011,(11):86-89.
    [71]Z. Zhang, L. She, L. Zhang, C. Shang, W. Chang. Structural optimal design of a permanent-electro magnetic suspension magnet for middle-low-speed maglev trains[J]. IET Electrical Systems in Transportation,2011,1(2):61-68.
    [72]吴晓,程文明,刘放.基ANSYS的磁浮轨道结构分析与优化设计[J].机械设计与制造,2006,(5):5-7.
    [73]周磊,肖绯雄.长定子中低速磁浮轨道动力学分析与结构优化[J].机械设计与制造,2013,(1):107-109.
    [74]蒋海波,罗世辉,董仲美.线路不平顺对低速磁浮车辆动态响应的影响[J].铁道机车车辆,2007,27(3):30-32.
    [75]翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社,2007.
    [76]Zhai Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineer-ing[J].International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214.
    [77]李兵,何正嘉,陈雪峰ANSYS Workbench设计、仿真与优化(第二版)[M].北京:清华大学出版社,2011.
    [78]周益,刘放,李飞,何岚.运用SolidWorks和ANSYS的磁浮列车悬浮架结构有限元分析[J].现代制造工程,2012,(8):17-20.
    [79]TB/T 1335-1996,铁道车辆强度设计及试验鉴定规范[S].
    [80]成大先.机械设计手册(第五版)[M].北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700