用户名: 密码: 验证码:
东昆仑南缘印支期花岗岩岩石成因及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造山带作为地球上构造活动最剧烈的地区之一,其形成和岩石成因机制一直是地质学家们研究的热点。造山带中形成的花岗岩是造山作用各个阶段的重要物质记录,其源区性质和成因机制的研究对于反演造山作用的深部动力学过程及造山过程中地壳和地幔物质的相互作用等科学问题具有重要意义。东昆仑造山带横亘于中国中西部,位于青藏高原腹地,花岗岩多期群居,岩性复杂,占据了该区的大部分空间,尤其以晚华力西一印支期花岗岩分布广泛。本论文拟对东昆仑造山带南缘的和勒冈希里克特岩体和科科鄂阿龙岩体进行系统的野外地质、岩相学、岩石地球化学和LA-ICP-MS锆石U-Pb年代学研究,重点讨论其岩石成因、成岩物质来源、形成构造环境及地质意义,并在此基础上,综合区域地质背景及岩石学的最新研究成果,主要取得以下认识:
     1.和勒冈希里可特岩体主要岩性为花岗闪长岩,其SiO2=67.12wt%~73.88wt%, Na2O=1.2wt%~3.12wt%; K2O=3.04wt%~4.62wt%, Na2O/K2O=0.67~1.8; Mg#值平均为53。岩体具LREE富集,HREE亏损特征,(La/Yb) N比值为8.72~35.3,(Gd/Yb) N比值为1.36-1.80,Yb/Lu比值为5.68-7.24,6Eu介于0.86~0.95之间,Y、Yb含量较低。岩石富集Rb、Th、Ba、U、La等大离子亲石元素,强烈亏损Nb、P、Ta、Ti等高场强元素。暗色微粒包体与寄主岩岩石地球化学特征有明显差异,它们相对贫硅,富集Mg、Fe、Ti、Ga。
     2.科科鄂阿龙岩体主要岩性为石英闪长岩,具有一定的埃达克质岩的岩石地球化学特征。具体表现为SiO2=60.08wt%~62.69wt%, Na2O/K2O=1.41~1.83,平均达1.57,Mg#值为47-52;富集LELE、LREE元素,REE分馏明显,(La/Yb)N比值为11.8-18.4,Sr>400×10-6,Sr/Y比值为38.8-26.7,具微弱的Eu负异常(6Eu介于0.83-0.88),相对亏损HREE和Y(12.5×10-6~15.6×10-6),Y/Yb比值为10.7-11.7。
     3.运用LA-ICP-MS锆石U-Pb方法获得和勒冈希里克特花岗岩体的侵位年龄为230.2+4.6Ma,科科鄂阿龙花岗岩体的形成时代为221±3.9Ma,表明两个岩体形成时代均为中晚三叠世。暗色微粒包体的结晶年龄为231.9士5.7Ma,与和勒冈希里克特寄主花岗闪长岩形成于同一时期,说明东昆仑东段在印支期存在着岩浆混合作用。
     4.依据岩石地球化学资料,和勒冈希里克特花岗岩体是俯冲板片发生断离,引起软流圈物质上涌,注入下地壳底部,使下地壳发生部分熔融形成的。其中的暗色微粒包体则可能是岩石圈地幔部分熔融形成的镁铁质岩浆在上升过程中同化部分寄主花岗闪长岩形成的。科科鄂阿龙花岗岩体可能是拆沉下地壳进入下伏地幔脱水熔融形成的。
     5.中、晚三叠世,古特提斯构造域全面碰撞造山,下地壳发生拆沉作用并伴随大量岩浆侵入事件,构造—热事件频繁发生,东昆仑地区进入陆内造山阶段,标志着古特提斯洋东段的最终消亡。
The mechanisms of formation and petrogenesis of orogenic belt, one of the places with most active tectonic events on the Earth, are having been hot studied by geologist for a long time. As the granite in orogenic belt recorded every stage in process of orogenesis in material, it's very effective to reconstruct the deep dynamics and interaction of crust-mantle during orogenesis based on the study of characteristics of magma-origin and their mechanism. Concerning the East Kunlun orogenic belt in central-west China and inner Qinghai-Tibetan Plateau, granite intruded in overwhelming volume with multi-period and complicated litho-feature, especially for Hercynian-Indosinian. The dissertation managed to study systematically on field geology, lithofacies, petrologic geochemistry and LA-ICP-MS Zircon chronology, focused on petrogenesis, origin of petrologic material, formating tectonic setting and their geological significance. After that, together with regional geo-settings and the advanced study fruits of petrology, following cognitions are concluded:
     1. Helegang Xilikete granitoids are mainly of granodiorite, in which contents of oxides are SiO2=67.12wt%~73.88wt%, Na2O=1.2wt%~3.12wt% and K2O=3.04wt%~4.62wt%, while Na2O/K2O=0.67~1.8 and Mg# is about 53 for average. The rocks are enriched in LREE and depleted in HREE, and the ratios of (La/Yb)N, (Gd/Yb)N,and Yb/Lu of which are 8.72~35.3,1.36~1.80 and 5.68~7.24 respectively, together with 8Eu ranging between 0.86 and 0.95 and low contents of Y and Yb relatively. For trace elements, the rocks are enriched in LILE like Rb, Th, Ba, U, La et al., and are depleted in HFSE intensely, such as Nb, P, Ta, Ti et al.. Besides, the MME show apparent differences with their host rocks in lithologic geochemistry, such as being poor in Si and enriched in Mg, Fe, Ti, Ga relatively.
     2. Keke'EAlong rocks are quartz diorite in majority with some characteristics similar to adakite in lithologic geochemistry, which showing concrectely as follows:SiO2=60.08wt%~62.69wt%, Na20/K2O=1.41~1.83 and 1.57 for average, Mg#=47~52, enriched in LILE and LREE, apparent differentiation between LREE and HREE, (La/Yb)N=11.8~18.4, Sr>400×10-6, Sr/Y=38.8~26.7, Y/Yb=10.7~11.7, a little negative anomaly in Eu(δEu=0.83~0.88), relatively depleted in HREE and Y(12.5×10-6~15.6×10-6).
     3. Resorted to method of LA-ICP-MS Zircon U-Pb chronology, the intruded ages of Helegang Xilikete rocks and Keke'EAlong rocks are obtained for about 230.2±4.6Ma and 221±3.9Ma respectively, which indicate that the two rocks both are formatted in Mid-Late Triassic, and the crystallized age of the MME is 231.9±5.7Ma, syn-formated with host rocks-Helegang Xilikete granodiorite, showing that there were magma mixing process in the eastern section of the East Kunlun area during Indosinian.
     4. According to lithological geochemistry data, we believe that Helegang Xilikete granitic rocks were formatted by partial melting of lower-crust, which was resulted from diapir of athenospheric magma triggered by breaking up of subduction slab, and the MME of which might be formatted by mixing between mafic magma, the product of partial melting of lithosperic mantle, and some part of host rocks-granodiorite when they were arising. While Keke'EAlong rocks should be formatted by dehydration melting of detached lower-crust after they sank into beneath lithosperic mantle.
     5. In Middle and Late Triassic, paleo-Tethys tectonic region collided and lifted completely, in which lower-crust detachment occurred companying by bulk of magmatism, and tectono-thermo events started frequently. After that, the eastern part of the east Kunlun area went to the evolution stage of intra-orogenesis, which indicates the perish of paleo-Tethys ocean in the east section ultimately.
引文
[1]Ahmadi-Khalaji A, Esmaeily D, Valizadeh MV and Rahimpour-Bonab H. Petrology and geochemistry of the granitoid complex of Boroujerd-Sanandaj-Sirjan Zone. western Iran[J]. Journal of Asian Earth Sciences,2007,29 (5-6):859-877.
    [2]Allegre C J., Minster J F. Quantitative method of trace element behavior in magmatic processes. [J]. Earth Planet. Sci. Lett,1978,38:1-25.
    [3]Altherr R, Holl A, Hegner E. Langer C and Kreuzer H. High-potassium cale-alkaline I-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos,50:51-73.
    [4]Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb [J]. ChemicalGeology,2002,192 (1/2):59-79.
    [5]Arculus R J, Lapierrre H, Jaillard E. Geochemical window intosubduction and accretion processes:Raspas metamorphic complex, Ecuador[J]. Geology,1999, 27:547-550.
    [6]Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146.
    [7]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos,1999,46:605-626.
    [8]Beard J S and Lofgren GE.1991. Dehvdration melting and wafer-saturated melting of basaltic and andesitic greenstones and amphibolites at 1,3, and 6.9kbar[J]. Journal of Petrology,32:365-402.
    [9]Bindeman I. N., Eiler J. M., Yogodzinski G. M., Tatsumi Y,. Stern, C. R, Grove T. L., Portnyagin M., Hoernle K. and Danyushevsky L. V,. Oxygen isotope evidence for slab melting in modern and ancient subduction zones[J]. Earth Planetary Science Letters,2005, v.235, p.480-496.
    [10]Bird P. Initiation of intracontinental subduction in the Himala-yia [J]. J Geophys Res,1978,83:4975-4987.
    [11]Bonion B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review [J]. Lithos 2004:781-24.
    [12]Boynton W V. Geochemistry of the rare earth elements:meteorite studies[M]. Henderson P. Rare earth element geochemistry. Elservier,1984: 63-114.
    [13]Calvin, FM, McDowell, SM, Mapes, RW. Hot and cold granites? Implication of zircon saturation temperatures and p reservat ion of inhertance[J]. Geology, 2003,31 (6):5292-5321.
    [14]Castillo PR. An overview of adakites petrogenesis[J]. Chinese Science Bulletin, 2006,51:257-268.
    [15]Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974,8 (1):173-174.
    [16]Chappell B W, Bryant C J, Wybon D, et al. High-and low-temperature I-type granite[J]. Resource Geol,1998,48:225-236.
    [17]Chappell B W, White A J R, Willams I S, et al. Low-and High-temperature granites [J]. Trans Roy Soc Edinburgh Earth Sci,2004,95:125-140.
    [18]Chemiak D. J and Watson E. B. Diffusion in Zircon[J]. Reviews in Mineralogy & Geochemistry,2003,53:112-139.
    [19]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31: 1021-1024.
    [20]D, Lemos, RSD, Brown M. and Strachan, RA. Granite magma generation, ascent and emplacement within a transpressional orogen[J]. Geol Soc London, 1992,149:487-490.
    [21]Defant M. J & Drummond M. S. Derivation of some modern magmas by melting of young subducted lithosphere[J]. Nature,1990,347:662-665.
    [22]Defaut M J, Xu J F, Kepezhinskas P, et al. Adakites:some variations on a theme [J]. Acta Petrologica Sinica,2002,18 (2):129-142.
    [23]Drummond M S, Defant M J. Amodelfortrondh jemite-tonalite-dacite genesisand crustal growth viaslabmelting:Archeanto modern comparisons[J]. Geophys. Res.,1990,95 (B13):21503-21521.
    [24]Ferry JM and Watson EB. New thermodynamic models and revised calibrationa for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contrib. Mineral. Petrol, 2007,154:429-437.
    [25]Harker A. Tertiary ignerous rocks of Skye. Men. Geol. Surv. Scotl,1904.
    [26]Hibbard M J. The magma mixing origin of mantled feldspars. Contrib [J]. Mineral Petrol,1981,76:158-170.
    [27]Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth Planet Sci Lett, 2004,220:139-155.
    [28]Hutton D H W, Dempster T J, Brow n P E, et al. A new mechanism of granite emplacement:Intrusion in active shear zones[J]. Nature,1990,343:452-455.
    [29]Didier J.花岗岩及其包体—包体与花岗岩成因的关系[M].姜胜章译.北京:地质出版社,1981:1-8.
    [30]Jochum K P, Snow J E, Snow J E. Nb/Ta in mantle and crust[J]. EOS,1997, 78:804.
    [31]Johannes W and Hollz F.1996. Petrogenesis and Experiment Petrology of Granitic Rocks[M]. Springer, Berlin,1-254.
    [32]Lawford JA, Barth AP, Joseph LW and Frank M. Thermometers and thermobarometers in granitic systems[J]. Rev. Mineral. Geochem,2008,69 (1):121-142.
    [33]Loiselle M C, Wones D S. Characteristics and origin of anorogenic granites[J]. Geological Society of American, Abstrats with Programs,1979, 11:468.
    [34]Lowery-Claiborne L, Miller C F, Walker B A, Wooden J L, Mazdab F K, Bea F. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons:An example from the Spirit Mountain Batholith, Nevada[J]. Mineral Mag,2006,70:517-543.
    [35]Ludwig K R. Isoplot/Ex, Version 2.49. A Geochronological Tool kit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication,1999:47.
    [36]Mahood G, Hildreth W. Large partition coefficients for trace elements in high-silica rhyolites[J]. Geochim Cosmochim Acta,1983,47:11-30.
    [37]Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids[J]. Geol. Soc.Am.Bull.,1989.01:635-643.
    [38]Martin H. Petrogenesis of Archean Trondhjemites, tonalities and granodiorites from eastern Finland:major and trace element geochemistry[J]. Petrol,1987, 28:921-953.
    [39]Martin H. Adakitic magma:modern analogues of Archean granitoids[J]. Lithos, 1999,46:411-429.
    [40]Martnig H, Sithies R H, Rapp R, Moyen J F, Champion D. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos,2005,79:1-24.
    [41]McDonough W F, Sun S-s. The composition of the Earth[J]. Chem Geol,1995, 120 (3/4):223-253.
    [42]Miller J S, Wooden J L. Residence, resorption and recycling of zircons in Devils Kitchen Rhyolite, Coso Volcanic Field, California[J]. Petro,2004,45:2155-2170.
    [43]Moller A, O'Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the-ultrahigh-temperature granulites of Rogaland (SW Norway) [J]. EMU Notes in Mineralogy,2003,5:65-82.
    [44]Mojzsis S J, Harrison T M, Pidgeon R T.Oxygen-isotope evidence from ancient zircons for liquid water at the Earths surface 4300Myr ago[J]. Nature,2001, 409:178-181.
    [45]Nelson K D 1992 Are crustal thickness variation in old mountain belts like the Appalachians a consequence of lithospheric delamination?[J]. Geology,20:498-502.
    [46]Patino-Douce AE and Harris N.1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology,1998,39:689-710.
    [47]Pearce J A. Harris BW an d Tindie A. G. Trace element discrimination diagram s for the tectonic interpretations of granitic rocks[J]. Petrol.1984,25:956-983.
    [48]Petford N, Atherton M. Na-rich partial melts from newly underplatedbasaltic crust:The Cordillera Blanca Batholith[J]. Peru J Petrol,1996,37:1491-1521.
    [49]Piccoli P M, Candela P A. Apatite in igneous system. In:Kohn M J, Rakovan J, Hughes J M, eds. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America,2002,48:255~292.
    [50]Pitcher W S. Granites and yet more granites forty years on[J]. Geol. Rundschau, 1987,76:51-79.
    [51]Pitcher W S. The nature and Origin of granite [M]. London,1997.
    [52]Poitrasson F, Hanchar J. M and Schaltegger U. The Current State of Accessory Mineral Research [J]. Chemical Geology,2002,191:3-24.
    [53]Prouteau G, Scallet B, Pichavant M, Maury R C. Evidence for mantle metasomatism by hydrous silisic melts in subduction zones[J]. Nature,2001, 410:197-200.
    [54]Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. [J]. Precamb. Res,1991, 51:1-25.
    [55]Rapp R P and Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental melon and crust-mantle recycling[J]. Journal of Petrology,1995,36:891-931.
    [56]Rapp R. P. Shimizu, N, Norman, M. D, Applegate GS. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constrainst at 3.8GPa[J]. Chem Geol,1999,160:335-356.
    [57]Roberts MP and Clemens JD. Origin of high-potassium, cale-alkaline, I-type granitoids. [J]Geology,1993,21:825-828.
    [58]Rottura A, Bargossi GM, Cagianelli A, Del Moro A et al. Origin and significance of the Permian high-K cale-alkaline magmatism in the central-eastern couthern Alps, Italy[J]. Lithos,1998,45:329-348.
    [59]Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe:Some examples from the western Alps[M]. Cathodoluminescence in Geoscience, Springer-Verlag Berlin Heidelberg, Germany.2000,373-400.
    [60]Rudnick R L. Making continental continental crust[J]. Nature,1995,378:571-578.
    [61]Rudnick R L, Barth M, Horn I, McDonough W F. Rutile-bearing refractory eclogites:Missing link between continents and depleted mantle[J]. Science, 2000,287 (5451):278-281.
    [62]Sisson TW, Ralajeski K and Hankins WB. Voluminous granitic magmas from common basaltic sources[J]. Contrib Mineral Petrol,2005,148:635-661.
    [63]Skjerlie K P, Patino douce A E, The fluid-absent partial melting of a zoisite-bearing quartz eclogite from1.0 to 3.2 GPa:Implications for melting in thickened continental crust and for subduction-zone processes[J]. Journal of Petrology,2002,43:291-314.
    [64]Stolz A J, Jochum K P, Spettel B, Hofmann A W. Fluid-and melt-related encichment in the subarc mantle:Evidence from Nb/Ta variations in island-arc basalts[J]. Gelolgy,1996,24 (70):587-590.
    [65]Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[M]. Sunders A D, Norry M J. Magmatism in the Ocean Basins. Geol Soc Spec Publ 42,1989: 313-345.
    [66]Tepper JH, Nelson BK and Bergantz GW.1993. Petrology of the Chilliwack batholith, North Cascades, Washington:generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy Petrollgy,113:333-351.
    [67]Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites [M]. Journal and Proceedings of the Royal Society of New South Wales, 1983,116:77-103.
    [68]Wall, V. J., Clemens. J. D. and Clarke, D. B., Models for granitoid evolution and source compositions[J]. J. Geol,1987,95:731-749.
    [69]Wang Q, McDermott F, XuJF, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting [J]. Geology,2005,33:465-468.
    [70]Watson E B, Harrison M T. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J]. Earth Planet Sci Lett, 1983,64:295-304.
    [71]Watson E B and Harrison TM. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,2005,308:841-844.
    [72]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contrib Mineral Petrol,2006,151:413-433.
    [73]Weyer S, Muenker C, Mezger K. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J]. Earth Planet Sci Lett,2003,205 (3):309-324.
    [74]White A J R. Petrographic characteristics of high and low temperat ure granites[C]. Hutton Symposium V, Abstract,2003:163.
    [75]Wilcox R E. The ideal omagma mixing:History of a struggle for acceptance[J]. J Geol.,1999,107:421-4321.
    [76]Wilde S A Vallyey J W, Peck W H, et al. Evidece from dertial zircons for the existence of continental crust and oceans on the Earth 4.4Gyr ago[J]. Nature, 2001,409:175-178.
    [77]Wilson M. Ingeous petrogenesis. [M]. London:unwin Hyman Press,1989: 295-328.
    [78]Wolf M B, Wyllie P J.1992. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10 kbar[J]. Eos,70:506-518.
    [79]Wolf M B. and Wyllie P J. Dehydration-melting of amphibolite at 10 kbar:the effects of temperature and time[J]. Contributions to Mineralogy and Petrology, 1994, v.115, p.369-383.
    [80]Wu Fuyuan, Bor-ming Jahn, Simon Wilde, Sun Deyou. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the graniles in northeastern China. [J]. Tectonophysics,2000,328:89-113.
    [81]Xiong X L, Li X H, Xu J F, et al. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate:The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China[J]. Geochem,2001,37:233-252.
    [82]Yoder H S Jr (ed). The Evolution of Igneous Rocks[M]. Princeton University Press, New Jensey,1979.
    [83]Yumul G P Jr, Dimalanta C B, Faustino D V, et al. Silicic arc volcanism and lower crust melting:an example from the central Luzon, Philippines[J]. J Geo. 1999,154:13-14.
    [84]边千韬,赵大升,叶正仁,等.初论昆祁秦缝合系[J].地球学报,2002,23(6):501-508.
    [85]陈斌.内蒙古苏尼特左旗南白音宝力道岩体特征与成因—是岛弧岩浆而不是埃达克岩[J].地质论评,2002,48(3):262-266.
    [86]陈亮,孙勇,裴先治,等.德尔尼蛇绿岩40Ar—39Ar年龄:青藏高原最北端古特提斯洋盆存在和延展的证据[J].科学通报,2001,46(5):424-426.
    [87]陈文,郭彦如,崔彬,等.东昆仑西大滩岩系变质和变形事件的同位素年代学研究[J].地质论评,2002,48(S):103-109.
    [88]柴耀楚,冯秉贵,杨经绥.东昆仑中段东西大滩花岗岩带的基本特征及其成因的探讨[J].青藏高原地质文集,1984,(15):78-90.
    [89]邓晋福,赵海玲,赖绍聪,等.白云母/二云母花岗岩形成与陆内俯冲作用[J].地球科学,1994,19(2):139-147.
    [90]邓晋福,吴宗絮,杨建军,等.格尔木—额济纳旗地学断面走廊域地壳—上地幔岩石学结构与深部过程[J].地球物理学报,1995,38(增刊II):130-144.
    [91]邓晋福.大陆动力学钥匙[M].北京:地质出版社,1996.
    [92]邓晋福.火成岩构造组合与壳幔成矿系统[J].地学前缘,1999,6(2):259-269.
    [93]邓晋福.岩石成因,构造环境与成矿作用[M].北京:地质出版社,2004.
    [94]邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地 质学报,2007,13(3):392-402.
    [95]邓晋福,刘翠,冯艳芳,等.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与俯冲作用相关的两类典型的火成岩类[J].中国地质,2010,37(4):1112-1118.
    [96]邓万明.中昆仑钾玄质火山岩的地质、地球化学和时代[J].地质科学,1991,3:193-206.
    [97]丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991,271-564.
    [98]董申保.埃达克岩的原义、特征与成因[J].地学前缘,2004,11:585-92.
    [99]董申保.花岗岩研究的反思[J].高校地质学报,2007,13(3):353-361.
    [100]杜杨松.花岗质岩石中岩石包体研究的新进展[J].矿物岩石地球化学通报,2003,22(4):334-337.
    [101]杜杨松,刘金辉,秦新龙,等.岩浆底侵作用研究进展[J].自然科学进展,2003,13(3):237-242.
    [102]冯建贇,裴先治,于书伦,等.东昆仑都兰可可沙地区镁铁—超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J].中国地质,2010,37(1):28-38.
    [103]高晓英,郑永飞,等.金红石Zr和锆石Ti含量地质温度计[J].岩石学报,2011,27(2):418-632.
    [104]古风宝.东昆仑华力西期—印支期花岗岩组合及构造环境[J].青海地质,1994,6(2):18-26.
    [105]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):345-352.
    [106]韩宝福,季建清,宋彪,等.新疆准噶尔古生代陆壳垂向生长(I)—后碰撞深成岩浆活动的时限[J].岩石学报,2006,22(5):1078-1086.
    [107]韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,2007,14(3):65-71.
    [108]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992:58-100.
    [109]姜春发.青海阿尼玛卿山一带与构造有关的几个问题[J].地学研究,1995,28:15-26.
    [110]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000,1-154.
    [111]金振民,高山.1996.底侵作用(underplating)及其壳—幔演化动力学意义[J].地质科技情报,1996,15(2):1-7.
    [112]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992:74-170.
    [113]李昌年.岩浆混合作用及其研究评述[J].地质科技情报,2002,21:50-54.
    [114]李海兵,杨经绥,许志琴,等.阿尔金断裂带印支期走滑活动的地质及年代学证据[J].科学通报,2001,46(16):1333-1338.
    [115]李廷栋.中国岩石圈构造单元[J].中国地质,2006,33(4):700-710.
    [116]李晓勇,郭锋,王岳军.造山后构造岩浆作用研究评述[J].高校地质学报,2002,8(1):68-77.
    [117]林启祥,王永标,等.东昆仑—阿尼玛卿地区早二叠世的沉积古地理[J].沉积学报,2001,19(3)340-344.
    [118]刘战庆,裴先治,李瑞保,等.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICM-MS锆石U-Pb定年及其构造意义[J].地质学报,2011,85(2):186-194.
    [119]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56.
    [120]罗照华,柯珊,曹永清,等.2002.东昆仑印支晚期幔源岩浆活动[J].地质通报,21(6):292-297.
    [121]罗照华.埃达克岩的特征、成因及构造意义[J].地质通报,2002,21:437-440.
    [122]罗照华.花岗岩的基本问题[J].地质论评,2007,53(B08):180-226.
    [123]马昌前.北京周口店岩株侵位和成分分带的岩浆动力学机理[J].地质学报,1988,(4):329-341.
    [124]马昌前.岩浆动力学参数的计算方法,邱家骧主编,应用岩浆岩石学[J].中国地质大学出版社,1991:288-308.
    [125]马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学—理论方法及鄂东花 岗岩类例析[M].武汉:中国地质大学出版社,1992.
    [126]马昌前.花岗岩的成岩作用和形成环境—存在问题和解决的途径[J].地质科技情报,1992,(1):29-34.
    [127]马昌前.造山岩套中镁铁质和长英质岩浆的相互作用研究进展[J].地质科技情报,2003,22(3):1-8.
    [128]莫宣学.现代陆缘弧火山的实例—墨西哥Colima火山熔岩的岩石学研究[J].矿物岩石学论丛,北京:地质出版社,1982,3:1-26.
    [129]莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281-290.
    [130]莫宣学,潘桂堂.从特提斯到青藏高原形成:构造—岩浆事件的约束[J].地学前缘,2006,13(6):43-50.
    [131]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.
    [132]莫宣学.青藏高原岩浆岩成因研究:成果与展望[J].地质通报,2009,28(12):1694-1702.
    [133]潘桂棠,丁俊,主编.青藏高原及邻区地质图(1:1500000)附说明书[M].成都:成都地图出版社,2004:1-133.
    [134]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑):地球科学,1996,26(4):302-307.
    [135]齐有强.岩浆混合作用研究综述[J].矿物岩石地球化学通报,2008,27(4):409-415.
    [136]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997.
    [137]钱青.Adakitic的地球化学特征及成因[J].岩石矿物学杂志,2001,20:892-897.
    [138]任纪舜.中国及邻区大地构造图(1:5000000)[M].北京:地质出版社,1999.
    [139]孙雨,裴先治,丁仨平,等.东昆仑哈拉尕吐岩浆混合岩浆岩:来自锆石U-Pb年代学的证据[J].地质学报,2009,83(7):1000-1010.
    [140]万天丰.2004.中国大地构造学纲要[M].北京:地质出版社,1-387.
    [141]王德滋,周新民,徐夕生.微粒花岗岩类包体的成因.[J]桂林冶金地质学院学报,1992,12(3):235-241.
    [142]王德滋,周新民.中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化[M].北京:科学出版社,2002:1-5.
    [143]王德滋,沈渭洲.中国东部花岗岩成因与地壳演化[J].地学前缘,2003,3(10):209-220.
    [144]王德滋.岩浆混合作用:来自岩石包体的证据[J].高校地质学报,2008,14(1):16-21.
    [145]王鸿祯,刘本培,李思田.中国及邻区大地构造划分和构造发展阶段[C].见:王鸿祯文集[M].2005.北京:科学出版社,1990:359-382.
    [146]王强.一种新的火成岩—埃达克岩的研究综述[J].地球科学进展,2001,16:202-206.
    [147]王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报,2000,16:161-166.
    [148]王焰.埃达克岩的地球化学特征及其构造意义[J].地质科学,2004,35:251-256.
    [149]王永标,黄继春,骆满生,等.海西—印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学—中国地质大学学报,1997,22(4):369-372.
    [150]王永标,杨浩.东昆仑-阿尼玛卿—巴颜喀拉地区早二叠世的生物古地理特征[J].中国科学(D辑),2003,33(8):775-780.
    [151]王永标.巴颜喀拉及邻区中二叠世古海山的结构与演化[J].中国科学(D辑),2005,35(12):1140-1149.
    [152]吴芳,张绪教,张永清,等.东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义[J].地质力学学报,2010,16(1):44-50.
    [153]吴福元.花岗岩成因的若干问题[J].岩石学报,2007,23(6):1218-1237.
    [154]吴泰然.花岗岩及其形成的大地构造背景[J].北京大学学报(自然科学版),1995,31(3):358-364.
    [155]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1489-1602.许继峰.Adakitic火成岩对大陆地壳增厚过程的指示:以青藏高原北部火成岩为例[J].地学前缘,2003,10: 401-404.
    [156]夏林圻.岩浆岩中的熔体包裹体[J].地学前缘,2002,9(2):403-411.
    [157]肖庆辉.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    [158]肖庆辉.当代花岗岩研究的几个重要前沿[J].地学前缘,2003.10(3):221-229.
    [159]肖庆辉.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质,2005.32(3):343-351.
    [160]肖庆辉.花岗岩成因研究前沿的认识[J].地质论评,2007,53(1):17-26.
    [161]肖庆辉.花岗岩类与大陆地壳生长初探—以中国典型造山带花岗岩类岩石的形成为例[J].中国地质,2009.26(3):594-622.
    [162]肖庆辉,王涛,邓晋福,等.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社,2009:504-527.
    [163]肖序常.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社,2000:83-121.
    [164]熊小林,Adam J, Green T H,等.变质玄武岩部分熔体微量元素及埃达克熔体产生条件[J].中国科学(D辑),2005,35(9):837-846.
    [165]徐克勤,孙草,王德滋,等.华南花岗岩成因与成矿[M].南京:江苏科学技术出版社,1984:1-20.
    [166]许荣华,Harris N B W, Lewis C L,等.拉萨至格尔木的同位素地球化学[C].见:中英青藏高原综合地质考察队.青藏高原地质演化[M].北京:科学出版社,280-302.
    [167]徐夕生,范钦成,蒋少涌,等.安徽铜官山石英闪长岩及其包体锆石定年与成因探讨[J].科学通报,2004,49(18):1883-1893.
    [168]许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,31(3):226-239.
    [169]许志琴,杨经绥,姜枚,等.青藏高原北部东昆仑—羌塘地区的岩石圈结构及岩石圈剪切断层[J].中国科学(D辑),2001,31:2-7.
    [170]许志琴,姜枚,杨经绥,等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉[J].地学前缘,2004,11(4):329-342.
    [171]许志琴,杨经绥,李海兵,等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报,2006,80(12):1793-1805.
    [172]许志琴,李海兵,杨经绥,等.造山的高原—青藏高原巨型造山拼贴体和造山类型[J].地学前缘,2006,13(4):1-16.
    [173]许志琴,杨经绥,李海兵,等.造山的高原—青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社,2007,225-244.
    [174]许志琴,李廷栋,杨经绥,等.大陆动力学的过去、现在和未来—理论与应用[J].岩石学报,2008,24(07):1434-1444.
    [175]许志琴,杨经绥,嵇少丞,等.中国大陆构造及动力学若干问题的认识[J].地质学报,2010,84(1):1-28.
    [176]许志琴,杨经绥,李海兵,等.印度—亚洲碰撞大地构造[J].地质学报,2011,85(1):1-27.
    [177]杨经绥,王希斌,史仁灯,等.青藏高原北部东昆仑南缘德尔尼蛇绿岩:‘个被肢解了的古特提斯洋壳[J].中国地质,2004,31(3):225-239.
    [178]杨经绥,许志琴,李海兵,等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志,2005,24(5):369-380.
    [179]杨经绥,许志琴,马昌前,等.复合造山作用和中国中央造山带的科学问题[J].中国地质,2010,37(1):1-10.
    [180]殷鸿福,张克信.东昆仑造山带的—些特点[J].地球科学—中国地质大学学报,1997,22(4):339-342.
    [181]殷鸿福,张克信,朱云海,等.中华人民共和国区域地质调查报告:1:250000冬给措钠湖幅[M].武汉:中国地质大学出版社,2003,60-80.
    [182]袁万明.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评,2000,46(2):203-211.
    [183]袁万明,莫宣学,王世成,等.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,2003,39(3):5-8.
    [184]翟明国.埃达克岩和大陆下地壳重熔的花岗岩类[J].岩石学报,2004,20(2):193-194.
    [185]张伯声.从镶嵌构造观点说明中国大地构造的基本特征[C].见:张伯声论文集[M].西安:陕西科学技术出版社,1965:119-155.
    [186]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001:519-582.
    [187]张宏飞.俯冲陆壳部分熔融形成埃达克质岩浆[J].高校地质学报,2007,13(2):224-232.
    [188]张旗.埃达克岩的多样性[J].地质通报,2004,23(9-10):959-962.
    [189]张旗.钱青,王二七,等.燕山中晚期的“中国东部高原”:埃达克岩的启示[J].地质科学,2001,36(2):248-255.
    [190]张旗,王焰,钱青,等.中国东部中生代埃达克岩的特征及其构造—成矿意义[J].岩石学报,2001,17(3):236-244.
    [191]张旗.埃达克岩的特征及其意义[J].地质通报,2002,21(7):432-434.
    [192]张旗.中国埃达克岩的时空分布及其形成背景附:《国内关于埃达克岩的争论》[J].地学前缘,2003,10(4):385-392.
    [193]张旗.花岗岩按照压力的分类[J].地质通报,2006,25(11):1275-1278.
    [194]张旗.花岗岩的混合问题:与玄武岩对比的启示—关于花岗岩研究的思考之一[J].岩石学报,2007,23(6):1142—1152.
    [195]张旗.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(11):2684-2696.
    [196]张旗.21世纪的花岗岩的研究,路在何方?—关于花岗岩研究的思考之六[J].岩石学报,2008,24(10):2220-2235.
    [197]张旗.2009.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社.
    [198]张亚峰,裴先治,丁仨平,等.东昆仑都兰可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J].地质通报,2010,29(1):80-85.
    [199]张智勇,殷鸿福,王秉璋,等.昆秦结合部海西期苦海—赛什塘分支洋的存在及其证据[J].地球科学,2004,29(6):692-696.
    [200]赵振华.微量元素地球化学原理[M].北京:科学出版社,1995:56-130.
    [201]赵振华,熊小林,王强,等.铌与钽的某些地球化学问题[J].地球化学,2008,37(4):304-315.
    [202]赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用 [J].地学前缘,2010,17(1):268-285.
    [203]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992,(1):15-25.
    [204]周殉若.花岗岩混合作用[J].地学前缘,1994,1(1-2):77-97.
    [205]朱弟成.埃达克岩研究的几个问题[J].西北地质,2003,36(2):14-19.
    [206]朱云海.东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[J].武汉:中国地质大学出版社,2002:55-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700