用户名: 密码: 验证码:
核糖体蛋白RPS8对蛋白质翻译的影响及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cyclin-dependent kinase 11(CDK11)蛋白家族,即PITSLRE蛋白激酶家族,是一类丝/苏氨酸蛋白激酶,其功能与细胞周期调控、肿瘤的发生以及细胞凋亡相关。研究发现,细胞在发生凋亡过程时,全长的CDK11p110或者CDK11p58被caspase剪切,产生一个分子量大小约46-50 kDa的蛋白,含有CDKll蛋白羧基端的激酶活性区域。进一步研究发现CDKl 1p46在细胞凋亡中发挥重要的作用,但具体机制尚不明确。
     我们通过His pull-down联合质谱分析发现核糖体小亚基蛋白S8(RPS8)为CDK11p46相互作用蛋白。GST pull-down和免疫共沉淀实验验证了CDK11p46和RPS8在体外与体内均存在相互作用,免疫荧光共聚焦分析也揭示了它们在细细胞核内存在共定位。体外激酶实验发现,RPS8并不是CDK11p46的底物。进一步的功能研究表明,CDK11p46和RPS8协同抑制帽依赖(cap-dependent)以及帽非依赖(IRES-dependent)的蛋白质翻译,并且协同提高了细胞对于Fas配体诱导凋亡的敏感性。我们的研究为进一步的CDK11p46在调控蛋白质翻译和细胞凋亡中的机制研究奠定了基础。
     近年来,蛋白质翻译调控越来越受到关注,其在细胞生长、肿瘤发生以及细胞凋亡中起着中心调节作用,但具体的作用机制尚不明确。核糖体是蛋白质合成的场所,由核糖体蛋白及rRNA组成的复合物。研究发现,核糖体蛋白以及相关翻译因子在蛋白质翻译调控中起到关键的作用。其中,这些调节蛋白的磷酸化修饰,往往调控着这些蛋白的功能。
     在第一部分的研究中,我们发现RPS8能够抑制帽依赖以及帽非依赖的蛋白质翻译。我们进一步利用在线软件Scansite预测了RPS8可能的磷酸化位点,并构建了一系列磷酸化位点缺失突变体和模拟磷酸化突变体。通过荧光素酶报告基因活性检测,发现RPS8的T130位点的磷酸化对蛋白质翻译有影响。通过Genedoc软件进行同源比对发现T130位点在哺乳动物以及线虫中保守,GPS2.1软件分析提示了RPS8的T130位点可能的磷酸化激酶,为进一步的RPS8在蛋白质翻译中的功能研究奠定了基础。
Cyclin-dependent kinase 11 (CDK11) isoforms are members of the PITSLRE kinase superfamily and closely related to cell cycle regulation, oncogenesis, and apoptosis.During apoptosis, CDK11p110 and CDK11p58 are cleaved by caspases to generate a smaller 46-50 kDa protein which contains the catalytic kinase domain in the C-terminus of CDK11.CDK11p46 was demonstrated to play an important role in cell apoptosis. However, how CDK11p46 exactly promotes apoptosis is unclear.
     By using His pull-down and mass spectrometry analysis, we identified the ribosomal protein S8 (RPS8), a member of the small subunit ribosome, as an interacting partner of CDKllp46. Further analysis confirmed the association of CDK11p46 and RPS8 in vitro and in vivo, and revealed that RPS8 was not a substrate of CDK11p46. Moreover, RPS8 and CDKllp46 synergize to inhibit the translation process both in cap-and internal ribosomal entry site (IRES)-dependent way, and sensitize cells to Fas ligand-induced apoptosis. Taken together, our results provide evidence for the novel role of CDKllp46 in the regulation of translation and cell apoptosis.
     It is becoming increasingly evident that the regulation of translation plays a central regulatory role in cell growth, tumorigenesis and cell apoptosis. However the specific mechanism of translation control remains unclear. Ribosome is the component of cell that creates proteins from all amino acids and RNA representing the protein. It is composed of ribosomal proteins and rRNA. Studies have showed that ribosomal proteins and translation factors play a key role in regulation of protein synthesis. More importantly, the phosphorylation of these regulators usually regulates the function of these proteins.
     In part I, we found that RPS8 inhibited cap-dependent and cap-independent translation. We further predicted the potential phosphorylation sites of RPS8 by using the Scansite online software. Next, we constructed a series of phosphorylation site mutant which mimic the dephosphorylated or phosphorylated form of RPS8. By luciferase reporter gene assay, we found that the phosphorylation of T130 phosphorylation site of RPS8 may contribute to translation. Homology comparison was performed by Genedoc software and showed that T130 site is highly conserved in Mammalia and C. elegans. GPS2.1 software analysis suggested potential kinase of T130 site. Our research helps to further investigate the mechanism of RPS8 in translational regulation.
引文
[1]XIANG J, LAHTI J M, GRENET J, et al. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms [J]. J Biol Chem,1994, 269(22):15786-94.
    [2]SOLOMON M J, GLOTZER M, LEE T H, et al. Cyclin activation of p34cdc2 [J]. Cell,1990,63(5):1013-24.
    [3]DRAETTA G, BEACH D. Activation of cdc2 protein kinase during mitosis in human cells:cell cycle-dependent phosphorylation and subunit rearrangement [J]. Cell,1988,54(1):17-26.
    [4]TREMBLEY J H, LOYER P, HU D, et al. Cyclin dependent kinase 11 in RNA transcription and splicing [J]. Prog Nucleic Acid Res Mol Biol,2004,77(263-88.
    [5]TREMBLEY J H, HU D, HSU L C, et al. PITSLRE p110 protein kinases associate with transcription complexes and affect their activity [J]. J Biol Chem,2002, 277(4):2589-96.
    [6]TREMBLEY J H, HU D, SLAUGHTER C A, et al. Casein kinase 2 interacts with cyclin-dependent kinase 11 (CDK11) in vivo and phosphorylates both the RNA polymerase II carboxyl-terminal domain and CDK11 in vitro [J]. J Biol Chem,2003,278(4):2265-70.
    [7]LOYER P, TREMBLEY J H, GRENET J A, et al. Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors:influence of cyclin L isoforms on splice site selection [J]. J Biol Chem,2008,283(12):7721-32.
    [8]LOYER P, TREMBLEY J H, LAHTI J M, et al. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo [J]. J Cell Sci,1998,111 (Pt 11)(1495-506.
    [9]HU D, MAYEDA A, TREMBLEY J H, et al. CDK11 complexes promote pre-mRNA splicing [J]. J Biol Chem,2003,278(10):8623-9.
    [10]CORNELIS S, BRUYNOOGHE Y, DENECKER G, et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site [J]. Mol Cell,2000,5(4):597-605.
    [11]BUNNELL B A, HEATH L S, ADAMS D E, et al. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle [J]. Proc Natl Acad Sci USA,1990,87(19):7467-71.
    [12]PETRETTI C, SAVOIAN M, MONTEMBAULT E, et al. The PITSLRE/CDKllp58 protein kinase promotes centrosome maturation and bipolar spindle formation [J]. EMBO Rep,2006,7(4):418-24.
    [13]HU D, VALENTINE M, KIDD V J, et al. CDK11(p58) is required for the maintenance of sister chromatid cohesion [J]. J Cell Sci,2007,120(Pt 14):2424-34.
    [14]LI T, INOUE A, LAHTI J M, et al. Failure to proliferate and mitotic arrest of CDK11(p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development [J]. Mol Cell Biol,2004,24(8):3188-97.
    [15]ZHANG S, CAI M, XU S, et al. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3 [J]. J Biol Chem,2002,277(38):35314-22.
    [16]ZONG H, CHI Y, WANG Y, et al. Cyclin D3/CDKllp58 complex is involved in the repression of androgen receptor [J]. Mol Cell Biol,2007,27(20):7125-42.
    [17]LAHTI J M, XIANG J, HEATH L S, et al. PITSLRE protein kinase activity is associated with apoptosis [J]. Mol Cell Biol,1995,15(1):1-11.
    [18]BEYAERT R, KIDD V J, CORNELIS S, et al. Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor [J]. J Biol Chem,1997,272(18):11694-7.
    [19]CHEN S, YIN X, ZHU X, et al. The C-terminal kinase domain of the p34cdc2-related PITSLRE protein kinase (p110C) associates with p21-activated kinase 1 and inhibits its activity during anoikis [J]. J Biol Chem,2003,278(22): 20029-36.
    [20]CHEN C, YAN J, SUN Q, et al. Induction of apoptosis by p110C requires mitochondrial translocation of the proapoptotic BCL-2 family member BAD [J]. FEBS Lett,2006,580(3):813-21.
    [21]SHI J, FENG Y, GOULET A C, et al. The p34cdc2-related cyclin-dependent kinase 11 interacts with the p47 subunit of eukaryotic initiation factor 3 during apoptosis [J]. J Biol Chem,2003,278(7):5062-71.
    [22]SHI J, HERSHEY J W, NELSON M A. Phosphorylation of the eukaryotic initiation factor 3f by cyclin-dependent kinase 11 during apoptosis [J]. FEBS Lett, 2009,583(6):971-7.
    [23]JONSON L, VIKESAA J, KROGH A, et al. Molecular composition of IMP1 ribonucleoprotein granules [J]. Mol Cell Proteomics,2007,6(5):798-811.
    [24]GAUSDAL G, GJERTSEN B T, MCCORMACK E, et al. Abolition of stress-induced protein synthesis sensitizes leukemia cells to anthracycline-induced death [J]. Blood,2008,111(5):2866-77.
    [25]ROBERT F, CARRIER M, RAWE S, et al. Altering chemosensitivity by modulating translation elongation [J]. PLoS One,2009,4(5):e5428.
    [26]CENCIC R, CARRIER M, TRNKUS A, et al. Synergistic effect of inhibiting translation initiation in combination with cytotoxic agents in acute myelogenous leukemia cells [J]. Leuk Res,2010,34(4):535-41.
    [27]SHI J, NELSON M A. The cyclin-dependent kinase 11 interacts with NOT2 [J]. Biochem Biophys Res Commun,2005,334(4):1310-6.
    [28]LIM J T, MANSUKHANI M, WEINSTEIN I B. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells [J]. Proc Natl Acad Sci U S A,2005,102(14):5156-61.
    [29]WOOD L C, ASHBY M N, GRUNFELD C, et al. Cloning of murine translation initiation factor 6 and functional analysis of the homologous sequence YPR016c in Saccharomyces cerevisiae [J]. J Biol Chem,1999,274(17):11653-9.
    [30]BASU U, SI K, WARNER J R, et al. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis [J]. Mol Cell Biol,2001,21(5):1453-62.
    [31]CECI M, GAVIRAGHI C, GORRINI C, et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly [J]. Nature,2003,426(6966):579-84.
    [32]RUGGERO D, PANDOLFI P P. Does the ribosome translate cancer? [J]. Nat Rev Cancer,2003,3(3):179-92.
    [33]HOLCIK M, SONENBERG N. Translational control in stress and apoptosis [J]. Nat Rev Mol Cell Biol,2005,6(4):318-27.
    [34]BARNA M, PUSIC A, ZOLLO O, et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency [J]. Nature,2008,456(7224):971-5.
    [35]LAHTI J M, VALENTINE M, XIANG J, et al. Alterations in the PITSLRE protein kinase gene complex on chromosome 1p36 in childhood neuroblastoma [J]. Nat Genet,1994,7(3):370-5.
    [36]CHANDRAMOULI A, SHI J, FENG Y, et al. Haploinsufficiency of the cdc21 gene contributes to skin cancer development in mice [J]. Carcinogenesis,2007,28(9): 2028-35.
    [37]FERREIRA-CERCA S, HURT E. Cell biology:Arrest by ribosome [J]. Nature, 2009,459(7243):46-7.
    [1]FERREIRA-CERCA S, HURT E. Cell biology:Arrest by ribosome [J]. Nature, 2009,459(7243):46-7.
    [2]HAY N, SONENBERG N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926-45.
    [3]UECHI T, TANAKA T, KENMOCHI N. A complete map of the human ribosomal protein genes:assignment of 80 genes to the cytogenetic map and implications for human disorders [J]. Genomics,2001,72(3):223-30.
    [4]TSCHOCHNER H, HURT E. Pre-ribosomes on the road from the nucleolus to the cytoplasm [J]. Trends Cell Biol,2003,13(5):255-63.
    [5]HENRAS A K, SOUDET J, GERUS M, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis [J]. Cell Mol Life Sci,2008,65(15):2334-59.
    [6]BEN-SHEM A, JENNER L, YUSUPOVA G, et al. Crystal structure of the eukaryotic ribosome [J]. Science,2010,330(6008):1203-9.
    [7]JAKUBOWICZ T, CYTRYNSKA M, KOWALCZYK W, et al. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of Saccharomyces cerevisiae and Schizosaccharomyces pombe [J]. Acta Biochim Pol, 1993,40(4):497-505.
    [8]CYTRYNSKA M, WOJDA I, JAKUBOWICZ T. The acidic ribosomal proteins of different yeast species. Phosphorylation by ribosome-associated protein kinases [J]. J Basic Microbiol,1995,35(6):367-73.
    [9]KAERLEIN M, HORAK I. Phosphorylation of ribosomal proteins in HeLa cells infected with vaccinia virus [J]. Nature,1976,259(5539):150-1.
    [10]RUVINSKY I, SHARON N, LERER T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis [J]. Genes Dev, 2005,19(18):2199-211.
    [11]NYGARD O, NILSSON L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis [J]. Eur J Biochem,1990,191(1):1-17.
    [12]MONTAGNE J, STEWART M J, STOCKER H, et al. Drosophila S6 kinase:a regulator of cell size [J]. Science,1999,285(5436):2126-9.
    [13]PENDE M, KOZMA S C, JAQUET M, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice [J]. Nature,2000, 408(6815):994-7.
    [14]OHANNA M, SOBERING A K, LAPOINTE T, et al. Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control [J]. Nat Cell Biol,2005,7(3):286-94.
    [15]PIAN J P, HUANG T L, TSAI P C, et al. A 32 kDa protein--whose phosphorylation correlates with oncogenic Ras-induced cell cycle arrest in activated Xenopus egg extracts--is identified as ribosomal protein S6 [J]. J Cell Physiol,2004, 201(2):305-19.
    [16]MAZUMDER B, SAMPATH P, SESHADRI V, et al. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control [J]. Cell,2003,115(2):187-98.
    [17]SCHAFER T, MACO B, PETFALSKI E, et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit [J]. Nature,2006,441(7093): 651-5.
    [18]JONSON L, VIKESAA J, KROGH A, et al. Molecular composition of IMP1 ribonucleoprotein granules [J]. Mol Cell Proteomics,2007,6(5):798-811.
    [19]BERG J M, TYMOCZKO J L, STRYER L. Biochemistry [M].5th ed./Jeremy Berg, John Tymoczko, Lubert Stryer/web content by Neil D. Clarke. ed. New York: W. H. Freeman and Co.; [Basingstoke:Palgrave] [distributor],2001,2002.
    [20]LING D S, BENARDO L S, SERRANO P A, et al. Protein kinase Mzeta is necessary and sufficient for LTP maintenance [J]. Nat Neurosci,2002,5(4):295-6.
    [21]SERRANO P, YAO Y, SACKTOR T C. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation [J]. J Neurosci,2005,25(8): 1979-84.
    [22]PASTALKOVA E, SERRANO P, PINKHASOVA D, et al. Storage of spatial information by the maintenance mechanism of LTP [J]. Science,2006,313(5790): 1141-4.
    [23]TANG S J, REIS G, KANG H, et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus [J]. Proc Natl Acad Sci U S A,2002,99(1):467-72.
    [1]GUERTIN D A, SABATINI D M. Defining the role of mTOR in cancer [J]. Cancer Cell,2007,12(1):9-22.
    [2]HARA K, MARUKI Y, LONG X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action [J]. Cell,2002,110(2):177-89.
    [3]KIM D H, SARBASSOV D D, ALI S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J]. Cell, 2002,110(2):163-75.
    [4]SARBASSOV D D, ALI S M, KIM D H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton [J]. Curr Biol,2004,14(14):1296-302.
    [5]TAKAHARA T, HARA K, YONEZAWA K, et al. Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region [J]. J Biol Chem,2006,281(39):28605-14.
    [6]WANG L, RHODES C J, LAWRENCE J C, JR. Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1 [J]. J Biol Chem,2006,281(34):24293-303.
    [7]YIP C K, MURATA K, WALZ T, et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition [J]. Mol Cell,2010,38(5):768-74.
    [8]ZHANG Y, BILLINGTON C J, JR., PAN D, et al. Drosophila target of rapamycin kinase functions as a multimer [J]. Genetics,2006,172(1):355-62.
    [9]JACINTO E, LOEWITH R, SCHMIDT A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive [J]. Nat Cell Biol,2004, 6(11):1122-8.
    [10]JACINTO E, FACCHINETTI V, LIU D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity [J]. Cell,2006,127(1):125-37.
    [11]FRIAS M A, THOREEN C C, JAFFE J D, et al. mSinl is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s [J]. Curr Biol,2006, 16(18):1865-70.
    [12]REILING J H, SABATINI D M. Stress and mTORture signaling [J]. Oncogene, 2006,25(48):6373-83.
    [13]HANDS S L, PROUD C G, WYTTENBACH A. mTOR's role in ageing:protein synthesis or autophagy? [J]. Aging (Albany NY),2009,1(7):586-97.
    [14]AVRUCH J, HARA K, LIN Y, et al. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase [J]. Oncogene,2006,25(48): 6361-72.
    [15]LOEWITH R, JACINTO E, WULLSCHLEGER S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control [J]. Mol Cell,2002,10(3):457-68.
    [16]YANG Q, GUAN K L. Expanding mTOR signaling [J]. Cell Res,2007,17(8): 666-81.
    [17]KEITH C T, SCHREIBER S L. PIK-related kinases:DNA repair, recombination, and cell cycle checkpoints [J]. Science,1995,270(5233):50-1.
    [18]ANDRADE M A, BORK P. HEAT repeats in the Huntington's disease protein [J]. Nat Genet,1995,11(2):115-6.
    [19]BOSOTTI R, ISACCHI A, SONNHAMMER E L. FAT:a novel domain in PIK-related kinases [J]. Trends Biochem Sci,2000,25(5):225-7.
    [20]CHEN J, ZHENG X F, BROWN E J, et al. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue [J]. Proc Natl Acad Sci U S A,1995,92(11):4947-51.
    [21]DAMES S A, MULET J M, RATHGEB-SZABO K, et al. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability [J]. J Biol Chem,2005,280(21): 20558-64.
    [22]SMITH T F, GAITATZES C, SAXENA K, et al. The WD repeat:a common architecture for diverse functions [J]. Trends Biochem Sci,1999,24(5):181-5.
    [23]KIM D H, SARBASSOV D D, ALI S M, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR [J]. Mol Cell,2003,11(4):895-904.
    [24]AD AMI A, GARCIA-ALVAREZ B, ARIAS-PALOMO E, et al. Structure of TOR and its complex with KOG1 [J]. Mol Cell,2007,27(3):509-16.
    [25]NOJIMA H, TOKUNAGA C, EGUCHI S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif [J]. J Biol Chem,2003,278(18): 15461-4.
    [26]SCHALM S S, FINGAR D C, SABATINI D M, et al. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function [J]. Curr Biol,2003, 13(10):797-806.
    [27]VEZINA C, KUDELSKI A, SEHGAL S N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle [J]. J Antibiot (Tokyo),1975,28(10):721-6.
    [28]PRITCHARD D I. Sourcing a chemical succession for cyclosporin from parasites and human pathogens [J]. Drug Discov Today,2005,10(10):688-91.
    [29]SCHWECKE T, APARICIO J F, MOLNAR I, et al. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin [J]. Proc Natl Acad Sci U S A,1995, 92(17):7839-43.
    [30]HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast [J]. Science,1991,253(5022):905-9.
    [31]CUTLER N S, HEITMAN J, CARDENAS M E. TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals [J]. Mol Cell Endocrinol,1999,155(1-2):135-42.
    [32]FINGAR D C, BLENIS J. Target of rapamycin (TOR):an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression [J]. Oncogene,2004,23(18):3151-71.
    [33]HAY N, SONENBERG N. Upstream and downstream of mTOR [J]. Genes Dev, 2004,18(16):1926-45.
    [34]MANNING B D, CANTLEY L C. Rheb fills a GAP between TSC and TOR [J]. Trends Biochem Sci,2003,28(11):573-6.
    [35]KWIATKOWSKI D J, MANNING B D. Tuberous sclerosis:a GAP at the crossroads of multiple signaling pathways [J]. Hum Mol Genet,2005,14 Spec No. 2(R251-8.
    [36]TEE A R, BLENIS J. mTOR, translational control and human disease [J]. Semin Cell Dev Biol,2005,16(1):29-37.
    [37]DANN S G, SELVARAJ A, THOMAS G. mTOR Complexl-S6K1 signaling:at the crossroads of obesity, diabetes and cancer [J]. Trends Mol Med,2007,13(6): 252-9.
    [38]CLEMENS M J, BOMMER U A. Translational control:the cancer connection [J]. Int J Biochem Cell Biol,1999,31(1):1-23.
    [39]GEBAUER F, HENTZE M W. Molecular mechanisms of translational control [J]. Nat Rev Mol Cell Biol,2004,5(10):827-35.
    [40]GALE M, JR., TAN S L, KATZE M G. Translational control of viral gene expression in eukaryotes [J]. Microbiol Mol Biol Rev,2000,64(2):239-80.
    [41]MAMANE Y, PETROULAKIS E, LEBACQUER O, et al. mTOR, translation initiation and cancer [J]. Oncogene,2006,25(48):6416-22.
    [42]PAUSE A, METHOT N, SVITKIN Y, et al. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation [J]. EMBO J,1994,13(5): 1205-15.
    [43]GINGRAS A C, RAUGHT B, SONENBERG N. Regulation of translation initiation by FRAP/mTOR [J]. Genes Dev,2001,15(7):807-26.
    [44]MA X M, BLENIS J. Molecular mechanisms of mTOR-mediated translational control [J]. Nat Rev Mol Cell Biol,2009,10(5):307-18.
    [45]MARTIN K A, BLENIS J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways [J]. Adv Cancer Res,2002,86(1-39.
    [46]FAVRE A, MOREL C, SCHERRER K. The secondary structure and poly(A) content of globin messenger RNA as a pure RNA and in polyribosome-derived ribonucleoprotein complexes [J]. Eur J Biochem,1975,57(1):147-57.
    [47]FLASHNER M S, VOURNAKIS J N. Specific hydrolysis of rabbit globin messenger RNA by S1 nuclease [J]. Nucleic Acids Res,1977,4(7):2307-19.
    [48]NIELSEN F C, OSTERGAARD L, NIELSEN J, et al. Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway [J]. Nature,1995, 377(6547):358-62.
    [49]JACKSON R J, WICKENS M. Translational controls impinging on the 5'-untranslated region and initiation factor proteins [J]. Curr Opin Genet Dev,1997, 7(2):233-41.
    [50]ROGERS G W, JR., KOMAR A A, MERRICK W C. eIF4A:the godfather of the DEAD box helicases [J]. Prog Nucleic Acid Res Mol Biol,2002,72(307-31.
    [51]HOLZ M K, BALLIF B A, GYGI S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events [J]. Cell,2005,123(4):569-80.
    [52]SHAHBAZIAN D, ROUX P P, MIEULET V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity [J]. EMBO J, 2006,25(12):2781-91.
    [53]DUNCAN R, HERSHEY J W. Regulation of initiation factors during translational repression caused by serum depletion. Abundance, synthesis, and turnover rates [J]. J Biol Chem,1985,260(9):5486-92.
    [54]RAUGHT B, PEIRETTI F, GINGRAS A C, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases [J]. EMBO J,2004, 23(8):1761-9.
    [55]RICHARDSON C J, BROENSTRUP M, FINGAR D C, et al. SKAR is a specific target of S6 kinase 1 in cell growth control [J]. Curr Biol,2004,14(17):1540-9.
    [56]INOKI K, CORRADETTI M N, GUAN K L. Dysregulation of the TSC-mTOR pathway in human disease [J]. Nat Genet,2005,37(1):19-24.
    [57]KWIATKOWSKI D J. Tuberous sclerosis:from tubers to mTOR [J]. Ann Hum Genet,2003,67(Pt 1):87-96.
    [58]DOWLING R J, TOPISIROVIC I, ALAIN T, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs [J]. Science,2010, 328(5982):1172-6.
    [59]WENDEL H G, DE STANCHINA E, FRIDMAN J S, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy [J]. Nature,2004,428(6980): 332-7.
    [60]WENDEL H G, SILVA R L, MALINA A, et al. Dissecting eIF4E action in tumorigenesis [J]. Genes Dev,2007,21(24):3232-7.
    [61]HSIEH A C, COSTA M, ZOLLO O, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E [J]. Cancer Cell,2010,17(3):249-61.
    [62]PETROULAKIS E, PARSYAN A, DOWLING R J, et al. p53-dependent translational control of senescence and transformation via 4E-BPs [J]. Cancer Cell, 2009,16(5):439-46.
    [63]SHE Q B, HALILOVIC E, YE Q, et al.4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors [J]. Cancer Cell,2010,18(1):39-51.
    [64]DANCEY J E. Inhibitors of the mammalian target of rapamycin [J]. Expert Opin Investig Drugs,2005,14(3):313-28.
    [65]VIGNOT S, FAIVRE S, AGUIRRE D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives [J]. Ann Oncol,2005,16(4):525-37.
    [66]VIVANCO I, SAWYERS C L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer [J]. Nat Rev Cancer,2002,2(7):489-501.
    [67]COLEMAN M L, MARSHALL C J, OLSON M F. RAS and RHO GTPases in G1-phase cell-cycle regulation [J]. Nat Rev Mol Cell Biol,2004,5(5):355-66.
    [68]BASSO A D, MIRZA A, LIU G, et al. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity [J]. J Biol Chem,2005, 280(35):31101-8.
    [69]BJORNSTI M A, HOUGHTON P J. Lost in translation:dysregulation of cap-dependent translation and cancer [J]. Cancer Cell,2004,5(6):519-23.
    [70]RUGGERO D, MONTANARO L, MA L, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis [J]. Nat Med,2004,10(5):484-6.
    [71]BARLUND M, FOROZAN F, KONONEN J, et al. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis [J]. J Natl Cancer Inst,2000,92(15):1252-9.
    [72]SANSAL I, SELLERS W R. The biology and clinical relevance of the PTEN tumor suppressor pathway [J]. J Clin Oncol,2004,22(14):2954-63.
    [73]LYNCH M, FITZGERALD C, JOHNSTON K A, et al. Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth [J]. J Biol Chem,2004,279(5):3327-39.
    [74]JOHANNES SEN C M, RECZEK E E, JAMES M F, et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR [J]. Proc Natl Acad Sci U S A,2005, 102(24):8573-8.
    [75]SIGAL A, ROTTER V. Oncogenic mutations of the p53 tumor suppressor:the demons of the guardian of the genome [J]. Cancer Res,2000,60(24):6788-93.
    [76]LUM J J, DEBERARDINIS R J, THOMPSON C B. Autophagy in metazoans: cell survival in the land of plenty [J]. Nat Rev Mol Cell Biol,2005,6(6):439-48.
    [77]BOWEN R L, ATWOOD C S. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones [J]. Gerontology, 2004,50(5):265-90.
    [78]KENYON C J. The genetics of ageing [J]. Nature,2010,464(7288):504-12.
    [79]FABRIZIO P, POZZA F, PLETCHER S D, et al. Regulation of longevity and stress resistance by Sch9 in yeast [J]. Science,2001,292(5515):288-90.
    [80]KAEBERLEIN M, POWERS R W,3RD, STEFFEN K K, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients [J]. Science,2005, 310(5751):1193-6.
    [81]VELLAI T, TAKACS-VELLAI K, ZHANG Y, et al. Genetics:influence of TOR kinase on lifespan in C. elegans [J]. Nature,2003,426(6967):620.
    [82]BJEDOV I, TOIVONEN J M, KERR F, et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster [J]. Cell Metab,2010,11(1): 35-46.
    [83]KAPAHI P, ZID B M, HARPER T, et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway [J]. Curr Biol,2004,14(10): 885-90.
    [84]HARRISON D E, STRONG R, SHARP Z D, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice [J]. Nature,2009,460(7253): 392-5.
    [85]SELMAN C, TULLET J M, WIESER D, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span [J]. Science,2009,326(5949):140-4.
    [86]HANSEN M, TAUBERT S, CRAWFORD D, et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans [J]. Aging Cell,2007, 6(1):95-110.
    [87]PAN K Z, PALTER J E, ROGERS A N, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans [J]. Aging Cell,2007,6(1):111-9.
    [88]STEFFEN K K, MACKAY V L, KERR E O, et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4 [J]. Cell,2008,133(2): 292-302.
    [89]SYNTICHAKI P, TROULINAKI K, TAVERNARAKIS N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans [J]. Nature,2007, 445(7130):922-6.
    [90]RAVIKUMAR B, VACHER C, BERGER Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease [J]. Nat Genet,2004,36(6):585-95.
    [91]ZID B M, ROGERS A N, KATEWA S D, et al.4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila [J]. Cell,2009, 139(1):149-60.
    [92]POLAK P, CYBULSKI N, FEIGE J N, et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration [J]. Cell Metab,2008, 8(5):399-410.
    [93]YEH W C, BIERER B E, MCKNIGHT S L. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells [J]. Proc Natl Acad Sci U S A,1995, 92(24):11086-90.
    [94]GAGNON A, LAU S, SORISKY A. Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion [J]. J Cell Physiol,2001,189(1): 14-22.
    [95]TONTONOZ P, HU E, SPIEGELMAN B M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor [J]. Cell,1994, 79(7):1147-56.
    [96]KIM J E, CHEN J. regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis [J]. Diabetes,2004,53(11):2748-56.
    [97]CHO H J, PARK J, LEE H W, et al. Regulation of adipocyte differentiation and insulin action with rapamycin [J]. Biochem Biophys Res Commun,2004,321(4): 942-8.
    [98]ZHANG H H, HUANG J, DUVEL K, et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORCl pathway [J]. PLoS One,2009,4(7):e6189.
    [99]EL-CHAAR D, GAGNON A, SORISKY A. Inhibition of insulin signaling and adipogenesis by rapamycin:effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1 [J]. Int J Obes Relat Metab Disord,2004,28(2):191-8.
    [100]LE BACQUER O, PETROULAKIS E, PAGLIALUNGA S, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2 [J]. J Clin Invest,2007,117(2):387-96.
    [101]UM S H, FRIGERIO F, WATANABE M, et al. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity [J]. Nature, 2004,431(7005):200-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700